
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 41

PART I

1972
FALL JOINT
COMPUTER

CONFERENCE

December 5 - 7, 1972

Anaheim, California

The ideas and opinions expressed herein are solely those of the authors and are not necessarily representative of or
endorsed by the 1972 Fall Joint Computer Conference Committee or the American Federation of Information
Processing Societies, Inc.

Library of Congress Catalog Card Number 55-44701

AFIPS PRESS
210 Summit Avenue

Montvale, New Jersey 07645

©1972 by the American Federation of Information Processing Societies, Inc., Montvale, New Jersey 07645. All
rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

CONTENTS

PART I

OPERATING SYSTEMS

Properties of disk scheduling policies in multiprogrammed computer
systems .. " .. ,

The interaction of multiprogramming job scheduling and CPU
scheduling .. .

Storage organization and management in TENEX
The application of program-proving techniques to the verification of

synchronization processes

ARCHITECTURE FOR HIGH SYSTEM AVAILABILITY

Exact calculation of· computer network reliability

A framework for analyzing hardware-software trade-offs in fault
tolerant computing systems

Automation of reliability evaluation procedures through CARE-The
computer aided reliability estimation program

An adaptive error correction scheme for computer memory systems .. .

Dynamic configuration of system integrity

COMPUTING INSTALLATIONS-PROBLEMS AND PRACTICES

The in-house computer department
A computer center accounting system
An approach to job billing in a multiprogramming environment

Facilities managemBnt-A marriage of porcupines

COMPUTER GRAPHICS

Automated map reading and analysis by computer

Computer generated optical sound tracks

Simulating the visual environment in real-time via software
Computer animation of a bicycle simulation

An inverse computer graphics problem

1

13

23

33

49

55

65
83

89

97
105
115

123

135

147

153
161

169

T. J. Teorey

J. C. Browne
J. Lan
F. Baskett
D. Murphy

K. Levitt

R. Wilkov
E. Hansler
G. McAuliffe

K. M. Chandy
C. V. Ramamoorthy
A. Cowan

F. P. Mathur
A. M. Patel
M. Hsiau
B. Borgerson

J. Pendray
F. T. Grampp
C. Kreitzberg
J. Webb
D. C. Jung

R. H. Cofer
J. Tou
E. K. Tucker
L. H. Baker
D. C. Buckner
R. S. Burns
J. P. Lynch
R.·D. Roland
W. D. Bernhart

SOFTWARE ENGINEERING-THEORY AND PRACTICE

(PART I)

Module connection analysis-A tool for scheduling software debugging
activities

Evaluating the effectiveness of software verification-Practical ex-
perience with an automated tool

A design methodology for reliable software systems
A summary of progress toward proving program correctness.

SUPERCOMPUTERS-PRESENT AND FUTURE

Supercomputers for ordinary users
The Texas Instruments advanced scientific computer
A production implementation of an associative array processor-

STARAN .. .

MAINTENANCE AND SYSTEM INTEGRITY

SIFT-Software Implemented Fault Tolerance
TRIDENT-A new maintenance weapon
Computer system maintainability at the Lawrence Livermore

Laboratory

The retryable processor .. .

COMPUTER SIMULATIONS OF COMPUTER SYSTEMS

Evaluation nets for computer system performance analysis
Objectives and problems in simulating computers
A methodology for computer model building

SOFTWARE ENGINEERING-THEORY AND PRACTICE

(PART II)

LOGOS and the software engineer
Some conclusions from an experiment in software engineering

techniques .. .
Project SUE as a learning experience

System quality through structured programming ,

ARCHITECTURE LIMITATIONS IN LARGE-SCALE
COMPUTATION AND DATA PROCESSING

(P anel Discussion-No Papers in this Volume)

173

181
191
201

213
221

229

243
255

263

273

279
287
299

311

325
331

339

F. M. Haney

J. R. Brown
B. H. Liskov
T. A. Linden

D. J. Kuck
J. Watson

J. A. Rudolph

J. H. Wensley
R. M. Fitzsimons

J. M. Burk
J. Schoonover
G. H. Maestri

G. J. Nutt
T. E. Bell
A. De Cegama

C. W. Rose

D. L. Parnas
K. C. Sevcik
J. W. Atwood
M. S. Grushcow
R. C. Holt
J. J. Horning
D. Tsichritzis
F. T. Baker

ARRAY LOGIC AND OTHER ADVANCED TECHNIQUES

An application of cellular logic for high speed decoding of minimum
redundancy codes

On an extended threshold logic as a unit cell of array logics
Multiple operand addition and multiplication

Techniques for increasing fault coverage for asynchronous sequential
networks .. , .

ADVANCES IN SIMULATION

System identification and simulation-A pattern recognition
approach .. , .

Horizontal domain partitioning of the Navy atmospheric primitive
equation prediction model

An analysis of optimal control system algorithms

Computer simulation of the metropolis

PRIVACY AND THE SECURITY OF DATABANK SYSTEMS

The protection of privacy and security in criminal offender record
information systems

Security of information processing-Implications for social research
Privacy and security in data bank systems-Measures, costs, and

protector intruder interactions

Snapshot 1971-How one developed nation organizes information about
people , ,

ARRAY LOGIC-WHERE ART THOU?

(Panel Discussion-No Papers in this Volume)

HARDWARE-FIRMW ARE-SOFTWARE TRADE-OFFS

Hardware-software trade-offs-Reasons and directions
A design for an auxiliary associative parallel processor

An eclectic information processing system

345

353
367

375

385

393

407

415

423
425

435

445

453
461

473

K.Ohmori
K. Nezu
S. Naito
T. Nanya
R. Mori
R. Waxman
S. Singh

L. R. Hoover
J. H. Tracey

W. J. Karplus

E. Morenoff
P. G. Kesel
L. C. Clarke
C. N. Walter
G. H. Cohen
B. Harris

S. Rothman
R. F. Boruch

R. Turn
N. Z. Shapiro

J. M. Carroll

R. L. Mandell
M. A. Wesley
S. K. Chang
J. H. Mommens
R. Cutts
H. Huskey
J. Haynes
J. Kaubisch
L. Laitinen
G. Tollkuhn
E. Yarwood

Microtext-The design of a microprogrammed finite state search
machine for full text retrieval

Design of the B1700

HUMAN ENGINEERING OF PROGRAMMING SYSTEMS-THE
USER'S VIEW

An on-line two-dimensional computation system
Debugging PLII programs in the multics environment
AEPL-An Extensible Programming Language

The investment analysis language

DATA COMMUNICATION SYSTEMS

The design approach to integrated telephone information in the
Netherlands .. .

Field evaluation of real-time capability of a large electronic switching
system

Minimum cost, reliable computer-communications networks

MEASUREMENT OF COMPUTER SYSTEMS-SYSTEM
PERFORMANCE

(Panel Discussion-No Papers in this Volume)

MEMORY ORGANIZATION AND MANAGEMENT

Control Data STAR-lOO file storage station

Protection systems and protection implementations
B1700 memory utIlization
Rotating storage devices as "partially associative memories"

DYNAMIC PROGRAM BEHAVIOR

Page fault frequency (PFF) replacement algorithms

Experiments wish program locality

COMPUTER ASSISTED EDUCATIONAL TEST CONSTRUCTION

TASSY-One approach to individualized test construction

A comprehensive question retrieval application to serve classroom
teachers ... , ... ' .. .

Computer processes in repeatable testing ,

479

489

499
507
515

525

537

545

553

561

571
579
587

597

611

623

633
641

R. H. Bullen, Jr.
J. K. Millen
W. T. Wilner

T. G. Williams
B. Wolman
E. Milgrom
J. Katzenelson
C. Dmytryshak

R. DiPalma
G. F. Hice

W. C. Jones
S. H. Tsiang
J. De Mercado

G. Christensen
P. D. Jones
R. M. Needham
W. T. Wilner
N. Minsky

W. W. Chu
H. Opderbeck
J. R. Spirn
P. J. Denning

T. Blaskovics
J. Kutsch, Jr.

G. Lippey
F. Prosser
J. N akhnikian

Properties of disk scheduling policies in multiprogrammed
computer systenls

by TOBY J. TEOREY

University of Wisconsin
Madison, Wisconsin

INTRODUCTION

The subject of scheduling for movable head rotating
storage devices, i.e., disk-like devices, has been dis­
cussed at length in recent literature. The early sched­
uling models were developed by Denning,3 Frank,6 and
Weingarten.14 Highly theoretical models have been set
forth recently by Manocha,9 and a comprehensive
simulation study has been reported on by Teorey and
Pinkerton. 12

One of the goals of this study is to develop a model
that can be compared with the simulation results over
a similar broad range of input loading conditions. Such
a model will have two advantages over simulation: the
computing cost per data point will be much smaller,
and the degree of uncertainty of a stable solution will
be decreased.

Although the previous analytical results on disk
scheduling are valid within their range of assumptions,
they do not provide the systems designer with enough
information to decide whether or not to implement disk
scheduling at all; neither do they determine which
scheduling policy to use for a given application, be it
batch multiprogramming, time sharing, or real-time
processing. The other goal of this study is to provide a
basis upon which these questions can be answered.

The basic scheduling policies are summarized with
brief descriptions in Table 1. Many variations of these
policies are possible, but in the interest of mathematical
analysis and ease of software implementation we do
not discuss them here.

SCAN was first discussed by Denning.3 He assumed
a mean (fixed) queue length and derived expected
service time and mean response time. The number of
requests in the queue was assumed to be much less than
the number of cylinders, so the probability of more
than one request at· a cylinder was negligible. We do
not restrict ourselves to such an assumption here.
Improvements on the definition and representation of

1

SCAN have been suggested by Coffman and Denning, 2

Manocha,9 and Merten.10 The implementation of SCAN
is often referred to as LOOK,1O,12 but we retain the
name SCAN for consistency within this paper. Both
C_SCAN9,11,12,13 and the N-step scan6 ,12,13 have been
discussed or studied previously and the Eschenbach
scheme was developed for an airlinessystem.14 Because
it requires overhead for rotational optimization as well
as seek time optimization it is not included in the
following discussion. In the simulation study12 it was
seen that the C-SCAN policy, with rotational optimiza­
tion, was more appropriate than the Eschenbach
scheme for all loading conditions, so we only consider
C-SCAN here.

The simulation results indicated the following, given
that cylinder positions are addressed randomly:12
under very light loading all policies perform no better
than FCFS. Under medium to heavy loading the FCFS
policy allowed the system to saturate and the SSTF
policy had intolerable variances in response time.
SCAN and the N -step policies were superior under
light to medium loading, and C-SCAN was superior
under heavy loading.

We first investigate various properties of the N -step
scan, C-SCAN, and SCAN, since these are the highest
performance policies that optimize on arm positioning
time (seek time). The properties include mean, vari­
ance, and distribution of response time; and the
distribution of the positions of requests serviced as a
function of distance from the disk arm before it begins
its next sweep. Response time mean and variance are
then compared with simulation results.

A unified approach is applied to all three policies to
obtain mean response time. The expressions are non­
linear and require an iterative technique for solution;
however, we can easily show that sufficient conditions
always exist for convergence.

Finally, we look at the factors that must be con­
sidered in deciding whether or not to implement disk

2 Fall Joint Computer Conference, 1972

TABLE I-Basic Disk Scheduling Policies

1. FCFS (First-come-first-served): No reordering of the queue.
2. SSTF (Shortest-seek-time-first): Disk arm positions next at

the request tha.t minimizes arm movement.
3. SCAN: Disk arm sweeps back and forth across the disk

surface, servicing all requests in its path. It changes direction
only when there are no more requests to service in the current
direction.

4. C-SCAN (Circular scan): Disk arm moves unidirectionally
across the disk surface toward the inner track. When there
are no more requests to service ahead of the arm it jumps back
to service the request nearest the outer t.rack and proceeds
inward again.

5. N-step scan: Disk arm sweeps back and forth as in SCAN, but
all requests that arrive during a sweep in one direction are
batched and reordered for optimum service during the return
sweep.

6. Eschenbach scheme: Disk arm movement is circular like
C-SCAN, but with several important exceptions. Every
cylinder is serviced for exactly one full track of information
whether or not there is a request for that cylinder. Requests
are reordered for service within a cylinder to take advantage
of rotational position, but if two requests overlap sector
positions within a cylinder, only one is serviced for the current
sweep of the disk arm.

scheduling in a complex system. In practice, con­
siderable attention should be given to these factors
before thinking about which policy to use.

N-STEP SCAN

The N -step scan is the simplest scheduling policy to
model using the approach discussed here. While the disk
arm is sweeping across the surface to service the pre­
vious group of requests, new requests are ordered
linearly for the return sweep. No limit is placed on the
size of the batch, but at equilibrium we know the
expected value of that size to be L, the mean queue
length. Furthermore, we know that the resulting
request position distribution will be the same as the
input distribution, which we assume to be uniform
across all the disk cylinders. We also assume the
following:

1. Request inter arrival times are generated from
the exponential distribution.

2. File requests are for equal sized records. This
simplifies the analysis. We assume that the total
service time distribution (seek time plus rota­
tional delay plus transmission) is general and
cannot be described by any simple distribution
function. We also assume that the access time
(seek time plus rotational delay) dominates the
total service time, so that fixed record size

(constant transmission time) is a fair approxi­
mation for our purpose of a comparative
analysis.

3. Only a single disk drive with a dedicated con­
troller and channel is considered, and there is
only one movable head per surface. All disk
arms are attached to a single boom so they must
move simultaneously. A single position of all
the read/write heads defines a cylinder.

4. Seek time is a linear function of seek distance.
5. No distinction is made between READ and

WRITE requests, and the overhead for sched­
uling is assumed negligible.

If there are L requests in the queue at equilibrium
and C cylinders on the disk, we partition the disk
surface into C1 equal regions (as defined below) and
assume that at least one request lies in the center of that
region. This partition is only valid when seek time is a
linear function of distance. C1 is -computed as follows:
since the distribution of L requests serviced is uniform,
the probability that cylinder k has no requests is
given by

(1)

The expected number of cylinders with no requests is
CO=CPk , so that the expected number of cylinders
requiring service is:

C1=C-CO

=C-C(l- ~r

(2)

If the incoming requests are placed at· random and
the disk arm has equal probability of being at any
cylinder, we know that the expected distance between
an incoming request and the current position of the
disk arm is approximately C/3 for large C. Typically,
C ~ 200 for currently available disks. In Figure 1 we see
the possible paths taken from the disk arm to the new
request for the expected distance of C /3. The expected
number of requests serviced hefore the new request is
serviced is L, and the mean response time is

(3)

where Ts is the expected service time per request and
T 8W is the expected sweep time from one extreme of the
disk surface to the other.

Figure 1

NEW
REQUEST

The expected service time under the assumptions
listed above was derived by Teorey and Pinkerton12

as follows:

T.=P (T,.+ f + f)

+(1-P) ! [(mt-2) (m-l) +1] (4)
m 2(mt-l)

where P is the probability that a seek is required to
service the next request, Tsk is the expected seek time,
T is the rotational time of a disk, m is the number of
sectors per track, and t is the number of tracks per
cylinder. Under our conditions, P=CI/L, and we
simplify expression (4) by making the following
definition:

T [(mt-2) (m-l)] a= - +1
m 2(mt-1)

Also, for a linear seek time characteristic

llT
Tmin+ c;

llT
T m in+ 3

(5)

(6)

where llT = T max- T min, T min is the seek time for a
distance of 1 cylinder, and T max is the seek time for a
distance of C -1 cylinders. Restating (4) we now have

(7)

At equilibrium the mean number of incoming requests
that arrive in one complete sweep is L, because the
departure rate and the arrival rate must be the same.

(8)

where X is the input (throughput or access) rate.
Dividing both sides of (8) by L and substituting (7)

Properties of Disk Scheduling Policies 3

we have:

L= XCl(Tmin+AT/Cl+T/2+T/m-a) (9)
1-Xa

Equation (9) computes mean queue length in terms
of the input rate X, the known disk hardware char­
acteristics, and C1• C1 is, however, a nonlinear function
of L. We solve (9) by estimating an initial value for L
in (2) and iteratively substituting (2) into (9) until
the process converges.

Convergence

Rewriting (9) in terms of (2) we obtain

L(l-Xa)

=MTHC [1- (C~lrJ (Tmin+ f +; -a)
XAT -,..C

L= -- + -- (Tmin+T/2+T/m-a)
1-Xa l-Xa

XC (C-l)L - -- (Tmin+T/2+T/m-a) -C
1-Xa

(10)

Letting Kl=XATj(l-Xa) +[XC/(1-Xa)](Tmin+T/2+
Tim-a) andK2 =[XC/(1-Xa)]. (Tmin+T/2+T/m-a)
we obtain after i iterations:

(11)

Assuming that Li>O for all i, and l-Xa>O (no satura­
tion) , we have:

Li>O} (C-l)Li =}0:5: -- <1 - C
1-Xa>0

=}0<KI-K2<Li+l~Kl< OQ

[Boundedness on L i+1]

From (11) we can easily see that

L i > L i - 1=}Li+l >Li and Li<Li - 1=}L i+1 <L i •

[Mono tonicity]

Since every bounded increasing (or. decreasing) set of
real numbers has a limit, (11) converges to L at
equilibrium.

For this technique, each data point of L vs. X requires
less than one second of UNIVAC 1108 CPU time,
whereas each point of the simulation requires over 30

4 Fall Joint Computer Conference, 1972

seconds. Mean response time is obtained from Little's
formula8 and can be verified by resubstitution of L
back through (3).

Under light loading conditions, i.e., when L«C, the
probability that a seek is required for every request
approaches 1. Under such conditions C{)L and the
following closed form expression is obtained:

L~MT/[l-A(Tmin+f+~)] (12)

Variance of response time

Simulation results verify the intuitive suggestion
that the response time distribution for the N -step scan
approaches the simple triangular distribution shown in
Figure 2. If we partition the disk into only 10 or 20
regions, place the disk arm in each of those regions with
equal probability, and then keep a cumulative total of
the probabilities of response times at each point, we
will obtain a discrete approximation of Figure 2.
Accepting this approximation, variance is found by

<Tw2 =E(X2) - [E(X) J2

f
T

8W (x) = X2 -
2

dx
o Tsw

f
2T

8W (2T -x) + X2;W 2 dx- (Tsw)2
Tsw sw

(13)

Thus, the N -step scan provides a very low variance
in response time.

C-SCAN

The C-SCAN policy is an attempt to decrease variance
of response time without degrading the maximum
possible throughput rate or increasing the mean
response time.

We assume requests distributed uniformly over all
cylinders. Since the disk arm always moves unidirec­
tionally to service requests, the expected density of

PROB(W)

O~----::1----~----RESPONSE
Tsw 2Tsw TIME

Figure 2

300
A = 50 REQUESTS/SEC.

.,.--- A = 20 REQUESTS/SEC.

'-+-+-+-+-+-+-+--+-+-+--+-+-+--+-+-+--+-+-+- CYLINDERS
C

Figure 3

requests just ahead of the disk arm is uniform (pro­
vided we ignore the slight aberration of jumping back
to the outermost request once per cycle). Figure 3
shows a simulation result of this distribution under
light and heavy loading conditions. Consequently, the
computation of expected service time Ts is the same for
C-SCAN as it is for the N-step scan, i.e., equation (4),
except the number of requests serviced per sweep is no
longer restricted to L, but is some unknown quantity
L'. Therefore we now have C1=C{1-[(C-1)/CJL'},
P=CI/L', and

C1 (l::..T) Ts= L' Tmin+ c-; +T/2+T/m +(1-C1/L')a

(14)

Total time for one cycle of C-SCAN is the expected
service time for L' requests. This includes C1-1 seeks
and a return seek to the outermost request, which is
less than or equal to T max:

Tsw=L'Ts- (T min+l::..T/C1) + (T max- l::..T/C1) (15)

At equilibrium the number of incoming requests that
arrive in one sweep (cycle) time is L', the total number
of requests serviced:

L'="ATsw

= "A[C1(Tmin+l::..T/C1+T/2+T/m)

+L'(1-Cl/L')aJ-"A(T min+l::..T/C1)

+"A(Tmax-l::..T/C1)

L'(1-"Aa) = "AC1(Tmin+T/2+T/m-a)

+"A(l::..T-Tmin-l::..T/C1+Tmax-l::..T/C1)

L' "AC1 '
= 1-"Aa (Tmin+T/2+T/m-a)

2"Al::..T 2"Al::..T +-------
1-"Aa (1-"Aa)C1

(16)

Convergence

Letting K 1 = [AC/(I-Aa)](Tmin+T/2+T/m-a) and
K 2 =2AaT/(I-Aa) we can rewrite (16) after i itera­
tions as

[(
C-l)Li/]

L'i+l=K1 1- C

In order to derive sufficient conditions for con­
vergence we assume the slightly stronger condition
L'i>1 for all i, and l-Aa>O (no saturation).

L'i>1 } (C-l)Li
l

C-l
==>O~ -- <--

l-Aa>O - C . C

(
c I)L"

==>1/C<I- ~ l ~1

K 1 , K2
==>0< C <L i+l~Kl+K2- C < 00

[Boundedness]

From (17) we see that the conditions for mono­
tonicity of L' hold, and therefore the process converges.

Mean response time

The expected distance between the current arm
position and a new request is approximately C /3 since,
as with the N-step scan, the incoming requests are
located at random, and the disk arm is at each cylinder
with equal probability. An example of expected dis­
tance between a new request and the disk arm for
C-SCAN is shown in Figure 4. Two possibilities occur
with equal probability, as shown.

W = probability {new request to the left} . Tsw {left}

+probability {new request to the right}

• Tsw {right}

= %[%L'Ts- (T min+aT/C1) + (Tmax-L\T/C1)]

+%[%L'Ts]

= % (L'Ts-2L\T/C1+aT)

(18)

In other words the mean response time is one-half
the expected sweep time. The mean queue length,

Properties of Disk Scheduling Policies 5

DISK ARM

o ofi=n
Figure 4

NEW
REQUEST

including the request in service, is

but since L' = ATsw we have

L'=2L

DO o

(19)

(20)

which indicates that in one cycle the C-SCAN policy
services twice as many requests as there are in the
queue, and therefore should be able to attain a much
higher throughput rate than the N-step scan.

Variance of response time

Because C-SCAN is a policy for a unidirectional disk
arm, the distribution of response time is uniform be­
tween T/m (which we approximate to 0) and Tsw. The
mean response time (18) is T sw/2. For a uniform dis­
tribution the variance is given by

(21)

which is twice the variance of the N-step scan.

SCAN

The SCAN access method has been the basic model
for many implementations of scheduling in real systems.
However, its properties are more complex than either
of the other policies studied here. In order to determine
the distribution of requests serviced as a function of dis­
tance from the extreme points of the disk, a simulation
was devised and tested for very large samples under
both light and heavy loading conditions. The results are
summarized in Figure 5. They indicate in both cases
that the number of requests per cylinder is a linear

6 Fall Joint Computer Conference, 1972

function of distance from the starting point of a sweep.
This provides a basis for the linearity assumption in the
analytical model that follows.

The expected distance between the current arm
position and a new request is still approximately C /3
because the incoming requests are placed randomly,
and for each full cycle the probability that the disk arm
is at cylinder k is constant for all k. In Figure 6 we depict
the linear distribution of request positions for the case
Kr<Ka, where Kr is the cylinder position of a new
request and Ka is the cylinder position of the disk arm.
The possibility that Kr > Ka also exists; each has a
probability of .5.

1. Kr<Ka

lL = number of requests serviced from Ka
to CtoKr

= Area 3+Area I+Area 2

=L'

2. Kr>Ka

(22)

lR = number of requests serviced from Kr to Ka

= Area 2

(
K-1 2L' K-1 2L')

= 72 (Kr-Ka) C":'I· C + C-=-1 • C

(Kr-Ka) (Kr+Ka-2)L'
C(e-l)

(23)

To compute the expected number of cylinders with
no requests, we first determine the probability of a given

c
LIJ
U

~
LIJ en
en
t;;
LIJ
:::>
S a:::
~
a:::
IJJ
CD
~
:::>
z

500

400

300

200

100

/,,/

// A = 50 REQUESTS/SEC.

.,1'"

A = 20 REQUESTS/SEC.

1l4--+--........... -+--+--+--+--+-+-+-+-+-+-+-+-+-+-'!'- CYLINDERS AWAY
C FROM START OF

DISK SWEEP

Figure 5

DISK ARM DIRECTION

AREA 2 AREA 3

Kr Ka

Figure 6

cylinder k obtaining the next incoming request:

k-l 2L'/ Pk = --. - lR
C-l C

for Area 2, Ka~k~Kr

P
k
= k-l • 2L'/L'= k-l . ~

C-l C C-l C

h

c

for Areas 1, 2, 3; l~k~C (23)

The input distribution is uniform; therefore each arrival
of a new request represents a repeated Bernoulli trial
of the same experiment. The probability that cylinder
k remains empty is

for Area 2

= (1- k-l • ~)L'
C-l C

for Areas 1, 2, 3

(24)

and the expected number of occupied cylinders in that
region is

Kr [(k 1 2L'/)]lR C2 =C/3- :E 1- -=-. - lR
k=Ka C 1 C

for Area 2

C1=C-:E 1- - . -
c (k-l 2)LI

k=l C-l C
for Areas 1, 2,3 (25)

Mean response time

The mean response time is given by

W = Probability {Kr > Ka} • Tsw {Area 2}

+Probability {Kr<Ka} ·Tsw {Areas 1, 2, 3}

= 72[C2(T min+AT/C2+T/2+T/m) + (lR-C2)a]

+72[Cl(Tmin+AT/C1+T/2+T/m) +(L' -C1)a]

(26)

At equilibrium L' requests arrive in the time required

for one complete sweep:

L' =XT8W

=).[Cl(Tmin+AT/Cl+T/2+T/m) + (L'-C1)a]

XCl(Tmin+AT/Cl+T/2+T/m-a)
l-Xa

(27)

This expression is the same as (9) for the N -step scan
except for the meaning of L' and C1• Solution of (27)
is obtained by iteration.

Convergence

Sufficient conditions for convergence of the above
procedure for SCAN are L'o>O and l-Xa>O. The
proof proceeds as before: Letting K 1= (X/I-Xa)[AT+
C(Tmin+T/2+T/m-a)] and K 2 = (X/I-Xa) [Tmin+

TABLE II-Ratio of Requests
Serviced per Sweep to Mean

Queue Length for SCAN

Requests/second L' /L

10 1.18
20 1.36
30 1.46
40 1.47
50 1.48
60 1.49

Limit 1. 50

T/2+T/m-a] we can substitute (25) into (27) and
obtain after i iterations:

L'i+1=KI-K2 L 1- - . --
c (2 k-l)Lif

k=l C C-l
(28)

L'i> 0 } (2 k -1)Lif
=}O~ 1- - . -- <1 for all k~C

l-Xa>O C C-l

=}O~ L 1- - . - <C
o (2 k_l)Lif

k=l C C-l

=}K1 - K 2C < L' i-+l ~ Kl

[Boundedness on L'i+l] (29)

From (28) we see that monotonicity of L' holds, and
tl;terefore the process converges.

The relationship between Land L' is dependent upon
rate X [see (26) and (27)]. For the characteristics of
the IBM 2314 disk the following table illustrates this
dependence.

.125

.100

~ 075
>-'
f­
~
ffi

~ .050
~

.025

Properties of Disk Scheduling Policies 7

~---+-----t----+---I--__ RESPONSE

o .5Tsw
TIME

Figure 7

Variance of response time

The response time distribution for SCAN is not
intuitively obvious. In order to obtain a close approxi­
mation to this distribution we can sample all possible

16

14

12

fB z
0 10 f:d sa
LIJ
:!!
i=
LIJ 8 CFl z
0
~

f{3
c::
z « 6 LIJ
:!!

4

2

o

----- N-STEP SCAN
................. SCAN
---C-SCAN

I
I
I
I
I
I
I

I
I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

10

I
I

I
I

I
I

I
I

I
I l

I •.•.
f •• ••

/ .. '
/.. .. '

........ ~ ...•....
2D 30

Figure 8

INPUT (THROUGHPUT) RATE

40 50 60
REQUESTS/SEC_

CiS
0 z

8 Fall Joint Computer Conference, 1972

TABLE III-Properties of Disk Scheduling Policies

Property

Distribution of request locations
Ratio L'/L (analytical)
Ratio L' /1..4 (simulation)
O'w2 jW2 (analytical)
O'w2 jW2 (simulation)

N-step
scan C-SCAN SCAN

uniform
1.0
1.0

.17

.20

uniform
2.0
2.15

.33

.35

linear
1.5 (limit)
1.53

.60

.51

combinations of disk arm and new request positions.
Given C cylinders, there are C2 combinations of Ka
and Kr positions. For each combination we can approxi­
mate the mean response time in terms of the expected
number of requests (lR or lL) serviced between the two
designated positions. From the resulting distribution
(see Figure 7) the mean and variance of response time
can be computed. We find that W =.662 Tsw and
O"w2 = .264 Tsw2• In the limit as A becomes very large

16

------ N-STEP SCAN
..................... SCAN
----C-SCAN

14

12

I
I
I
I
I
I

I
I

I
I

I
I

I
I

I
I

I

§ 10

I
I

I
I

I !!J
w
~
i=
w
C/) 8 z
0
0..
~ a::
z « w 6 ~

4

2

o 10

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I ..-

I
I ./

I .. ' " .. ' .::::::
20 30

INPUT (THROUGHPUT) RATE

40 50 60
REQUESTS/SEC.

(but still below saturation) W = .667 Tsw from (26),
os the two approximations are consistent.

COMPARISON OF SCHEDULING POLICIES

The properties of the N -step scan, C-SCAN and
SCAN are summarized below:

Mean response time is plotted in Figure 8 and Figure
9 as a function of input rate for the three high per­
formance policies. The analytical results (Figure 8)
correlate very closely with the simulation (Figure 9).
Both results show a crossover occurring between
C-SCAN and SCAN at approximately A=33. The
higher performance of C-SCAN at heavy loading
appears to be the result of a uniform high density of
requests always in front of the disk arm position. For
A ~ 20 there is very little difference among these policies,
and for A~ 10 they all converge to the FCFS policy.

OPERATING SYSTEM AND HARDWARE
CONSIDERATIONS

The analysis of scheduling policies has been thus far
based on rather ideal mathematical conditions. As more
practical limitations are modeled, the relative effective­
ness of implementing disk scheduling compared to using
only FCFS will in most cases decrease, reflecting real
situations. Potentially, however, scheduling can be of
more benefit if it is included as an integral component
of an overall file system design rather than being treated
as an independent algorithm. Let us now consider the
following list of major factors that influence scheduling

effectiveness:

1. Disk storage as the limiting resource in a large
multiprogramming system.

2. Level of multiprogramming specified.
3. Multiple disk subsystems.
4. Nonuniform request distributions.
5. File organization techniques.
6. Seek time not dominant in total service time.

Limiting resource

In unbalanced multiprogramming systems, where
congestion is not caused by disk storage, disk scheduling
techniques should not be strongly considered. Instead,
effort should be concentrated on optimizing or replacing
the component causing poor system performance.
Global decisions such as this must be made before
individual components are to be upgraded, because a

saturated device or subsystem determines the per­
formance of the entire system. In a more balanced
system other factors must be considered in relation to
scheduling. When disk storage can be the cause of
bottlenecks, scheduling should be included as a means
of increasing throughput. An investigation of the effect
scheduling has on overall system performance under
such circumstances has been made by Teorey.13

Level of multiprogramming

A common misconception is that the level of multi­
programming is an upper bound on the queue length
(L) at any system component. However, when an
operating system breaks a program into mUltiple tasks
or activities, and these are allowed to do I/O asyn­
chronously,· one obtains much longer queue lengths.
(For example, consider a design which allows a distinct
process for every input or output activity on every
separate file opened by any user program.) For this
reason we must not rule out the possibility of scheduling
for batch systems with low levels of multiprogramming.

Disk activity typically varies quite considerably
from device to device; consequently it may be necessary
to measure the workload on each device to determine
when scheduling should be used. When L ~ 3 for an
individual disk, the FCFS policy should be used.
Certainly the level of multi-tasking will be an upper
bound on the queue length of anyone device, and when
several devices are available the workload will probably
be even less for any given one.

Typically batch systems operate at a level of 5 to 15
simultaneously executing programs. (The UNIVAC
1108 at the University of Wisconsin operates at a level
of 9.) Time sharing systems may handle as many as
64 or 128 terminals; and in more specialized message
handling systems several hundred or a thousand
requests could be enqueued at any given time. Ob­
viously, then, the potential for using scheduling to
improve throughput is greatest in the latter type of
system, but we must be aware that increased efficiency
is usually achieved at the expense of mean and variance
of individual response time. Such constraints in real­
time systems must be seriously considered when
selecting a scheduling policy.

Multiple disk facilities

Multiple device configurations have two main effects
on disk performance. First, if requests are assumed
uniformly distributed among the devices, the demand
for an individual device is greatly reduced. Second,
many (e.g., 8) devices may be serviced by a single

Properties of Disk Scheduling Policies 9

controller, and many more (24 is not uncommon) may
be serviced by a single channel. Consequently, control
unit or channel saturation may be the cause of poor
performance, despite individual disk drive efficiency.
Theoretical models for multiple disk systems have been
developed elsewhere. I ,5,s,1l

A new feature, rotational position sensing (RPS),
is a disk hardware capability that allows the channel to
be released during most of the rotational delay as well
as the seek time delay, thus increasing its availability
for overlapped operations. An analytical model for
a multiple disk subsystem with RPS has been developed
recently.13 Multiple disk facilities without RPS have
achieved effective masking of seek time due to con­
current arm positioning and heavy channel utilization.
Consequently, disk arm scheduling has been of marginal
benefit for such systems. However, because RPS
decreases channel utilization it also decreases the degree
of seek overlap, which in turn increases the potential
effectiveness of scheduling. For example, an IBM 3330
disk system was analyzed with 4 and 8 drives, mean
record sizes of 1.6K bytes and 8K bytes, with and with­
out RPS, and with FCFS and C-SCAN scheduling.13

The greatest throughput increase due to C-SCAN over
FCFS (53%) occurred for 1.6K byte records, 4 drives,
and RPS. Channel congestion, which works against the
effectiveness of disk scheduling, is increased by using
larger record sizes, adding more devices per channel, or
by removing the RPS feature.

Nonuniform request distributions

Although a uniform request distribution does not
typify general purpose batch systems, the actual dis­
tribution is highly dependent on installation workload
and cannot be generalized. Some causes of nonuniform
distributions are the use of physical devices dedicated
to a single program (e.g., removable disk packs),
priorities for disk service, and placement of the most
highly used files or directories on a few contiguous
cylinders, usually near the central disk arm position.
Various estimates for nonuniform distributions have
been investigated in other studies. I ,5,s

These techniques tend to reduce the effectiveness of
scheduling, and in some cases could be used in lieu of it.
If scheduling is necessary in addition to systematically
altering request distributions, the proper choice of an
algorithm would depend on the amount of disk arm
activity under these conditions. As with the uniform
distribution, SCAN is preferred for light to medium
loading and C-SCAN is preferred for heavy loading. At
least for unimodal nonuniform distributions the most
efficient algorithm still appears to be a simple scanning

10 Fall Joint Computer Conference, 1972

technique. In addition, if a few cylinders contain many
requests, rotational optimization should be implemented
as well as disk arm scheduling.

File organization techniques

Standard packages are available for various types of
file organizations: sequential, calculated (hashing, scat­
ter storage), tabular (index sequential), and others. A
common characteristic of these techniques is that they.
require multiple accesses to the disk to obtain a single
data record.

The index sequential access method (ISAM) requires
access to a master index, a cylinder index, and then to
the data record itself. The method is analyzed for a
multiple disk facility by Seaman, et al.ll They consider
all accesses to the disk to obtain a single record as
consecutive requests, that is, control of the disk arm is
maintained until the record itself is finally accessed.
Thus, in the worst case three consecutive random
accesses could be made to obtain a single record.
Normally, however, the master index is located in main
storage, and under special conditions the cylinder index
could be as well. In the latter case the record search is
reduced to a single access, but at the expense of a large
portion of main storage bound to a static index file. In
the former case we have two accesses, but if part of one
disk is dedicated to cylinder indexes the seek time for
the index search is restricted to values near T min.

Furthermore, we can overlap the next cylinder index
search with the current record search. The two accesses
are always on different modules and each can be
scheduled independently.

Seek time not dominant

There are several other ways that diminish the effect
of scheduling because the ratio of seek time to total
service time is reduced. We note that scheduling of disk
arm movement is merely a method to reduce seek time,
and it can only have a significant effect on total service
time if the seek time is the dominant factor. An upper
bound on this dominance is established by the physical
characteristics of the device. Some examples are pro­
vided in Table IV:

TABLE IV-Tsk/Ts for a Single Record Operation

Tsk/Ts
Read or Read or Write &

Device write 1 word write 1 track verify 1 track

IBM 2314 .83 .62 .49
IBM 3330 .78 .55 .42
UNIVAC

FASTRAND II .62 .35 .25

The Fastrand is limited by a very long rotation time,
and is particularly slow for large record transfers which
are typical for checkpoints, diagnostic dumps, and
sorting. Further reductions in seek time dominance are
caused by multi-phase operations such as "write and
verify," retries for data read/write errors (hardware
unreliability), and delays due to I/O channel busy.

SUMMARY

Disk scheduling should be implemented only after a
careful consideration of the hardware configuration,
the workload, and the type of operating system deter­
mines that the system would operate more efficiently.·
Selection of the best disk scheduling policy depends on
the nature of the disk workload and the desired per­
formance criteria of the particular application, i.e.,
throughput, mean response time, and/or variance of
response time.

ACKNOWLEDGMENTS

I am deeply indebted to Tad Pinkerton and Bob
Fitzwater for their helpful criticisms and suggestions.

APPENDIX

The following variables are frequently used throughout
this analy.sis:

C number of cylinders per disk.
Co expected number of cylinders with no requests
C1 expected number of cylinders with at least one

request.
A input (throughput) rate.
L mean queue length including the one in service.
L' expected number of requests serviced per sweep.
m number of sectors per track.
P probability that a seek will be required to service

the next request.
O"w2 variance of response time.

number of tracks per cylinder.
T min time to seek one cylinder.
T max time to seek C -1 cylinders
1l.T T max- T min.

T disk rotation time.
T 8 expected service time.
Tsw expected sweep time.
W mean response time.

REFERENCES

1 J ABATE H DUBNER S B WEINBERG
Queueing analysis of the IBM 2314 disk storage facility
JACM Vol 15 No 4 1968 pp 577-589

2 E G COFFMAN JR P J DENNING
Operating systems theory
Prent.ice-Hall Inc Englewood Cliffs N J 1972

3 P J DENNING
Effects of scheduling on file memory operations
Proc AFIPS 1967 SJCC Vol 30 pp 9-21

4 W FELLER
An introduction to probability theory and its applications
John Wiley and Sons Inc N ew York Vol 1 Third Edit.ion
1968 pp 101-106

5 D W FIFE J L SMITH
Transmission capacity of disk storage systems with concurrent
arm positioning
IEEE Trans on Computers EC-14 Aug 1965 pp 575-582

6 H FRANK
Analysis and optimization of disk storage devices for
time-sharing systems
JACM Vol 16 No 4 1969 pp 602-620

7 J D C LITTLE
A proof for the queuipg formula: L = A W
Opns Res Vol 9 No 3 1961 pp 383-387

Properties of Disk Scheduling Policies 11

8 G H MACEWEN
Performance of movable-head disk storage devices
Tech Rep No 72-4 Queens Univ Kingston Ontario Canada
Jan 1972

9 T MANOCHA
Ordered motion for direct-access devices
SIAM 1971 Fall Meeting Madison Wisconsin Oct 11-13
1971

10 A G MERTEN
Some quantitative techniques for file organization
PhD Thesis Tech Rep No 15 Univ of 'Wisconsin Computing
Center 1970

11 P H SEAMAN R A LIND T L 'VILSON
An analysis of auxiliary storage activity
IBM Syst J Vol 5 No 3 1966 pp 158-170

12 T J TEOREY T B PINKERTON
A comparative analysis of disk scheduling policies
Comm ACM Vol 15 No 3 1972 pp 177-184

13 T J TEOREY
The role of disk scheduling in multiprogrammed computer
systems
PhD Thesis Univ of Wisconsin 1972 Madison Academic
Computing Center Tech Rep

14 A WEINGARTEN
The analytical design of real-time disk systems
Proceedings IFIP Congr 1968 pp D131-D137

The interaction of multi-programming job
scheduling and CPU scheduling

by J. C. BROWNE and JEAN LAN

The University of Texas at Austin
Austin, Texas

and

FOREST BASKETT

Stanford University
Palo Alto, California

INTRODUCTION

There have been very few systematic studies of the
effect on system performance of strategies for schedul­
ing jobs for execution in a multi-programming system.!
Most of this work has been concerned with empirical
efforts to obtain job mixes which effectively utilize the
central processor.2 ,3,4 These efforts are frequently carried
out in commercial or production oriented installations
where the job load consists of a relatively few jobs whose
internal characteristics can be well determined. This
approach is not feasible in an environment where inter­
nal job characteristics are not known before run time,
or where internal job characteristics may vary rapidly.
Such circumstances are often the case in an industrial
or research laboratory or in a university computer cen­
ter. This study uses as its measures for determining
job scheduling strategies such quantities as are fre­
quently known or can be accurately estimated such as
amount of core memory required, processor service time
required, etc. The specific job scheduling strategies
used include first-come-first-serve (FCFS), shortest
processor service time first (STF), smallest cost (cost =

core size X processor service time) first (SCF) ,and
smallest memory requirement first (SMF). We evalu­
ated both preemptive resume and non-preemptive job
scheduling. It is typical of virtually all of the previous
work that the emphasis has been on improving CPU
utilization. There may often be other goals which are
more useful measures of performance such as through­
put (job completion rate per unit time), the expected
wait time before completion of a given class of job, the
utilization of I/O resources, etc. We collected several
measures of system performance including all of those

13

listed previously to assess the effects of job scheduling.
There has been very little previous study of the inter­
action between job scheduling and CPU scheduling. We
systematically vary CPU scheduling algorithms in con­
junction with alteration of job scheduling strategies.
Those job scheduling strategies which give high
throughput are characteristically observed to be more
sensitive to CPU scheduling methods than those which
yield relatively low throughput. We do not, however,
attempt to correlate job scheduling methods with inter­
nal job characteristics such as CPU burst time, etc. We
did, however, consider the effect of skewed CPU burst
time distributi'on on performance under different pairs
of strategies.

THE SYSTEMS MODEL

The model system which we simulate is based upon
Control Data Corporation's (CDC) 6600 system at the
University of Texas at Austin under the operation of
the UT-1 and UT-2 operating systems. The CDC 6600
computer is a system of one very fast central processor
(CPU), 10 peripheral processors (PP) , and 12 data
channels. The reader not familiar with the CDC 6000
series system is referred to Thornton5 or the standard
CDC reference manuals. 6 The UT-Austin 6600 system
has 128K (K= 1,024) words of central core memory,
505,204 words of extended core storage (ECS), and 4
six million word disks (6638 disks). The principal fea­
tures of the system are included in the model, the cen­
tral processor: 85,000 words of central core memory
(the balance is used by the operating system): the ex.,.
tended core storage, and the four disk channels: under

14 Fall Joint Computer Conference, 1972

START

INPUT PARAMETERS,
INITIALIZE COUNTERS
AND JOB QUEUE

PREEMPTED
JOB QUEUE

NEW JOB JOB INPUT
~A~R~R~I~V~E~S----~ QUEUE

CM QUEUE

PREEMPTED JOBS

CM
SCHEDULING

11°1 QUEUE

No
ANY JOB
COMPLETED?

YES

NEW JOB
GENERATION

I/O CHANNEL
SELECTION

11°2 QUEUE

11°3 QUEUE

No
THE COMPLETED
JOB LEAVES
THE SYSTEM

L-________________________________ ~r_------------~No

STOP

Figure l-The computer system simulation model

UT-l operation PP's were a surplus resource and could
be left out of the model without materially affecting
performance analysis. The {)perating systems under
which the measurements were taken to parameterize
this simulation model were the UT -1 and UT -2 operat­
ing systems. These operating systems are locally written.
UT-l used one PP as the system monitor (MTR); it
was responsible for the coordination of all system ac­
tivity. The 85,000 words of central memory available
to user programs are allocated (by software) to seven
~or fewer) control points which are virtual central pro­
cessors. The multi-programming batch portion of UT-2
does not differ materially from UT-l except for the
allowance of up to 16 control points. A more complete
description of the UT-l system can be found in Schwet­
man7 or Baskett, Raike and Browne.l

Both UT-l and UT-2 have extensive measurement
packages embedded in them [see Schwetman (7)]. The
output of this measurement package is the source of
the data which is used to parameterize the simulation

model. Comparison of the output of the simulation
model for key measures such as CPU utilization and
channel utilization are used to validate the model.
Figure 1 is a schematic diagram of the system model.
The general operation of the model proceeds as follows:
Ten jobs with specified storage requirements and cen­
tral processor service times are generated and placed
in the input queue. Jobs are selected from this input
queue and operation of the system is started. The CPU
burst times are selected from a specified (see following)
distribution independently for each burst. The I/O
burst times are similarly chosen from an exponential
distribution. Channel selection is bya non-uniform
discrete distribution for each I/O service request. The
simulation proceeds with new jobs arriving at the input
queue with an average interval of two seconds. The
simulation run proceeds until 180 seconds of real
("clock-on-the-wall") time have passed. The simula­
tion is then restarted nine successive times. The result
of ten runs of 180 seconds are averaged to find average

Interaction of Multi-programming Job Scheduling and CPU Scheduling 15

values and standard deviations for the performance
measures. This procedure appears to be more reliable in
terms of generating reproducible results than running
the simulator for longer intervals. The complete set
of simulations was run with exponential and hyperex­
ponential CPU burst time distributions. Distribution
functions for the memory requirements, total CPU
service time required, arrival times, CPU burst time,
I/O burst time, and channel selection are constructed
from measurements made on the actual running system.
For the CPU burst time, I/O burst time, and job arrival
rate, analytic fits to the data were used. For storage
requirements, total running time, and channel selec­
tion, table look-up procedures are used to generate a
representation of the data distribution. The mean of
the CPU mean burst time distribution was 48 ms. For
the hyperexponential distribution a variance of 10 was
used. A mean I/O burst time of 46 ms was taken from
the mBasured data. The GM requirements were gen­
erated from a table which yields an approximate mean
of 21,000 60-bit words. Channel 0 had a probability
of selection of %, channels 1, 2, and 3 each had prob­
ability of 1/6. The variance of the measured CPU
burst time distribution was larger than 10. However,
a variance as large as 10 captured the key features of
the skewness of the distribution while still allowing a
stable simulation. Larger variances (eg., 40) did not
materially alter the performance measures but required
very lengthy runs to reproduce the theoretical distribu­
tions. The job arrival rate was taken to have a mean of
one every two seconds. This is the maximum rate ob­
served in the system. The simulation program was
written in FORTRAN; a thoroughly commented and
flow. charted version of this program is available on
request. A more complete description of the simulation
is given by' Lan. 8

VALIDATION

Since the simulation model is to be used to compare
the relative mBrit of different scheduling algorithms
rather than to predict absolute performance, the vali­
dation of interest is to be sure that the parameters put
into the model reflect reasonably well the principal
characteristics of the system and, more especially, the
job mix. A good test, however, of how well the model
captures the characteristics of the real system is to
operate it using the scheduling algorithms used in the
UT-1 operating system. Comparison to the real system
can thus be obtained by examining the entries in the
matrix of Table III with the data reported by Schwet­
man.7 Schwetman reports central processor utiliza­
tions in the vicinity of 85 to 91 percent for various days

production run. The average utilization of the four disk
channels 10-57 percent, 1-20 percent, 2-19 percent,
3-18 percent, also fall well within the range observed by
Schwetman for channel utilization. The actual numbers
generated by the distribution functions were found to
reproduce the theoretic means and variances of the
CPU burst time, the I/O burst time, the channelselec­
tion, and the core size distribution function to less than
% percent. This indicates a very high degree of sta­
bility and reproducibility in the simulated data.
Another measured factor which can be compared is the
average degree of multi-programming. We find 4.6
while Schwetman, including the remote terminal man­
ager as a job as was appropriate for UT-l, measures
4.7. The neglected overhead in the central processor
utilization is a known and small error under UT-1 where
the central processor overhead was under 5 percent.
The system monitor was a peripheral processor and
monitor and service functions are done in the peripheral
processors.

RESULTS OF VARIATION IN SCHEDULING
ALGORITHMS

The goals of this simulation model are to evaluate
the utility of several memory scheduling algorithms
and several central processor scheduling algorithms and
their interaction in terms of various measures of com­
puter system performance. We studiBd the behavior of
the model under four different memory scheduling
algorithms.

(1) Shortest time to run first (STF)
(2) Smallest cost first (SCF)

In this context cost is defined to be the product of mem­
ory space required and central processor time required.

(3) Smallest memory first (SMF), in this algorithm
one schedules the jobs according to the amount
of central memory required.

(4) First-come-first-serve (FCFS), the classic dis­
cipline of queueing theory.

We considered both preemptive and non-preemp­
tive memory scheduling. Table I comp~res preemptive
and non-preemptive job scheduling for round-robin
CPU scheduling. The central processor scheduling al­
gorithms considered are:

(1) round-robin (RR) with an 8 millisecond (ms)
quantum. Eight ms is the quantum size for the
UT-1 and UT-2 operating systems. (A few runs
were made with other quantum sizes.)

16 Fall Joint Computer Conference, 1972

TABLE I-Results for Both Preemptive and Non-preemptive CM Scheduling Cases (With RR CPU Scheduling
and Hyperexponential CPU Service Times)

Preemp.
Measures or non-

EreemE·

Number of P
jobs completed N

Degree of P
multiprogramming N

CM uti1i- P
zation N

CP uti1i- P
zation N

CP work P
time N

I/O work P
time N

Total CP and 1/0 P
work time N

I/O overlap P
time N

Average flow P
time for the N
comE1eted Jobs
Average wait P
time for the N
comE1eted Jobs
Total flow P
time N

Total wait P
time N

Avera~e number P
of jo s in N
the s;y:stem
Number of P
swaps N

(2) Smallest time remaining (STR).
(3) Shortest burst time next (SBT).
(4) Longest burst time next (LBT).

STF

76.5
57.0

4.362
5.184

.944

.934

.877

.938

158.9
170.0

205.4
190.6

364.3
360.6

167.8
170.9

11.8
20.5

7.8
16.0

2797
4364

2433
4003

16
24

99
0

The basic output of the simulation model is thus a set
of 16 entries for each possible combination of scheduling
disciplines for each measure of performance of interest.
Table II is the matrix of entries for the case of an ex­
ponential CPU service time distribution. Table III is
the matrix of entries for a hyper-exponential service
time distribution. First-come-first-serve CPU schedul­
ing was also tried for the hyperexponential CPU burst
distribution. Table III thus has sets of 20 entries rather

SCF SMF FCFS

75.1 37.4 25.4
54.5 28.8 25.9

4.601 5.610 4.430
5.176 5.160 4.648

.935 .888 .955

.927 .900 .941

.889 .956 .940

.944 .959 .949

161.3 173.4 170.3
171.2 173.8 172.3

205.5 195.2 165.4
186.0 175.7 169.0

366.8 368.6 335.7
357.2 349.6 341.3

171.3 180.8 145.5
168.0 162.0 152.9

11.6 15.4 58.8
24.4 27.g 54.1

7.8 10.8 51.0
19.8 21.5 46.9

2893 6198 7131
4847 6961 7142

2526 5830 6796
4490 6612 6801

16 34 39
27 38 39

92 27 9
0 0 0

than 16. Most of our discussions will be couched in
terms of the entries in Table III since it is known that
the hyper-exponential distribution of service times is
characteristic of most large scale multiprogramming
computer systems. In most cases, the conclusions on
the influence of scheduling algorithms on performance
measures are corroborated by the exponential case
(Table II).

Table IV is a summary chart of the principal results
of this study. The left column of Table IV is a list of
measures of computer system performance, through­
put in terms of number of jobs completed, degree of
multi-programming, central memory utilization, cen-

Interaction of Multi-programming Job Scheduling and CPU Scheduling 17

tral processor utilization, I/O processing utilization, combination of scheduling algorithms which yield the
average flow time for complete jobs, average wait time best result for the performance measure in the left
for completed jobs, and the number of memory swaps column. For example, in terms of throughput, the best
as a measure of overhead. The rows of Table IV are the combination of scheduling disciplines is STF-RR fol-

TABLE II-Results for Models with Exponentially Distributed CPU Burst Times

:~ Measures CP ched- STF SCF SMF FCFS Sched- u1e
u1e

Number of jobs RR 74.6 74.3 36.1 24.7
STR 76.0 75.9 40.6 27.7 completed SBT 75.3 74.4 37.1 25.3 (throughout) LBT 74.5 73.5 35.6 24.4
RR 4.432 4.619 5.698 4.436

Degree of STR 4.334 4.609 5.382 4.368
mu1tipro- SBT 4.385 4.637 5.717 4.418
gramming LBT 4.452 4.680 5.741 4.454

RR .947 .939 .887 .958
CM uti1i- STR .944 .935 .886 .953
zation SBT .946 .939 .890 .955

LBT .950 .940 .889 .957
RR .941 .956 .975 .947

CP uti1i- STR .944 .958 .973 .948
zation SBT .971 .980 .993 .975

LBT .922 .925 .949 .919
RR 170.7 173.4 176.9 171.9

CP work STR 171.3 173.8 176.6 172.0
time SBT 176.1 177.8 180.2 176.9

LBT 167.2 167.8 172.2 166.8
RR 155.3 158.7 166.9 162.1

rio work STR 156.8 159.2 166.0 161.1
time SBT 162.1 164.0 171.2 167.0

LBT 152.6 153.7 162.2 157.6
RR 326.0 332.3 343.9 334.0

Total CP & rio STR 328.1 333.0 342.5 333.1
work time SBT 338.2 341.9 351.4 343.9

LBT 319.9 321.4 334.4 324.4
RR 139.4 145.1 158.9 145.5

rio overlap STR 141.1 145.9 157.1 144.6
time SBT 154.3 158.4 169.3 159.5

LBT 127.1 129.1 143.7 130.3
Average flow RR 12.1 12.7 16.3 56.9
time for STR 10.5 11.0 13.3 53.2
the comp1e- SBT 12~3 12.7 16.6 57.2
ted Jobs LBT 12.4 13.1 16.3 56.9
Average wait RR 8.5 9.0 11.7 49.0
time for STR 6.7 7.1 8.1 45.1
the comp1e- SBT 8.5 9.0 11.8 49.5
ted Jobs LBT 8.8 9.5 11.9 49.4

RR 2988 3056 6278 7184
Total STR 2776 2814 5763 6788
flow time SBT 2919 3022 6206 7112

LBT 3020 3114 6334 7216
RR 2662 2724 5934 6850

Total STR 2448 2481 5420 6455
wait time SBT 2580 2680 5854 6768

LBT 2701 2793 5999 6892

Average no. RR 17 17 35 40
STR 15 16 32 37 of jobs in SBT 16 17 34 39 the system LBT 17 17 35 40
RR 100 89 24 8

of swaps
STR 104 99 27 8

No. SBT 99 90 27 8
LBT 99 87 24 8

18 Fall Joint Computer Conference, 1972

TABLE III-Results for Models with Hyperexponentially Distributed CUP Burst Times

~ CP ched-
STF SCF SMF FCFS Measures Sched- u1e

u1e

RR 76.5 75.1 37.4 25.4
Number of jobs STR 75.4 75.1 37.9 23.6
completed SBT 75.6 74.9 35.9 21.8
(throughout) LBT 74.6 74.0 34.4 20.7

FCFS 74.9 73.5 34.0 20.3
RR 4.362 4.601 5.610 4.430

Degree of STR 4.340 4.572 5.592 4.410
multiprogramming SBT 4.363 4.609 5.698 4.430

LBT 4.425 4.615 5.820 4.498
FCFS 4.469 4.643 5.873 4.515
RR .944 .935 .888 .955,

CM STR .945 .937 .892 .954
utilization SBT .944 .940 .890 .955

LBT .947 .939 .889 .956
FCFS .950 .942 .891 .958
RR .877 .889 .956 .939

CP STR 815 .828 .884 .862
utilization SBT .·841 .860 921 .889

LBT .804 .802 .856 .851
FCFS .827 .834 .890 .869
RR 158.9 161.3 173.4 170.3

CP STR 147.8 150.2 160.5 156.4
work time SBT 152.5 155.8 167.1 161.5

LBT 145.7 145 4 155.3 154.6
FCFS 150.0 151.3 161.5 157.7
RR 205.4 205.5 195.2 165.4

I/O STR 188 9 190.6 179.7 147.3
work time SBT 195_1 196 9 184 9 148.9

LBT 186.1 183.5 169 3 141.4
FCFS 189.2 188 1 171.9 144.5
RR 364.3 366.8 368.6 335.7

Total CP STR 336 7 340 8 340.2 303.7
and I/O SBT 347 6 352 7 352.0 310.4
work time LBT 331.8 328 9 324 6 296.0

FCFS 339 2 339.5 333.4 302.2
RR 167.8 171 3 180.8 145.5

I/O overlap STR 133 5 138.4 141.0 104.2
time SBT 150.1 155 4 160 7 115.8

LBT 122.7 122.1 123.6 92.1
FCFS 13~.4 136 3 136.1 102.0
RR 11.8 11.6 15.4 58.8

Average flow STR 11.7 11.8 14 8 54.3
time for the SBT 12.5 12.2 16.1 54.9
completed jobs LBT 12.5 13.2 17.1 57 . .0

FCFS 13.2 13.5 19.2 . 55.7
RR 7.8 7.8 10.8 51.0

Average wait STR 7.8 7.9 10.0 46.7
time for the SBT 8.6 8.4 11.5 41.1
completed jobs LBT 8.7 9.6 12.7 49.2

FCFS 9.4 9.7 14.4 47.8

lowed by SCF-RR. There are a number of striking and that the SCF algorithm is so close to the STF algorithm
perhaps not intuitively obvious results from the simu- in terms of throughput. Bearing in mind that the job
lation model. mix was taken from well-grounded empirical measure-

There is an enormous difference in the throughput ments, it suggests that the SCF discipline with its more
rates produced by the different job scheduling algo- equitable selection of jobs is almost as good as the STF
rithms. Two methods, STF and SCF give strikingly discipline with respect to throughput. The second fea-
better performance, over a factor of 2, over the SMF ture is that the FCFS job scheduling discipline is so
or FCFS method. Two facts of particular interest are very poor. This suggests that queueing models which

Interaction of Multi-programming Job Scheduling and CPU Scheduling 19

normally rely upon the use of first-come-first-serve
scheduling disciplines only may predict erroneous
throughput results for realistic job mixes. It is clear that
with a job high arrival rate such as taken for this model,
preemptive resume job scheduling will yield a higher
throughput than non-preemptive scheduling. For the
high throughput algorithms STF, and SCF, the im­
provem€nt was in excess of 40 percent, a striking dif­
ference.

Central memory utilization as a performance measure
would normally be of interest only in sharply memory
limited systems. The only marked difference in the per­
formance of any of the job scheduling algorithms is
that the SMF produced a markedly lower central mem­
ory utilization. This would be expected since loading
shortest memory first would tend to deplete the supply
of small jobs which could be used to fill small gaps in the
memory. This would lower the probability that a small
residue of memory could be utilized effectively.

Multiprogramming increases CPU utilization and
I/O channel utilization, and the mean degree of multi­
programming may be used as a measure of system per­
formance. Note that there is a certain point in multi­
programming such that no performance improvement
can be achieved even with a higher degree of multipro-

gramming. The SMF models with a higher degree of
multiprogramming give a worse over all system per­
formance than that of other models. Thus the degree
of multiprogramming will not be used to evaluate sys­
tem performance.

The measure of computer system performance most
commonly used is the utilization of the central pro­
cessor. The utilization of the CPU was very high for
all memory (job) scheduling disciplines, and indeed for
all CPU scheduling disciplines. This is indeed true for
the computer system from which the experimental
data used to characterize the model and the job mix
were taken. The performance measures run typically
about 5 percent greater than the actual performance
of the system. This is due to omission of certain effects
due primarily to queueing for peripheral processors and
of certain aspects of system overhead. In the case of the
exponential CPU service time distribution, the CPU
scheduling algorithm had very little effect under any
of the job scheduling disciplines. This is to be expected.
On the other hand, in the case of the hyper-exponen­
tially distributed CPU burst time, the CPU utilization
varied more than 7 percent with different CPU schedul­
ing algorithms. This span oLCPU utilization is in good
accord with the trace-driven model results of Sherman,

TABLE IV-Summary of Results for Hyperexponential CPU Burst Time Distribution Models

Throughput
(Number STF-RR STF-SBl' STF-STR SCF-RR SCF-STR STF-FCFS SCF-SET
ot jobs
completed)

Degree of
multi- SMF-FCFS SMF-LBl' SMF-SBT SMF-RR SMF-STR SCF-FCFS SCF-LET
programming

eM utili-
zation FeFS-FCFS FCFS-LET FeFS-SST FCF3-RR FCfi'S-STR STF-FCRS STF-LBT

CP utili-
zation SMF-RR FCFS-RR SMF-SET SMF-FCFS SCF-RR FCFS-SBT SMF-STR

I/D Utili-
zation SCF-RR STP-RR SCP-SBT SMF-RR STP-SBT SCF-STR STF-FCFS

Mean tlow
time tor SCF-RR STP-STR SCF-STR STF-RR SCP-SET STF-LET STF-SBT
the com-
pleted jobs

Mean wait
time tor SCF-RR STF-RR STF-STR SCF-STR SCF-SET STF-SET STF-LBT
the com-
pleted Jobs

Overhead FCFS-SET FCFS-3TR FCFS-LET FCFS-RR FCF3-FCFS SMF-FCFS SMF-LBT

20 Fall Joint Computer Conference, 1972

Baskett, and Browne.9 It is interesting to note that for
the hyper-exponentially distributed CPU service times
the RR scheduling produced consistently the best re­
sults while on the exponentially distributed CPU burst
time, the theoretically best9 scheduling algorithm, SBT
produced the best results consistently. This is particu­
larly due to the neglect in the simulation model of the
overhead in switching the processor from job to job.
For non-preemptive job scheduling, the STF and SCF
job scheduling gave higher CPU utilization than pre­
emptive job scheduling. This is associated with the
higher average degree of multi-programming for these
cases with non-preemptive scheduling.

Other interesting results are obtained by considering
total I/O utilization as a measure of performance. This
measure is clearly affected by both job scheduling al­
gorithms and CPU scheduling algorithms. The algo­
rithm for utilization of I/O facilities was first-come­
first-:-serve. In each, the order of I/O utilization is di­
rectly analogous to the throughput as a performance
measure. It is particularly interesting to note that the
RR central processor scheduling disciplines produced
markedly higher utilization of I/O facilities over any
other disciplines. As would be expected on theoretical
grounds, SBT produced the next best results. Note that
for the exponentially distributed CPU burst time case
the SBT produced the higher utilization of I/O facil­
ities. Preemptive job scheduling tended to produce
higher rates of I/O utilization.

A measure well correlated with total I/O utilization
is I/O overlap time. This is the total amount of time
in the 180 seconds of the simulation runs that I/O pro­
cessing and CPU processing were going on simultane­
ously. In some cases more than one I/O activity was
overlapping a given CPU burst time.

Average wait time for completed jobs is an interesting
measure of non-productive consumption of resources.
During the wait time no processing, either I/O or CPU
service was being applied to a given job. Thus, the
larger this measure the more waste of central memory. It
is interesting to note that in the exponential CPU dis­
tribution case the STR-CPU scheduling discipline
scores well for all job scheduling disciplines while RR
scores well in the hyper-exponential distribution case.
It is also worth noting that the SMF scheduling algo­
rithm performs better here than on any other measure.

The number of swaps of jobs in and out of memory
is a convenient measure of overhead in central memory
management. It is quite clear from this measure that
the STF and SCF scheduling discipline incur a mark­
edly higher overhead as the price paid for improvement
in the throughput. Recall that these swaps are gener­
ated by preemption of batch jobs when jobs with a
higher priority under the given job scheduling discipline

arrive in the input queue. Note that we have ignored
in all discussions the difference in cost of the overhead
of the different memory scheduling algorithms. The
use of ECS as a swapping medium in our model justi­
fies this neglect. For swapping to disks or drum a seri­
ous overhead would be incurred.

We summarize briefly the most significant points of
this research:

(1) Pre-emption is a key element for high through­
put job scheduling.

(2) Job scheduling has a dramatic effect on through­
put. It would appear that with our realistic
job mix, the SCF is the most desirable job
scheduling algorithm.

(3) If RR does not incur a high overhead for pro­
cessor switching, it would appear to be the most
desirable scheduling algorithm for CP scheduling
if the CPU burst times have a strongly skewed
distribution function (which is usually the case).

(4) Total I/O utilization is fairly strongly dependent
on both memory scheduling algorithm and CP
scheduling algorithm. For the case of a skewed
distribution of CPU service times RR results
again give a good utilization of I/O facilities.

(5) The scheduling disciplines which yield the high­
est throughput on the whole tend to incur the
largest overhead.

(6) If maximum throughput or minimum mean flow
time is the performance goal, then probably SCF
memory scheduling and RR central processor
scheduling (SCF-RR) or STF-RR will yield most
consistently the best results.

(7) Either RR or a predictive scheduling mechanism
based on attempting to predict that job which
will have shortest burst time (SBT) will yield
best CPU utilization.

(8) To maximize I/O utilization, SCF-RR or STF­
RR would appear to be the most desirable com­
binations.

ACKNOWLEDGMENT

This research was supported by the National Science
Foundation under grant GJ-I084.

REFERENCES

1 F BASKETT J C BROWNE W M RAIKE
The management oj a multi-level non-paged memory system
Proc AFIPS 1970 SJCC Vol 36 AFIPS Press Montvale NJ
pp 459-465

2 P R KLEINDORFER C H KRIEBEL
Analyzing job mix in mult~-programmed computer systems

Interaction of Multi-programming Job Scheduling and CPU Scheduling 21

Management Sciences Research Report No 166
Carnegie-Mellon University August 1969

3 K D RYDER
A heuristic approach to task dispatching
IBM Systems Journal 8 3 1970 pp 189-198

4WAWULF
Performance monitors for multi-programming systems
Proc 2nd Symposium on Operating Systems Principles
October 1969 pp 175-185

5 J E THORNTON
Design of a computer system: The Control Data 6600
Scott Foresman & Co Glenview Illinois 1970

6 Control Data Corporation
Control Data 64/65/6600 Computer Systems ReferencA
Manual Pub No 60100100 1967

7 H D SCHWETMAN
A study of resource utilization and performance evaluation
of large-scale computer systems
TSN-12 Computation Center University of Texas Austin
Texas July 1970

8 J LAN
A simulation study of job and CPU scheduling
TSN-21 Computation Center and Computer Science
Department University of Texas Austin Texas December
1971

9 S SHERMAN J C BROWNE F BASKETT
Trace-driven modeling and analysis of CPU scheduling in a
multi-programming system
To appear CACM-Also Proc of ACM Workshop on
Performance Evaluation Cambridge Mass pp 173-199
April 1971

Storage organization and management in TENEX

by DANIEL L. MURPHY

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

In early 1969, BBN began an effort aimed at developing
a new time-shared operating system. * It was felt at the
time that none of the commercially available systems
could meet the needs of the research planned and in
progress at BBN. The foremost requirement of the
desired operating system was that it support a directly
addressed process memory in which large list-pro­
cessing computations could be performed. The cost of
core storage prohibited the acquisition of sufficient
memory for even one such process, and the problems of
swapping such very large processes in a time-sharing
environment made that solution technically. infeasible
as well.

Paging was therefore the logical alternative, and our
study and experience with list processing systems!,2
led us to believe that using a demand-paged virtual
memory system for such computations was a feasible
approach.

With demand paged process virtual memory added
to our requirements, we found no existing system which
could adequately meet our needs. Our approach was
to take an existing system which was otherwise ap­
propriate and add the necessary hardware to support
paging. The system chosen was the DEC PDP-10,s
which, although not paged, was available with a time­
shared operating system and substantial support soft­
ware.

Consideration was given to modifying the existing
PDP-10 operating system to support demand paging,
but that approach was rejected because of the sub­
stantial amount of work which would be required,
because of the inherent constraints imbedded in the
architecture of any large system, and because develop­
ment of a new operating system would allow the in­
clusion of a great many other features and facilities

* The work reported here was supported in part by the Advanced
Research Projects Agency of the DOD, and in part by BBN.

23

which were judged desirable. Among these were a multi­
process job structure with software program interrupt
capabilities, an interactive and well human-engineered
command language, and advanced file handling capa­
bilities.

Reports of some of the other operating system de­
velopment in progress at the time suggested that con­
siderable advantages were obtained by generalizing the
concept of file storage and integrating process memory
with it. Earlier systems had taken the view that files
were sequential streams of bytes or words, perhaps
with a facility for limited random accessing built on
top.

In these earlier systems, process memory was viewed
as the equivalent of the physical core memory that a
program would see when running stand-alone on a
dedicated processor. Time- and core-sharing facilities
provided a means for several independent processes
to use core and processor concurrently, but the basic
concepts still required, for example, a file to be "read
in" byte-by-byte or block-by-block into process mem­
ory.

The file-process memory integration achieved by
MULTICS4,5 provided an entirely different view of
these concepts, and opened up many new possibilities
for improved throughput, enhanced ease of pro­
gramming, etc. The MUL TICS segmentation concepts
however, would have required substantial modifica­
tion of the address computation logic of the processor
and in other ways seemed to require a level of effort
inappropriate to the scale of system we could support.
Therefore, we began to examine the ways by which
some of these same goals could be achieved in a system
which had only paging hardware.

It was known from that outset that our system would
contain multi-level storage components. A high speed,
rapid access drum would obviously be needed as the
swapping facility to support demand paging, and a
larger and slower disk storage device (at least 50 million
words) was planned for permanent storage. We wer~

"

24 Fall Joint Computer Conference, 1972

already using a system, the XDS-9406 which provided
a means of "naming" process storage, and swapping
on the basis of the named elements in a process memory.
Although the file system was not integrated into this
process memory naming scheme, certain basic con­
cepts, e.g., a process memory map into which named
elements could be placed, were present.

Thus, having determined that we would build a new
monitor system to achieve certain specific objectives,
we decided to adopt a more advanced architecture and
obtain many other useful features. In particular, we
realized that very little if any additional complexity
was necessary in the design of the paging hardware in
order to provide the base on which a monitor with
integrated file and process memory could be built.

The system which resulted from this development
effort is called TENEX, and this paper describes the
facilities for naming memory and dealing with named
memory which were developed and implemented in
TENEX. Implementation details of the system are
given, including the operation of the three levels of
storage, and the flow of data between them.

NAMED MEMORY

TENEX terms and conventions

The discussion which follows will require knowledge
of a few of the terms and conventions used in TENEX.
The operating system provides a job structure which
may contain multiple processes. By a job, we mean a
set of active resources normally under control of a
single user. That set may in principle be empty, but
in practice will always contain at least one process.

In TENEX, each process is provided with an inde­
pendent process address space, and is capable of per­
forming computation in parallel with other processes.
That. is, TENEX processes are independent virtual
machines with all necessary storage for holding the
state of a computation. Various means are, of .course,
provided for allowing communication and control
between processes.

File storage naming

The first and most obvious memory "name" in
TENEX is the file name. A powerful and versatile
directory and file naming facility is provided in which
a particular file is identified by a fixed-depth path which
includes device, directory name, file name, extension,
and version.

The identifiers in each field (except for device and

version) are strings of up to 39 characters. All per­
manent storage resides in files, so the first step In
identifying any particular element of storage is to
specify the path name.

It would be both cumbersome and inefficient to
require that the. file name be used for each operation
on a file, even though TENEX provides default con­
ventions which usually allow the user to specify only
the name portion of the path. We therefore provide a
means of associating the full path name with a small
integer called a Job File Number (JFN) which will
serve to identify the file over some limited period of
time.

The JFN is an important concept in TENEX and
deserves some further explanation. The first step in
doing any operation on a file is to execute a monitor
call giving as an argument the string representing the
path name of the desired file.

Various conditions and default options are specified
at that time. If the path name correctly identifies a
single file, the monitor will return a· JFN, and the
association of that JFN with the file will remain in
effect until the user program explicitly "releases" the
JFN (or the job is logged out). JFN's are 18-bit num­
bers arbitrarily selected by the system, commonly but
not necessarily assigned sequentially upward from O.
The domain of a JFN is the job in which it was as­
signed; therefore it may potentially be used by any
process in the job (subject to various protection mech­
anisms). The system will always know what JFN's are
in use in each job and so can assign at any time one
known to be unique. It is possible for the same file to be
associated with two or more JFN's within the same
job (and with JFN's in other jobs), and this often
happens when two processes are performing concurrent
operations on the same file.

Once the initial association of JFN and file has been
established, the JFN is used for all ensuing operations
on the file, including sequential reading and writing,
opening, closing, etc. The 18-bit JFN is a PDP-I0
half-word, and so is .conveniently manipulated by the
system and user programs. Because the monitor system
chooses JFN's to be indexes into system tables holding

FILE NAME JFN

18 BITS

PAGE IDENTI FIER JFN PN

Figure 1

information about the relevant file, the lookup time
on individual file function calls is very short and re­
quires only a range test to reject invalid arguments.

Having once identified a particular file and obtained
a JFN, a process need only identify the element within
the file and the naming process will be complete. On a
word-oriented machine such as the PDP-10, the most
basic element in a file is obviously the word, but since we
are operating in a paged environment, we will want to
identify pages. Therefore, our complete identifier is
constructed from the JFN of a file, and the page
number (PN) within that file, as shown in Figure 1.
The paging facilities will allow us then to reference any
word within that page as described below.

File-to-process mapping

With the naming of our file memory specified, we
next explain how this may be integrated with the
address space of processes. As stated earlier, each
TENEX process has an independent virtual memory
of 256K words, a size fixed by the IS-bit addressing
capability of the processor. With the TENEX page
size of 512 words, each process virtual memory there­
fore consists of 512 pages. But these pages are not fixed
storage. Rather, each page of the process virtual
memory is actually a window through which one can
look at a page of "real" storage.

To specify the contents (possibly null) of these
windows, TENEX provides a virtual memory map,
with one entry for each page of the virtual memory.
Each map location is identified by a map handle which
consists of two items,. the process handle (provided by
the system when the process was created), and the page
number of the desired slot (Figure 2). It is important
to understand that the map handle identifies a map
slot and does not represent the contents (if any) of
that slot. The monitor provides two basic operations
for which the map handle is necessary, obtaining the
identifier of the present contents of the slot, and placing
an identified page into the slot.

This brings us to the basic facility for file/process
memory integration. We have constructed a file system
in which each page can be named with a convenient
(one word) identifier, arid we have specified a paged

PROCESS 10 PN

PROCESS MAP IDENTIFIER

Figure 2

Storage Organization and Management in TENEX 25

~
r PAGE
t
t
I
I

-L
I

PN2i
TI

~
L
I

I
t
I
I

FILE2

PAGE

.----
I
~
l
t

PROCESS
MAP

JFN1 I PN1

JFN2 I PN2

Figure 3-File-to-process mapping

process address space represented by a map into which
page identifiers can be put. Figure 3 shows this graph­
ically. The process address space contains pages from
two files, indicated by identifiers in the process map
which act as pointers to the file pages.

There is some additional information in the map
slots not included in these page identifiers, and that
is the access permission. The TENEX paging hard­
ware provides independent read, write, and execute
access control on each page, so when a process places
a file page identifier in its map, it must specify which
of these accesses (each represented by a bit) is alldwed.
The system may further restrict the access according
to arguments given when the file was opened, which
in turn are limited to combinations permitted by the
general protection mechanisms associated with file
names. Thus the access actually permitted to a mapped
page is the logical AND of the specific case access
request (specified by the process) and the general access
permitted to the file (specified by information residing
in the file directory).

Sharing named storage

Since the file path names identify files over the
domain of all jobs in the system, it is evident that our
naming and mapping procedures readily provide a
means for sharing storage. Using the appropriate path
names (including legality checks), processes in two or
more different jobs can identify the same file, and each
can obtain a JFN for it. Nothing in the mapping pro­
cedures specified above requires that either process
be aware of the other's access, and so each process
constructs an identifier and places it in its process map
(Figure 4). Remember that the JFN is associated with

26 Fall Joint Computer Conference, 1972

FILE PROCESS 1

~

S JFNl I PN

PAGE e--

I I
I I
I I PROCESS 2 I I
I I

JFN21 PN

Figure 4-Shared file page

a file only within the domain of a job, and so the two
JFN's shown are probably not the same small number.
The page number (PN) shown is an absolute address
within the file and will appear as the same number in
both process maps. Thus two or more processes in the
same or different jobs can identify and map the same
page of physical storage. The mechanism by which
this is implemented is described below.

Along with this basic sharing mechanism, TENEX
provides a convention to help ensure that the access
to shared or potentially shared information is logically
consistent. We identify two cases:

J. A file contains information which must be in a
consistent state to be used, e.g. a symbolic text
file. Such a file may be read concurrently by
several processes, but one process modifying
the file precludes any other processes reading or
modifying it.

2. A file contains information which, by agreement
of the processes involved, can be simultaneously
modified and used by several processes, e.g., a
common data base or a file used for interprocess
communication.

When a process opens a file, it must specify which of
these two cases applies. The system will not permit any
file to be open both ways at the same time on the
grounds that such a situation can only result from
disagreement among the processes on how the file is to
be used, and is therefore a logical programming error.
The monitor will permit any number of simultaneous
case 2 openings of a file (which we call thawed access),
and will allow any of the three types of access legal for
the file to be used for each opening. The consistency
and integrity of the data in the file is the responsibility
of the processes using it.

The monitor will permit any number of case 1

openings of a file (which we calljrozen access) providing
all processes request only; read and/or execute access.
One or more openings of any type will preclude a new
opening for write, and one write opening will preclude
any new openings of any type. Thus the system guaran­
tees the integrity of file data by prohibiting potentially
conflicting access.

C opy-on-write access

One other important TEN EX feature which facili­
tates sharing is a type of page access called copy-on­
write. To our knowledge, this facility was first de­
veloped and used on the BBN -LISP system for the
XDS-9407. It was developed as the result of two
common observations:

l. Some programs, particularly older ones, are not
quite reentrant. That is, they were coded with­
out observing reentrant coding practices with
the result that some code or initial data areas
may be modified. Because of the architecture
of the PDP-10, we in fact find many programs
with completely reentrant code (even lazy
programmers usually use the stack-oriented
subroutine call and return instructions of the
machine), but with local temporaries, data areas,
etc., sprinkled arbitrarily through the program.

2. Some programs use large initial data bases
which are common to all users, but which may
be modified by some users. in some specific cases.
The principal example of this is the BBN-LISP
system which initially contains over 100,000
words of compiled function code (reentrant),
and some common list structure. It is however,
necessary and legal for some users and some
functions to modify portions of this base for
local operations. In fact, none of this original
base can be guaranteed immune from modifica­
tion. For example, a list may be appended to,
or a compiled function may have a "break point"
temporarily inserted.

In TENEX, a process may specify this copy-on­
write access whenever a file page is mapped into a
process. Copy-on-write is legal even if write access is
not. A page mapped in this way will remain shared so
long as the process only does read or execute references.
A write reference to the page will be trapped by the
monitor, whereupon a private copy of the page will be
made, and the process map changed so that it points
to the copy rather than the original. Write access is
then permitted to the copy, and the process' original
write reference is completed.

All of this is invisible to the process, except that it
may read its memory map and discover a different
identifier and access than was initially used to map the
page. This facility thus provides a means for allowing
sharing wherever possible without penalizing. un­
avoidable modifications or requiring the user program
to handle them explicitly.

Examples of use of named memory

Let us consider the most common example of how
file/process memory integration and sharing is used
in TENEX, i.e., a file containing a commonly used
program. We will identify this file as PROGRAM.SAV
(the extension SAY by convention implies a core­
image file). The file contains a number of pages of code
and some mapping information as shown in Figure 5.
The mapping information specifies where the code and
data pages are to be placed in a process map to produce
an image of the program. A monitor routine interprets
the mapping information and performs the mapping.
As shown in the figure, the code and data pages are
arranged contiguously in the file, but may be put any­
where in the process map. In fact, the mapping shown
is a common one, with data and temporary storage
assigned to low addresses, and reentrant code assigned
to addresses in the upper half of the process address
space.

One might suggest that instead of placing pointers
to the file in the process map, the file map itself be used
as the process map. This would be analogous to running
in a particular segment in the MULTICS-type seg­
mentation scheme. But without the full power of
general segment addressing, inter-segment references
are not possible, and our procedure offers the following
advantages.

PROCESS MAP

-
• ts6 -----'

Figure 5

Storage Organization and Management in TENEX 27

1. A process map may contain pages from several
different files. In our scheme, individual pages
or groups of pages may be viewed as mini-seg­
ments, and used in similar ways.

2. Different processes may have different access
permissions to the same file page. In particular,
when a write reference is done to a copy-on­
write page, only one entry of the process map is
changed to address the copy.

Sequential file access

While mapping operations are readily suggested in
the case of program core images, it must be noted that
the only basic type of file access permitted under
TENEX is page mapping. TENEX provides a num­
ber of monitor facilities for other types of file access,
the most common of which is sequential. To implement
the file sequential monitor calls (e.g., byte-in, byte-out)
the monitor maintains a number of "window" pages
in a separate map invisible to the user process. For
each file with sequential operations in progress, the
monitor maps the file page which is to receive or pro­
vide the next byte. Each call from the user causes one
or more bytes to be loaded from or stored into this page,
and a count updated to determine if a new page should
be mapped. Movement through the file is accomplished
by mapping successive pages, and the sequential access
module does not have to be aware of the physical device
on which the page resides nor interface with I/O driver
modules to read or write it. This modularity is very
satisfying from an operating system design point of view.

As a final example, we note that processes may use
shared file pages for interproccess communication. In
this case, a particular file and set of pages within the
file are agreed upon by several processes, and the pages
are mapped into the address space of each of the
processes. The actual map slots chosen by the pro­
cesses need not be the same, i.e., the shared pages may
be put in different places in the various process address
spaces. Since the same physical storage is seen by all
processes, any of a number of common techniques may
be used to pass information in any direction, e.g., flags,
ring buffers, etc.

In itself, this procedure does not provide any direct
means for processes to signal one another, so for
asynchronous events the processes are required to
periodically test flag words in one of the shared pages.

IMPLEMENTATION

Pager

As stated above, paging hardware was designed and
built as part of the TENEX development, and a few of

,

28 Fall Joint Computer Conference, 1972

LOCATION

PRIVATE
POINTER

Y

SHARED
POINTER

1
I

SPT

T
Y

1
LOCATION

Figure 6-Pointer types

~

PHYSICAL
STORAGE

PHYSICAL
STORAGE

the characteristics of the BBN Pager are particularly
relevant to this discussion. The pager is placed logically
between the processor and the core memories and
translates each memory' address received from the
processor into a physical core address which is sent to
the memories. Control signals allow the pager to know
what type of access the processor is making (read,
write, or execute), and allow the pager to signal the
processor when for some reason a reference cannot be
completed (e.g., the page is not in core). The virtual
addresses received from the processor are 18-bits, and
the page size is 512 words, so the pager is in fact trans­
lating the high-order 9 bits of address, and passing the
low-order 9 bits through unchanged.

The pager uses a set of associative registers to hold
some number of recent virtual/physical address as­
sociations, but the source of this information is always
a "page table" in core memory. Page tables contain
(or point to) the physical storage address, if any, of
each page of a virtual memory. Thus, each process
virtual memory is represented by one page table. Page
table entries are one word, hence a page table for a
256K virtual memory is 512 words, or exactly one page.

The pager references the relevant page table, using
the 9 high-order virtual address bits as an index, when­
ever the associative registers fail to contain the re­
quested virtual address. It is capable of interpreting
three types of page table entries of which two are of
interest here. The first is called a "private" pointer
and contains a physical storage address. If this is a
core address, the pager will load an associative register
with the information and complete the requested
reference. If it is any other address, the pager will
initiate a trap to the monitor for appropriate action.
The second type of page table entry is called a "shared"
pointer, and contains an index into a system table at

a fixed location. This "shared pages table" (8PT) con­
tains the physical storage address, and the details of
its function are described below.

These two pointer types are shown in Figure 6. The
third type of page table entry is the "indirect" pointer
described in Reference 8, but it is not relevant to this
discussion.

One other fixed table, called the Core Status Table
(CST), is used by the pager. For each page of physical
core, this table contains information about recent
references and notes if the page has been modified.

Hierarchical storage considerations

In any system using hierarchical storage, one is con­
cerned with the movement of data between the various
levels, with knowing where the current "up-to-date"
copy is, with updating lower levels, etc. It is usually
considered essential that the address of the currently
valid copy of an item of storage reside in one and only
one place. This tends to conflict with the goal of sharing
which says that items of storage should be made
available to many processes simultaneously. Replica­
tion of addresses would appear to admit the possibility
of unresolvable phase errors, and the updating problem
by itself would introduce undesirable complexity in
the software.

One quite elegant solution to this problem is the
hash table scheme which is shown in Figure 7. In this
scheme, storage addresses reside in only one place, the
storage hash table. Processes using an element of
storage are given the "home" (and presumably in­
variant) address of the element, and the current loca­
tion at any time may be found by performing a hash
lookup into the table. Using this scheme, storage ele­
ments may be moved from place to place at any time,
and only the table entry need be changed. Also, the
table entry itself may be deleted when the element is
moved back to its home address even though one or
more processes are still using it. In this case the hash
lookup will fail, and the monitor will have to re-create
the entry.

HASH TABLE

ISTORAGE ADR 'x' I ' x'
HA.SH

~

LOOKUP LOCATION r---
POINTER

PHYSICAL
STORAGE

:Figure 7-Hash table scheme

A second solution to the basic storage management
problem is the shared pages table scheme used in
TENEX and shown in Figure 6. In this scheme,
storage addresses (for shared elements) again reside
in only one place, a fixed table called the shared pages
table. Processes using an element of storage are given
a fixed index 'Y' which identifies the SPT entry holding
the current address. Here, also, storage elements may
be moved from place to place by changing only one
address, but unlike the hash table scheme, an entry
cannot be deleted from the SPT so long as pointers
exist which use it. Therefore a share count is required
for each entry to record the number of pointers to it
which have been created.

We considered both of these schemes and a number
of variations for TENEX before choosing the second
of the above approaches. An exhaustive justification
of this decision cannot be given here, but the decision
was based primarily on our judgment that:

1. The cost of hardware to implement the hash
table scheme was somewhat higher in terms of
design effort and overall size and complexity.

2. Additional (time) overhead would be incurred
in making the one or more probes into the hash
table for each associative register reload.

3. The resident storage requirement of the hash
table scheme would be greater.

TEN EX implementation-mapping

We are now ready to show exactly how TENEX
implements the file mapping operations discussed in
the previous section, and how data flows between the
several levels of storage. The TENEX storage hierarchy
consists of three levels, core, swapping, and file. In
practice, the swapping device is a fixed head drum with
high transfer rate and fairly short latency time (e.g.,
less than 30 ms.). The file storage device is usually a
movable head disk with substantially greater capacity,
but reduced transfer and latency speeds.

As described in the previous section, named memory

FILE
INDEX
BLOCK

DISK ADR I

I I
Figure 8-File structure

,"

I

PAGES
ON DISK

I

Storage Organization and Management in TENEX 29

PROCESS
PAGE

TABLES

SHR PTR

SHR PTR

SPT

T PHYSICAL
DISK PAGE

Sl
N

_ DISK ADR - f----

INDEX
BLOCK

SHR PTR -

Figure 9-Two processes map a file page

consists of pages within files, so we start with an ex­
ample file and two of its pages as shown in Figure 8.
The basic structure of the file is an index block con­
taining the storage addresses of all of the data pages.
This index block is in fact a page table, initially con­
taining private pointers. We assume a starting point
where none of the file pages are mapped in any process,
so the "one and only one" place for the storage address
of each of these file pages is logically and properly the
index block of the file which owns them.

Next, a process requests that one of these file pages
be mapped into its address space. The monitor uses the
JFN portion of the identifier to locate the file index
block, and the PN (page number) portion to select the
appropriate entry within it. Although our aim here is
to have just one process using the page, we see that in
fact the page must become shared at this point, that
is, shared between the file and the process. Therefore,
the monitor will assign a slot in the 8PT and place in
it the disk address obtained from the file index block.
Simultaneously, it creates a shared pointer which
points to that 8PT slot and places a copy in both the
file index block and the process page table. The share
count for the 8PT slot is set to reflect the fact that the
page is in use twice, once by the file, and once by a
process. A second process wishing to use the page
proceeds in the,same manner,but now it is onlyneces­
sary to create another 'copy of the shared pointer and
increment 'the share count. This sit.uation is shown;in
Figure 9. The subsequent reduction of the share count
to 1 (when all processes un map the page) will indicate

tltb1trt1l<SS",~Qt;r:w¥~j)@~~~.im¢d.
Some additional bookkeeping is necessary in order

to keep track of the owner of the page, and the fact

30 Fall Joint Computer Conference, 1972

SPTH ~.l SPT

f HOME ADR Sf_G. ADR AREA I
.....L- SPTN

1 INDEX

- OFN I PN ~ BLOCK

Figure 10-0wnership back pointers

that the file index block is in use. This is shown in
Figure 10. The table labeled SPTH is a table parallel
to and the same length as the SPT. For our example
file page which was assigned slot 'SPTN', the parallel
entry in the SPTH records the owning page table of
the page. This is shown as OFN and PN. The OFN
(open file number) is the monitor internal equivalent
of the user's JFN, except that it identifies open files
over the domain of all jobs in the system. The OFN is
actually an index into a portion of the SPT which is
reserved for index blocks, and the PN is the page num­
ber supplied by the user. The OFN portion of the
SPTH holds the home addresses of the currently in
use index blocks. The monitor must always open files
on the basis of the storage address of the index block
as obtained from the file directory, and a search of this
part of the SPTH is necessary to determine if the file
is already open.

I nter-level data flow

N ext we show what happens when one of the pro­
cesses references the file page which has been mapped.
This is shown in Figure 11. The pager interprets the
shared pointer found in the process map, and references
the SPT. It finds, however, that the page is not in core
and traps to the monitor. The monitor in turn selects

SPT

T
SP TN

~ 1_ 'N'

RE CO
PA

NUM
GE
BER

I

PHYSICAL
CORE PAGE

CST2

~

~

IB---~-
SPTN

PHYSICAL
DISK PAGES

I--

CST 1

HOME DISK ADR r--

Figure ll-Page is referenced and brought into core

a page of real core and initiates a read of the to disk
bring in the page. The SPT slot is then changed to
indicate that the page is in core.

For completeness, we must note the function of two
tables which record the state of physical core. These
are the Core Status Tables (CST1 and CST2). For
each page of physical core, CST! holds the physical
address of the next lower level of storage for the page.
In our current example, this is a disk address because
the page is just being read from the disk. CST2 records
the name of the page table holding the pointer to that
core page, which in this case is an SPT index. One
additional bit (not shown) is used to record whether
the page has been modified with respect to the next
lower level of storage.

SPT

T
SPTN

1 r----r.:rI
N

PHYSICAL PAGES

CORE DRUM

CST2 CST1 In----
~ ~:;'i£M =::r---

HOME DISK
ADR

Figure 12-Page is swapped onto drum

DISK

I-

DST

T
M

1.
f-

N ext we consider what is necessary for the monitor
to swap the page onto the drum. It is important to note
that during the course of the drum write (including
latency) and for a period of time thereafter, the core
page still contains a current copy of the data, and so we
may properly leave the SPT slot pointing to it. This
will prove useful in the event that a process makes
another reference to the page during this time because
the page will not have to be read into core again. Thus
to begin the swapout, the monitor selects a free drum
page, initiates the drum-write operation, and updates
CST1 to reflect the fact that the next lower level of
storage is now the drum.

However, we can't discard the home address of the
page, so one other table is required. The DST (drum
status table) serves a function for the swapping level
of storage equivalent to that of the CST for core. That
is, for each page in use on the drum, the DST holds the
address of the next lower level of storage. It also records'
whether the copy on the drum has been modified with
respect to the copy on the disk so that the monitor will

PHYSICAL PAGES

DRUM DISK

SPT

f
SPTN

1 t-------r.-:r-t
M

DST

T
M

J..I----:f

Figure 13-Core page is released

know whether a write is necessary at some time to
update the disk copy. Our picture of a file page with
copies on all levels of storage is now complete (Figure
12).

One final step is shown in Figure 13. If the page re­
mains unreferenced for some period of time, the monitor
will want to use the core page for some other purpose.
To do this, the monitor will move the drum address
from CSTI of the page being reclaimed to the SPT
slot, and succeeding attempts to reference the page will
discover that it is no longer in core.

Updating lower levels

So long as the page remains mapped by one or more
processes,· the share count will keep the SPT slot in use,
and our convention is that the page will be moved
between the drum and core as needed. This suggests
that some procedure may be necessary to periodically
update the home (disk) copy of pages. This is neces­
sary both to guard against loss due to system crash,
and because some files are mapped when the system
starts up and are never unmapped (e.g., the disk as­
signment bit table). In TENEX, a special system
process takes this responsibility. It periodically scans
the open files, finding pages which have been changed
since being read from the disk. File pages are backed
up to the disk by setting a request bit in the CST which
causes the swapper to move the page to the disk in­
stead of the drum. File index blocks must also be up­
dated but require a different procedure. For these, the
backup process constructs an image of the index block
as it would appear with no pages shared. That is, it
finds the home address of each page and puts it in the
index block in the form of a private pointer. This copy
is then written on the disk. This procedure is a com­
promise of the goal or having only one copy of a storage

Storage Organization and Management in TENEX 31

address, but a simple interlock mechanism prevents
any phase errors during the updating.

Dynamic storage management

One of the most important and difficult aspects of
storage management in TENEX is the dynamic control
of core and flow between levels of storage. The pager
provides information on the frequency and type
(read/write) of references made to pages in core. It
also provides information on which of the processes
sharing a page (i.e., having it mapped) have actually
referenced it. A detailed description of these facilities
and the algorithms which have been developed to
handle dynamic storage management is beyond the
scope of this paper.

SUMMARY AND CONCLUSIONS

This discussion has shown how named memory can be
incorporated in an operating system having only paging
facilities, and how some of the advantages of segmenta­
tion are thereby obtained. Although there are limita­
tions to this approach, it does have the advantage of
considerably less complex hardware and software. To
date, we have not found a way to use mapping to
provide dynamically linked library subroutines, one
advantage which segmentation does provide. One
possible solution may be to build a library of self­
relocating subroutines and provide a convention for
mapping them in a portion of the address space which
the calling process is not using. Unfortunately, the
PDP-IO processor does not provide a convenient facility
for self-relocating code.

We have found that the process memory map is an
extremely useful facility for a number of purposes. It
is true that the 256K virtual memory eliminates the
need for overlaying procedures in most programs, but
where this technique is still required, it is easily imple­
mented simply by remapping groups of pages.

The implementation of a three-level storage hierarchy
used in TENEX has proved to be workable in over two
years of actual operation. The software complexity
required for the maintenance of the various tables is
perhaps greater than would be required had we adopted
the hash-table approach, but it has nonetheless been
a manageable and programmable system.

ACKNOWLEDGMENTS

In addition to the author, T. R. Strollo, R. S.
Tomlinson, J. D. Burchfiel, and E. R. Fiala actively

32 Fall Joint Computer Conference, 1972

participated in the design of this implementation
strategy. R. S. Tomlinson and J. D. Burchfiel did the
logic design and checkout of the Pager. Appreciation
is also due in large measure to J. I. Elkind and D. G.
Bobrow whose inspiration, leadership, and support
made the TENEX project possible.

REFERENCES

1 D G BOBROW D L MURPHY
The structure of a LISP system using two-level storage
Communications of the ACM VollO No 3 March 1967

2--
A note on the efficiency of a LISP computation in a paged
machine
Communications of the ACM VollI No 8 Aug 1968

3 DIGITAL EQUIPMENT CORP
PDP-10 reference handbook Dec 1971

4 V A VYSSOTSKY F J CORBATO R M GRAHAM
Structure of the MULTICS supervisor
Proceedings AFIPS 1965 FJCC Vol 27 Pt 1 Spartan Books
New York

5 R C DALEY P G NEUMANN
A general purpose file system for secondary storage
Proceedings AFIPS 1965 FJCC Vol 27 Pt 1 Spartan Books
New York

6 B LAMPSON et al
A user machine in a time sharing system
Proceedings IEEE 54 12 Dec 1966

7 D G BOBROW D L MURPHY W TEITELMAN
The BRN-LISP system reference manual
BBN April 1969 pp 3.8-3.9

8 D G BOBROW J D BURCHFIEL D L MURPHY
R S TOMLINSON
TENEX, a paged time sharing system for the PDP-10
Communications of the ACM Vol 15 No 3 March 1972

The application of program-proving techniques to
the verification of synchronization processes

by KARL N. LEVITT

Stanford Research Institute
Menlo Park, California

INTRODUCTION

The purpose of this paper is to establish the applicability
of program-proving techniques to the verification of
operating systems, control programs and synchroniza­
tion programs. All the illustrative examples to be
presented use Dijkstra'sl P and V operations for con­
trolling the synchronization of competing processes.
However, the techniques discussed are applicable to
any set of such control primitives. A major portion of
the paper is devoted to the proof of correctness of two
programs devised by Courtois et al. 2 that control the
sequencing of "readers" and "writers" requesting the
use of a common device.

The notion of establishing the correctness of com­
puter programs by providing a formal proof of correct­
ness originated with Floyd3 and N aur.4 In the following
section we discuss the Floyd-N aur approach in more
detail, but for our purposes here the method can be
summarized as follows. Each input line of a program is
associated with an input assertion 'P that expresses any
constraints on the input variables. Similarly, each
output line is associated with an output assertion if;
that expresses the desired relation among output vari­
ables when (and if) the program halts. Certain inter­
mediate program lines, most notably those lines that
serve to cut the program loops, are associated with
"Floyd" assertions (or simply, assertions) that express
the relationship among all program variables whenever
control passes to those points.

The correctness of the program with respect to these
programmer-supplied assertions is proved as follows.
For each path in the program that commences and
terminates with assertions (and not traversing any
intermediate assertions), it is shown that the "com­
mencing" or antecedent assertion, together with the
transformation expressed by the intervening code,

33

implies the "terminating" or consequent assertion. Such
a proof establishes the correctness of the program, if
successfully carried out for all paths, provided the
program halts. * The establishment of program halting,
as described by Floyd, is to be carried out as a separate
proof, by, for example, showing a well-ordering of a
variable's values throughout the execution of the
program. lVlanna5 later showed that a single proof
process, albeit more difficult than Floyd's, and also
undecidable, could suffice to demonstrate both program
correctness and halting. London6 •7 •8 has proven some
moderate size programs (up to 100 lines of code) using
Floyd's method, and has provided some insight into the
specification of the assertions. The status of program
proving through June 1971 js summarized in a tutorial
manner in a survey paper by Elspas et al. 9

In most applications of program proving to date, it
has been assumed that (1) the program is executed in
a serial, i.e., uniprocessing, uniprogramming environ­
ment, or that any multiprogramming or multiprocessing
is invisible to the program's execution; and (2) the
program contains specified output points to which
well-defined output assertions can be applied. The
implication of assumption (1) is that, at any instant
of time, control resides at only one point in the program.
In contrast, synchronization and operating system
programs are parallel programs. There are really two
types of parallelism of concern to us. Explicit parallelism
occurs when more than one processor is available to
execute a program so that several program paths are
processed simultaneously. Implicit parallelism, which is

* We emphasize t.hat. t.his proof process est.ablishes program
correct.ness wit.h respect. t.o t.he user-supplied assert.ions. As
anot.her way of looking at. t.he process, t.he proof est.ablishes t.he
equivalence bet.ween a procedural descript.ion (i.e., the program)
and a nonprocedural description (i.e., the assertions).

34 Fall Joint Computer Conference, 1972

really multiprogramming occurs when a program's
execution can be temporarily interrupted to carry out
the execution of another program. Thus several pro­
grams are in various stages of execution at any instant.

With regard to assumption (2) the behavior of an
operating system is not conveniently described by
assertions placed at output points. In particular an
operating system does not contain output points since
t should, in proper operation, never halt.

The dominant theme here relates to techniques for
handling the simultaneous or parallel activity asso­
ciated with an operating system and for the specification
and proving of Floyd assertions so that the intent of
the program is distributed among these assertions.

Some mention should be made of previous work
relating to the proving of programs with parallel ac­
tivity. Ashcroft and lVIannalO have investigated a
particular model of a parallel program wherein several
independent parallel paths may exist in a program
(and it is conceived that each path has its own program
counter), but execution is carried out by a uniprocessor.
In executing the program the uniprocessor arbitrarily
selects one of the paths, processes the single instruction
specified by the program counter, and then arbitrarily
selects the next path to consider, which might also be
the previously considered path. BEGIN- and JOIN­
type nodes are also included for generating and
"collapsing" parallel paths. Ashcroft and lVlanna then
visualize a single nondeterministic program, based
on the original parallel program, that contains choice
points corresponding to the several instructions from
which the uniprocessor may select at any instant.
Assertions are applied to each such choice point and to
all points at the heads of loops. The assertions at a
particular point describe the state of all program
variables when (and if) control reaches the point in
question, for all possible paths of control to that point.
Thus the problem of proving a parallel program reduces
to the proving of a conventional program provided
suitable interpretation is given to the choice point.

A disadvantage of this approach is that a proliferation
of assertions results from the need to consider every
instruction in each path as a choice point. To alleviate
this situation Ashcroft and Manna introduced a special
block into the model so that, if control enters this
block, the execution of the block is continued without
interruption until the block halts.

The parallel model that we will consider here for the
synchronization programs is an extension of the
Ash croft-1Vf ann a model in that processing is carried on
simultaneously by more than one processor. In addition,
we assume the existence of a special SPLIT node that
permits a uniprocessor path to be converted into a

multiprocessor path and a critical section so that only
one processor at a time is granted access to such a
section. With these improvements the number of
assertions tends to remain manageable.

In a recent paper Habermannll has made an initial
attempt to formalize the synchronization mechanisms
associated with control primitives like P and V, and
has provided proofs of several simple programs using
such primitives. In a sense, Habermann's proof tech­
nique could eventually be more attractive than the
method we will describe since it takes better advantage
of the hierarchical or modular structure induced by the
control primitives. The present disadvantage of the
Habermann method is that it is ad hoc for programs
with a mixture of control primitives and "conventional"
code. As the program-proving field matures so that
automatic or semiautomatic program verifiers become
available, our approach will be amenable to implementa­
tion by such a system. In fact, the proofs that emerge
although lengthy, involve relatively simple manipUla­
tions, and should be implement able by relatively
unsophisticated program verifiers.

In the following sections we review briefly the
pertinent program-proving theory, review the semantics
of the P and V operators and present a proof of a simple
mutual exclusion program, present a few simple exten­
sions to handle the parallel case, present detailed proofs
of . the two programs by Courtois, and present our
conclusions.

REVIEW OF PERTINENT PROGRAM­
PROVING THEORY

In the foregoing section we pointed out that in
proving a program by Floyd's method the user must
provide an input assertion cp for each input point, and
an output assertion 1/1 for each output point. In addition,
he must provide intermediate assertions Ql, Q2, ••• , so
that each loop in the program is cut by at least one
such Qi. The process of proving the program with respect
to the applied assertions is to prove each path, where a
path is defined by an antecedent assertion, a consequent
assertion, and intervening code. For each path a
ver~fication condition is derived that is a statement of
the form:

antecedent assertion /\ intervening code

:=) consequent assertion.

In order to prove the program correct it is necessary
and sufficient to prove that each of the verification
conditions is logically correct. An interesting mechanical
approach to the generation of verification conditions

called back substitution has been developed by King.12

Since we will 1 ater make use of back substitution in
developing verification conditions, it is worth giving it
a brief discussion here for program code consisting of
simple variable assignment statements of the form
y~(expression) and branch statements. For the treat­
ment of array assignment statements of the form
A (m) ~expression and of procedure calls, the reader is
referred to References 12, 13, and 14.

Briefly, the generation of verification conditions for a
path with antecedent assertion qi and consequent
assertion qj involves the carrying out of string sub­
stitutions proceeding backward along the path from
qj to qi. That is, if qj involves a variable y and a s·mple
assignment statement immediately preceding qj is of
the form y~f(x), then qj is transformed to a q/, where
each occurrence of y in qj is replaced by f(x). The newly
formed assertion q/ is then transformed to a q/' based
on the assignment preceding y~f(x) and so on, until
an assertion qjn is generated so that all assignments
between qi and qj are accounted for. The verification
condition to be proved to establish the correctness of
the path in question is qi-.:Jqjn. A test (or branch state­
ment) T, appearing subsequent to the generation of an
assertion q/, is handled by transforming q/ to T -.:Jq/.
Substitutions specified by subsequent assignment
statements (proceeding backwards) are made for
variables in both q/ and T.

The mechanics of back substitution are illustrated
with respect to the simple program path depicted below.
The program is taken from Reference 9.

ql
Test: P-A-B~O

Y~Y+D/2
A~A+B

B~B/2

D~D/2

ql

The guessed assertion is given by ql : [A = (Q* Y)] /\
(B=Q*D/2) /\ (D=2-k) /\ (k=nonnegat~ve integer) /\
(P/Q-D<Y~P/Q). The reader can verify that the
back substitution of ql through the intervening tests
and assignment statements leads to the following
verification condition:*

ql/\ (D/2~E) /\ (P-A-B~O)
-.:J (A+B=Q*(Y +D/2)

* We have made use of the tautology [R:> (S:> T)J == [CRAS)':) T)]
to form a logical expression involving a single implication where
only the transformed consequent assertion appears on the right
side of the implication.

Application of Program-Proving Techniques 35

/\ (B/2= Q*D/4) /\ (D/2=2-k
)

'/\ (k = nonnegative integer)
/\ (P/Q-D/2<Y+D/2~P/Q).

We leave it to the reader to verify that the above
condition is logically true. For example, we note that
the term (B=Q*D/2) in ql implies the term (B/2=
Q*D/4) in the consequent of the verification condition.

At present, we know of several implementation of
verification condition generators that handle the simple
assignment statements and tests discussed above, in
addition to arrays, procedure calls, and various ALGOL­
like constructs. The discussion section contains a
prognosis of the availability of verification condition
generators, theorem provers, and semiautomatic asser­
tion generators.

P AND V PRIl\lIITIVES AND PROOF OF THE
SIMPLE MUTUAL EXCLUSION PROBLEM

Dijkstra1 introduced the P and V operators as a
software approach toward cont~olling the access to
critical sections of competing processes. * The simplest
possible use of these operators is illustrated by the
following program,

1
peS)

1
critical section

1
YeS)

1
wherein it is assumed that many processes wish to gain
access to the critical section, but only one such process
is to be processing the critical section at any instant.
The P operator ensures that a process gains access only
if no other processes have current access; otherwise, the
requesting process is forced to wait. The V operator
activates the scheduling of a deferred process on the
completion of the current processing of the critical
section. (Throughout the discussion we will assume that
the scheduler arbitrarily selects one of the deferred
processes for access to the critical section.) The paral­
lelism here is actually trivial; control can be in the
critical section and P simultaneously, but at no other
pair of points simultaneously. The following interpreta­
tion of P and V will accomplish the desired control**

* Throughout this discussion we will assume a process to mean a
task that requires access to particular resource or resources for its
execution.
** We assume the existence of some primitive lock-out mechanism
so that only one process at a time gains control of a P or V
operator.

36 Fall Joint Computer Conference, 1972

wherein, according to Dijkstra, the variable S serves
as a semaphore.

Initially
peS) :

YeS) :

S=I,
S~S-I;

if S = 0 then schedule process else wait.
S~S+I;
if S < 1 then schedule deferred process else
done.

To prove formally that the control is indeed as
hypothesized, we will represent the program as the flow
chart of Figure 1. We have introduced two new integer
variables: PENS, which indicates the number of pro­
cesses pending (on the semaphore S), and D, which
indicates the number (hopefully 0 or 1) of processes
that are processing the critical section. (Note that
PENS and D are not strictly a part of the P and V
mechanism but merely variables that we have intro­
duced to simplify the extraction of the program's

INITIALLY: S = 1
PENS = 0
D=O

i----l9D --------------,
i~
I -----r- ®

P(S) I TEST: S = 0~1 PENS ~ PENS + 111-.;----4~ ..
i lves
I ~~D+1 L _____________________ _

o
CRITICAL SECTION

1 _____ 1 ______ ----- - -----,
I ~ I
I I
I D~D-1 I
I S~S+1 I

V(S) I I
I TEST S < 1 ~ PENS ~ PENS - 1 ~_--'
I I D~D+1 I I No I L ____________________ ~

o
TA-71 0582-33

Figure I-Flow chart representation of simple control program

intent from the assertion.) Point ® of the flow-chart
corresponds to the wait point, and when the V operation
schedules a process, control returns to Point @. Points
CD and CD correspond, respectively, to the entry point
of a process and the exit point wherein no processes
are pending on S.

The proving of the program has two aspects. The
first part, which we will call the correctness part, is to
prove that at any instant D is either 0 or 1, corre­
sponding to 0 or 1 processes in control of the critical
section. The second part, which we will call the deadlock
part, is to show that D ~ 1 if and only if PENS ~ 1. The
proof of this latter condition will ensure that, if a set of
processes has been deferred, then there is a process that
will eventually perform a V operation and schedule a
deferred process. This approach toward avoiding
deadlock has been called the expediency conditionp and
ensures that the system never reaches a state where no
requests can be granted. The deadlock part of the proof
corresponds to the proof of halting in Floyd's method
in that in both cases the proof is handled apart from the
proof of correctness.

The use of program-proving techniques requires the
attachment of assertions to the flow chart. We have
assumed that if a process has gained control of the P
(or V) operators, then all other processes are prevented
(by hardware lockout) from gaining control of either P
or V until the process in control has taken either of
the two exits from P (or V). On the basis of thO s assump­
tion it is not necessary to apply assertions at any
interior points in the P or V operations, since the state
of the variables at the terminal points of P and V are
sufficient to specify the state at any interior points of
P or V. However, by the definition of the problem this
does not apply to the critical section, i.e., if the control
were not working as intended then several processes
could have control of the critical section.

The "guessed" Floyd assertions for the program are
as follows, where qi, i= 1, 2, 3, 4 is the assertion at
point (i).

ql= (integer S) /\ (S~I) /\ (D=u(-8+1»
/\ (PENS=u(8) -8)

q2= (integer S) /\ (S<O) /\ (D= 1) /\ (PENS = -S)
qa = (integer S) /\ (S ~O) /\ (D = 1) /\ (PENS = -8)
q4= (integer S) /\ (8= 1) /\ (D =0) /\ (PENS =0),

where u (x) is the step function defined by

u(x) =0 for x~O

u(x) = 1 for x>O.

Two steps must be followed in proving the program

with respect to the above four assertions. Step 1 is to
prove that for all paths the assertions are consistent
with the transformation specified by the intervening
code; Step 2 is to establish that the validity of the
correctness and deadlock parts is correctly embedded
in the guessed assertions.

First, in Step 1 the following control paths must
be verified:

1~2, 1~3,3~4,3~3.

For purposes of illustration we will outline the proof of
1 ~3; this outline should enable the reader to verify the
other paths. The path from 1 ~3 embodies the following
steps

ql
S~S-l

Test: 8=0
D~D+1

qa.

Back substitution on qa leads to the following verifica­
tion condition:

[(integer S) /\ (8 ~ 1) /\ (D = u (- 8 + 1))
/\ (PENS=u(8) -S) J/\ (8-1 =0)

:> [(integer 8 - 1) /\ (8 -1 ~ 0)
/\ (D+1=1) /\ (PENS = -S+l)].

The first term of the consequent, integer 8 -1, is true
from integer S. The second term is true from 8 -1 = 0,
i.e., 8=1. The third term, D=O, is true from
[D=u(-8+1)J/\ (S=l). The fourth term is true
from [PEN8=u(S)-8J/\(8=1). Thus the path 1~3
is verified (with respect to the "guessed" assertions).

Step 2, establishing that the assertions embody the
desired behavior of the correctness and deadlock parts,
remains to be carried out. The correctness part is
apparent from the assertions by noting that D = ° or 1.
The deadlock part is satisfied by noting that whenever
PEN8 ~ 1, then also D ~ 1; thus there exists a process
currently in the critical section that will eventually
schedule some deferred process.

As an extension of this simple control program that
we will use in the following sections, consider the
program displayed in Figure 2. The program is a
straightforward extension of the simple single critical
section program discussed above. It can be shown by a
proof similar to that outlined above that access is
granted to only one of the two critical sections at a
time. Thus, control cannot be simultaneously at points
® and 0. The interpretation of P(8) and V(S) is
modified from that described previously, as shown in
Figure 3. The variables PENS1 and PENS2 serve to

Application of Program-Proving Techniques 37

CRITICAL

I
I
SECTION 1
I
I

~
V (S)

~
I
I

~
p (S)-...... 0 -;, -

CRITICAL

l®
I
I
SECTION 2

V

TA-71 0582-34

Figure 2-A control program with two critical sections

indicate, respectively, the number of processes pending
on semaphore 8 at critical sections 1 and 2. The
"CHOOSE" box functions as follows. Either of the two
output branches is chosen at random. If the test in the
selected branch succeeds, then control continues along
the branch; otherwise, control is passed to the other
branch. Note that the relation S < 1 ensures that control

38 Fall Joint Computer Conference, 1972

P(S) (FOR CRITICAL SECTION 1)

~
S +- S -1

• TEST: S < l~C SPLIT h
N014 I -' ~

(:HOOS0
~ I I ~

TEST: [ENS 1 > O~ TEST: PE1V:> 0

I PENS 1 +- PENS 1 - 1J I PENS 2 +- PENS 2 - 11
+ +

To (V TOQD

TA-71 0582-35

Figure 3-Interpretation of P and V for two critical sections

can pass along at least one of the branches because if
S < 1, then PENS1 + PENS2 > 1. The purpose of the
CHOOSE box is to place no arbitrary constraints on
the scheduling of deferred processes. The "SPLIT" box
simultaneously passes control along each of its output
branches. The intention here is both to reschedule
another process onto a critical section associated with
semaphore S and to have the process that just finished
the critical section execute the instructions following
YeS).

Wherever two or more parallel paths converge there
is a JOIN box, embodying some rules for combining
the paths. Points 0 and 0 of Figure 3 are really JOIN
boxes. The most apparent such rules are OR (AND)
indicating that control is to proceed beyond the JOIN
box wherever any (all) of the inputs to the JOIN box
are active. Our discussion will apply mainly to the OR
rule, but is easily· extended to the AND case.

APPLYING ASSERTIONS TO SYNCHRONIZA­
TION PROGRAMS AND ABSTRACTING THE
PROOF OF CORRECTNESS AND DEADLOCK
FOR THE ASSERTIONS

The simple program of Figure 1 reveals, although
only in a trivial manner, the possibilities for parallel
activity that we wish to exhibit. For example, in Figure
1 it is possible for control to reside simultaneously in the
critical section (point 0) and at point CD. The assertion
we applied at point CD reflects the possibilities for
multiple points of control in that the variable relation­
ships correspond to control being only at point CD,
simultaneous at points CD and 0, or simultaneous at
points CD, ®, 0. (It is assumed that processors are
available to execute any code associated with the critical
section as well as with the peS) and YeS) blocks.) In
proving the program we did not require any new
formalisms beyond those associated with the uni­
processing situation since hardware locks are so con­
stituted that the P and V operations are not simul­
taneously executed.

A more general situation is displayed in Figure 4.
Here we illustrate portions of two processes, A and B,
with interprocess communication achieved via the
semaphore S. The particular model of computation that
we will assume is as follows:

Assume that at periodic intervals calls are made
on sections A or B. The availability of a processor

SECTION A SECTION B

ENTER A ENTER B

t ®
P(SI---+

Y, <- f(Y21

!@ VIS)
r-- -----------------------,
I I
I S<-S-1 I
I ~ I

I TEST':< 1 YH.(SPtT ~ I
[No ~ [

! :T2!
I ~ ~:
I TEST: PENS 1 > 0 TEST: PENS 2 > 0 I
I 1 1 I t I PENS 1 <- PENS 1 - 1 PENS 2 ... PENS 2 - 1 I

I L---------i-------------------J

~V(MI

y,·tJ
V(SI---+

1®
Y2 <- h(Y2 1

!0
Ya <- g(Y21

TA-710582-36

Figure 4-Program to illustrate assertion interpretation

to commence process'ng of the calls is always
assumed to exist. If two or more processors
attempt simultaneous reference to a variable or
operator, the selection of the processor that
achieves access is made arbitrarily. If execution
is deferred, say, at point @ , subsequent to the
P (lVI) operation, the affected processor is
presumably freed to handle other tasks. When
the corresponding V (M) operation is carried out,
schedul ng a deferred process, a processor is
assumed to exist to effect the processing.

With reference to this program and the assumed
model of parallel computation, we will illustrate ap­
proaches to the placement of assertions and to proving
the consistency of the assertions relative to intervening
program statements.

Assertion placement

Since we are assuming a parallel/multiprocessing
environment, there are potentially many points in the
flow chart at which a processor can be in control. For
example, in Figure 4 control can be simultaneous at
points CD, ®, and 0. However, we will assume that the
role of the POVI) and V(l\1:) operations is to exclude
simultaneous accesses to the intervening critical section,
provided there are no branches into the critical section.
Hence, control cannot be simultaneous at points CD and
@ . An assertion, for example at point CD, must reflect
the state of the variables of the various processes
assuming that:

(1) Control is at point CD and, simultaneously,
(2) Control is at any possible set of allowable points.

By "allowable" we mean sets of points not excluded
from control by virtue of mutual exclusion. We recall
that for the uniprocessor environment assertions are
placed so that each path in the program is provable. As
an extension of that observation we can show that the
proving of paths in a parallel program can be accom­
plished provided the following rules are satisfied:

(1) Each loop in the· program must be broken by
at least one assertion.

(2) Within a critical section (i.e., one where control
is at only one point at a time and where any
variables in the critical section common to other
portions of the program are themselves in
critical sections under control of the same
semaphore), only a sufficient number of asser­
tions need be applied to satisfy the loop-cutting

Application of Program-Proving Techniques 39

rule, (1). We assume that all entries to critical
section are controlled by P, V primitives. If not
then rule (3) below applies.

(3) All points not covered by rule (2) must generally
be supplied with assertions.

(4) Each HALT point and all WAIT points asso­
ciated with a P operation must contain asser­
tions.

Thus, in Figure 5 a possible placement of assertions is
at points @ , CD, ®, 0, 0, and 0. Note that since the
purpose of synchronization programs is generally to
exclude, by software techniques, more than one process
from critical sections, such programs will not require
the plethora of assertions associated with a general
parallel program. Also note that it is a simple syntactic
check to determine if a given assertion placement
satisfies the above rules.

Once the points where the assertions are to be placed
have been selected and the assertions have been de­
veloped, it remains to prove the consistency of asser­
tions. As in the uniprocessor case, the first step in this
proof process is to develop the verification conditions
for each path. For the parallel environment of concern
to us here, we are confronted with the following types
of paths: simple paths, paths with SPLIT nodes, paths
with CHOOSE nodes, and impossible paths. These four
path types are handled below, wherein the rules are
given for developing the verification conditions, and
some indication is given that the parallel program is
correct if these rules are followed. A complete proof of
the validity of the rules is not given because an induc­
tion argument similar to that of Floyd's applies here.

Verification condition for a simple path

By a simple path we mean a path bounded by an
antecedent and a consequent assertion, with the inter­
vening program steps being combinations of simple
branch and assignment statements. For such a path the
verification condition is derived exactly as in the
uniprocessor case. That this is the correct rule is seen
by noting that the assertion qa placed at point a in the
program reflects the status of the variables, assuming
that control is at point a and also at any allowable
combination of other points containing assertions. Also
note that because of our assertion placement rules, the
variables involved in the code between a and b are not
modified simultaneously by any other process. Thus,
if a simple path a~b is bounded by assertions qa and
qb and if it is proven that %/\ (intervening code) ::)qb,
then the path is proven independently of the existence
of control at other allowable points.

40 Fall Joint Computer Conference, 1972

Verification conditions for paths with SPLIT nodes

Assume that a SPLIT node occurs in a path, say,
bounded on one end by the antecedent assertion qa.
Recall that at the SPLIT node, separate processors
commence simultaneously on each of the emerging
paths. Also assume that along the two separate paths
emerging from the split nodes the next assertions
encountered are qb and qc, respectively. * In this case the
"path" (which is actually two paths) is proved by
showing that

qa/\ (code between point a and SPLIT node) /\
(code between SPLIT node and point b)

/\ (code between SPLIT node and point c)::)
(qb/\ qc).

Note that it is not sufficient merely to consider the path
between, say, a and b, since the transformations between
the SPLIT node and c may influence the assertion qb.
However, note that the variable references along the
two paths emerging from the SPLIT node are disjoint,
by virtue of the rules for selecting assertion points.
Hence the use of back substitution to generate the
verification condition can function as follows. Assertion
qb is back-transformed by the statements between point
b and the SPLIT node, followed by the statements
between point c and the SPLIT node, finally followed
by the statements between the SPLIT node and point a
to generate qb. A similar rule holds for traversing back­
ward from qc to generate qc. Note that the order in
which the two paths following the SPLIT node are
considered is not crucial since these paths are assumed
not to reference the same variables.

Verification condition for a path with a CHOOSE node

Recall that when control reaches a CHOOSE node
having two exits, the exit that is chosen to follow is
chosen arbitrarily. Hence the effect of a CHOOSE node
is simply to introduce two separate simple paths to be
proven. For antecedent assertions qb, qc, what must be
proved is

qa /\ (code between a and b) ::)qb
qa /\ (code between a and c) ::)qc.

Note that one or possibly both of the paths might not be
control paths, but this introduces no difficulties, as we
show below.

* Various special cases are noted, none of which introduce any
particular difficulties. It is possible that qa, qb and qc might not
be all distinct or that another SPLIT node occurs along a path
before encountering a consequent assertion.

Impossible paths

As mentioned above, not all topological paths in a
program are necessarily paths of control. In effect, what
this means is that no input data combinations exist so
that a particular exit of a Test is taken. Recall that for
antecedent and consequent assertions qa, qb and an
intervening Test, T, the verification condition is
qa/\ T'::)qb', where the prime indicates that back sub­
stitution has been carried out. Clearly, if the test always
evaluates to FALSE, then qa/\ T' must evaluate to
FALSE, in which case the implication evaluates to
TRUE independent of qb'. (We recall that TRUE::)
TRUE, FALSE::)TRUE, and FALSE::)FALSE are
all TRUE.)

Proving that program has no deadlock

For the parallel programs that we are dealing with
deadlock will be avoided if for every semaphore S such
that one or more processes are pending on S, there
exists a process that will eventually perform a YeS)
operation and thus schedule one of the deferred pro­
cesses. (Weare not implying that every deferred process
will be scheduled, since no assumptions are made on the
scheduling mechanism.) In particular, if a process is
pending on semaphore a, then it is necessary to show
that another process is processing a. If that latter
process is also pending on a semaphore b, it is necessary
to show that b~a, and that a third process is processing
b. If that third process is pending on c, it is necessary
to show that c~b, c~a, and that a fourth process is
processing c, etc.

In the next sections we apply the concepts above to
the verification of particular control programs.

PROOF OF COURTOIS2 PROBLEM 1

This section presents a proof of a control program
that was proposed by Courtois et al. The program is as
follows:

Integer
RC; initial value = 0

Semaphore
M, Q; initial values = 1
READER
P(M)
RC~RC+1
if RC= 1 then P(Q)
V (lVI)

READ PERFORMED
P(M)
RC~RC-1

if RC=O then V(Q)
V(M)

WRITER

P(Q)
WRITE PERFORMED
V(Q)

READER WRITER

lCD
P(M)--+®

-----..0
RC +- RC + 1 ,
TEST: RC = 1.:!!!,

NOj_ . PIQ)-@
+-------,

RD +- RD + 1

l
V(M)

1
(DEVICE) ®

1
P(M)-+@

~1°
RD +- RD - 1
RC +- RC - 1

1 Yes
TEST: RC = 0--,

I
V(Q)_..J

No I
4 -

...... __ V(M)

l®

lCD
P(Q)--+®

---...
WD +- WD + 1

1
@)(DEVICE)

1
WD +- WD - 1

I
V(Q) __ _

1@

TA-71 0582-37

Figure 5-Flow chart representation of Courtois problem 1

The purpose of the program is to control the access of
"readers" and "writers" to a device, where the device
serves in effect as a critical section being competed for
by readers and writers. If no writers are in control of
the critical section, then all readers who so desire are to
be granted access to the device. (We show below that
the program almost satisfies this goal, although under

Application of Program-Proving Techniques 41

certain rare circumstances a reader's access might be
deferred for a writer even though at the time at which
the reader activates the READER section no writer is
actually on the device.) A writer is to be granted access
only if no other writer or reader is using the device;
otherwise, the requesting writer's access is deferred. In
particular, any number of simultaneous readers are
allowed access provided no writers are already on.
The role of the semaphore M is to enforce a scheduling
discipline among the readers' access to RC and Q. For
our model of parallel computation, it can be shown that
the semaphore M is not needed, although its inclusion
simplifies the assertion specification.

Figure 5 is a flow chart representation of the program.
A few words of explanation about the figure are in
order. The V(Q) operator for the reader and the
V (1\1) operator for the upper critical section are as­
sumed to be the generalized V's containing the CHOOSE
and SPLIT nodes as discussed in the two previous
sections. The other V operators are assumed to contain
CHOOSE but no SPLIT nodes. The dashed line
emerging from V (Q) indicates a control path that will
later be shown to be an impossible path.

Associating appropriate variables with each of the
P and V operators, the following integer variables and
initial values are seen to apply to the flow-chart.

1\;1 Q RC RD WD RPENQ

1 1 0 0 0 °
WPENQ RPEN1\11 RPEN1\12

o 0 0

where the Rand W prefixes to a variable correspond,
respectively, to readers and writers and the 1 and 2
suffixes correspond, respectively, to the "upper" and
"lower" critical sections associated with semaphore 1\1.

Once again we will divide the proof for this program
into a correctness part and a deadlock part. For the
correctness part we will establish that

(1) WD = 0 or 1, indicating that at most one writer
at a time is granted access to the device.

(2) If WD=l, then RD=O, indicating that if one
writer is on the device, then no readers are
"on."

(3) If WD=O, then RPENQ=O, indicating that if
no writer is on the device, then a reader is not
held up by semaphore Q. An entering reader
under these circumstances could be held up by
semaphore 1\1, i.e., RPENMl>O. (We will
temporarily defer discussion of this situation.)

According to the assertion placement rules, each

42 Fall Joint Computer Conference, 1972

input, output and wait point must possess an assertion,
each loop must be cut by an assertion, and in addition,
an assertion must be placed at each point along a path
wherein along another parallel path there exists an
instruction referencing variables common to the point in
quest:on. For this program the assertion placement
problem is simplified since all variables, e.g., RC and Q,
common to two or more parallel paths are a part of
critical sections wherein access is granted only to one
such critical section at a time. Hence, only the input­
output and loop-cutting constraints must be satisfied,
leading to a possible placement of assertions at the
numbered points in Figure 5. Note that point ® does
not require an assertion, but since it represents a control
point where readers are on the device, it is an interesting
reference point.

The assertions associated with all 11 control points
are indicated in Table 1. The assertion labelled G LO BAL
is intended to conjoin with the other 11 assertions. The
appearance of (i) at the beginning of a disjunctive
term in q2, q3, q8, q9 indicates that the first (i) terms are
the same as in ql. Thus, for example, in the first dis­
junctive term of assertion q2, the first six conjunctive
terms are the same as in the first disjunctive term of ql,
but the seventh and eighth terms are different, as
shown.

It is worthwhile discussing our technique for speci­
fying the assertions-we will provide sample proofs
later on to attest to the validity of the assertions. In
specifying the assertion at a point a, we assumed, of
course, that control is at a and then attempted to guess
at which other points control could reside. Variable

relationships based on this case analysis were then
derived, and then the expressions were logically simpli­
fied to diminish the proliferation of terms that resulted.
For example, in assertion ql, the first disjunctive term
corresponds to the case: no writers on the device, i.e.,
control is not at @. The second disjunctive term corre­
sponds to the case of control at @. With regard to the
second term if control is hypothesized at @, it is also
guessed that control could possibly be at 0, ([), and
00r0.

It remains to verify all the paths bounded by the
11 assertions. The paths so defined are:

1~2;1~3;3~;3~(5,3);3~(5, 7);5~6;5~7,

7~8 [RC~O]; 7~7 [RC~O]; 7~3 [RC~O];
7~(5, 3) [RC=O]; 7~(5, 7) [RC=O]; 7~(5, 8)
[RC=O]; 7~(10, 3) [RC=O]; 7~(10, 7)
[RC=O]; 7~(10, 8) [RC=O]; 1~9; 1~10;
10~11; 10~10; 10~5; 10~(5, 3); 10~(5, 7).

A brief discussion of the symbolism is in order. For
example, the path 3~(5, 3) commences at 0, and then
splits at the SPLIT node of V (M) into two paths
leading to ® and 0. The path 7~(10, 3) [RC=O]
indicates that the branch defined by RC = 0 is taken,
followed by a splitting at V (Q), one path leading to 0,
and the other path taking the CHOOSE exit toward
@. Clearly, many of the above paths are impossible
paths-as revealed by the proof.

We will not burden the reader of this paper with
proofs of all the paths, but we will provide an indication
of the proofs for several of the more interesting paths.

TABLE I-Assertions for Courtois Problem 1

Global: (All variables E 1);'\ (M ~ 1);'\ (Q ~ 1);'\ (RC ~O);'\ (RD ~O);'\ (WD ~O);'\ (RPENQ ~O);'\ (WPENQ ~O);'\ (RPENMI ~ 0);'\
(RPENM2~0)

ql; [(WD=O);,\(RD=RC);,\(RPENQ=O);,\(WPENQ=u(Q)-Q);,\ u(Q)=u(I-RC»;'\(RPENM2~RD);'\(RPENMl+
RPENM2=u(M)-M)]V [WD= 1);'\ (RD =0);'\ (RPENQ = RC);'\ (WPENQ = -Q-RC);'\(RC =u(RC»;,\ (RPENM2 =0);'\
(RPENMI =u(M) - M);'\ (M ~u(1-RC»]

q2; [(6)(RPENMI >Q);,\ (M <O)]V [(7)M <0]
qa: [(7)(M ~O)]V [(7)(M ~O)j
q4: [(WD = 1);'\(RD =0);'\ (RPENQ = 1);'\ (WPENQ = -Q-l);'\(RC= 1);'\ (RPENM2 =0);'\ (RPENMI = -M);'\(M~O);'\

(Q~O)]

q5: [(WD=O);,\(RD=RC)!\(RPENQ=O);,\(WPENQ= -Q);'\(Q~0);'\(RPENM2~RD-l);'\(RPENMl+RPENM2=u(M)-M)
;'\(RC~I)]

q6: [(WD =O);'\(RD = RC)!\ (RPENQ =0);'\ (WPENQ = -Q);'\(Q~0);'\(RPENM2~RD);'\(RPENM2~1);'\(RPENMI
+RPENM2 = - M);'\ (M <0);'\ (RC ~ 1)]

q7: leWD =0);'\ (RD = RC)!\ (RPENQ =0);'\ (WPENQ = -Q);'\ (Q ~O);'\ (RPENM2 ~RD -1);'\ (RPENMI +RPENM2 = - M)
;'\ (M ~O);'\(RC ~ 1)]

qs: [(5)(RPENM2 =0);'\ (RPENMI =0);'\ (M = 1)]V [WD = 1);'\ (RD =0);'\ (RPENQ =0);'\ (WPENQ = -Q);'\ (RC =0);'\ (RPENM2
=0);'\ (RPENMI =0);'\ (M = I)}

q9: [(7)(Q <0)}V[(8)Q <0]
qlO: [Second disjunctive term of 1]
qll: [WD =0);'\ (RD =0);'\ (RC =0);'\ «RPENQ =0);'\ (WPEN =0);'\ (Q = 1);'\ (RPENM2 =0);'\ (RPENMI =u(M) - M)}

Application of Program-Proving Techniques 43

TABLE II-Proof of Path 10-+(5,3) in Courtois Problem 1

Program steps:
qlO

WD~WD-l

Q~Q+1
Test: Q<1
Test: REPENQ>O
RPENQ~RPENQ -1
RD~RD+1

M~M+1

Test: M<5

Test: RPENi>o ~q,
RPENMl~RPENMl-l

Backsubstitute qa and q5 to yield qa', q5'
qs': (WD=1)I\(RD+1=RC)I\(RPENQ=1)I\(WPENQ= -Q-l)I\(Q+1::S;0)I\(RPENM2::S;RD)I\(RPENMl+RPENM2

=u(M+1)-M)I\(RC~1)
q3': r(WD = 1)1\ (RD + 1 =RC)I\ (RPENQ = 1)1\ (WPENQ = u(Q + 1) -Q -1)(u(Q + 1) =u(1-RC»I\ (RPENM2 ::S;RD + 1)

I\(RPENM1+RPENM2=u«M+l)-M)]V[(WD=2)I\(RD= -1) ...]
Tests backsubstituted
T': (RPENM1 >0)1\ (M <0)1\ (RPENQ >0)1\ (Q <0)
Verification Conditions
qlOl\ T':>q5' qlOl\ T'::>q3'
Sample Proof: Proof of Q5' term RPENQ = 1

From qlO: (RPENQ=RC)I\(RC=u(RC»
Thus RPENQ=O or 1

From T' RPENQ>O
Thus RPENQ = 1

Table II outlines the steps in proving the path
10~(5, 3). At the top of Table II we delineate the steps
encountered along the path. As is readily noted, the
path contains a SPLIT node. To develop the verification
condition, back substitution is required from both q3
and q5 to form qa' and q5'; note that in developing q5'
the statements between the SPLIT node and point ®
must be considered, in addition to the statements
directly between points @ and 0. To verify the path,
the following two logical formulas must be proved true:
qlOl\ T'~q5', qlOI\ T'~q3" At the bottom of Table II we
outline the few simple steps required to prove the term
(RPENQ = 1) in q5'. The patient reader of this paper
can carry out the comparably simple steps to handle
the remaining terms. Note that qs' is the disjunction of
two terms, one beginning with the term (WD = 1) and
the other with the term (WD=2). For ql01\ T'~qs' to
be true, it is necessary for only one of the disjunctive
terms to be true. The reader can verify that it is indeed
the first disjunctive term that is pertinent.

As a final note on the verification of paths, consider
the path 10~(5, 7). A little thought should indicate
that this should be an impossible path since the effect
of control passing to point (j) is to schedule a process
that was deferred at point 0, but at point 0 a reader

is considered to be on the device, and hence point 0
could not be reached from point @ where a writer is on
the device. This is borne out by considering the formula
(qlO 1\ T') for the path in question. In qlO there is the
conjunctive term (RPENM2=O) while in T', the
back-substituted test expression, there is the con­
junctive term (RPENM2 <0). Thus, qlOl\ T' evaluates
to FALSE, indicating that the path is impossible.

I t remains now to prove the correctness and deadlock
conditions by observation of the assertions and the
program itself. The key assertion here is ql since it
expresses the relationship among variables for all
possible variations of control, e.g., for all allowable
assignments of processors to control points in the
program. On the basis of ql we can conclude the follow­
ing with regard to correctness:

(1) WD = 0 or 1, indicating that no more than one
writer is ever granted access to the device.

(2) If WD=l, then RD=O, indicating that if a
writer is on the device, then no reader is.

(3) The issue. of a requesting reader not encountering
any (appreciable) delay in getting access to a
device not occupied by a writer is more com­
plicated. From the first disjunctive term of ql

44 Fall Joint Computer Conference, 1972

(that deals with the case of no writers on
the device), we note that if WD =0, then
RPENQ = O. Hence, under the assumed circum­
stances a requesting reader is not deferred by
semaphore Q. However, a requesting reader
could be deferred by semaphore lVr. In fact, a
requesting reader could be deferred at point ®
while the RD readers on the device emerge from
point 0, and then be scheduled onto the lower/
critical section wherein the last emerging reader
performs V(Q) and schedules a writer. The
deferred reader will then be scheduled onto the
upper critical section only to be deferred by Q
at point 0. Although it is an unusual timing of
requests and reader completions that leads to
this situation, it still violates the hypothesis
that a reader is granted access provided no
writer is on the device. * Note that, under the
assumption that (WD = 0) and RPENM2 re­
mains zero while a requesting reader is deferred
by M at point ®, the requesting reader will be
granted access to the device prior to any re­
questing writers.

We now dispose of the question of deadlock. We need
to demonstrate that, if a process is pending on a
semaphore, then there exists another process that will
eventually perform a V operation on that semaphore.
With regard to semaphore Q, we note from observation
of ql that if RPENQ>O or WPENQ>O, then either
WD = 1 or RD ~ 1. Thus, if any process is pending on
Q, there exist processes that might eventually do a
V(Q) operation. It remains to dispose of the issue of
these processes themselves pending on semaphores. It
is obvious that a writer on the device must emerge
eventually, at which time it will do a V (Q) operation.
For one reader (or more) on the device, in which case
RPENQ = 0, we have shown that the last reader will
perform a V(Q) operation. A reader could be deferred
by semaphore M, but in this case there is a reader pro­
cessing lVI that is not deferred by Q and hence must do
a V (1\11) operation.

* We conjecture that there is no solution to this problem without
permitting the conditional testing of semaphores, so that the
granting of access to a writer or reader to the device is decided on
the basis of the arrivaltime of a reader or writer at the entry point
to the control program. In effect, what the program here accom­
plishes is to grant a reader access to the device provided it passes
the test: RC = 0 while WD = O. Note that there are other
problems that do not admit to solutions using only P and V
operations unless conditional testing of semaphores is permitted,
e.g., see Patil.15

DISCUSSION

In this paper we have developed an approach based
on program-proving techniques for verifying parallel
control programs involving P and V type operations.
The proof method requires user-supplied assertions
similar to Floyd's method. We have given a method for
developing the verification conditions, and for abstract­
ing the proof of correctness and nondeadlock from the
assertions.

We applied the technique to two control programs
devised by Courtois et al. At first glance it might appear
that the method is only useful for toy programs since
our proofs for the above two programs seem quite
complex. However, in reality the proofs presented here
are not complex, but just lengthy when written out in
detail. The deductions needed to prove the verification
conditions are quite trivial, and well within the capa­
bility of proposed program proving systems. * By way of
extrapolation it seems reasonable for an interactive
program verifier to handle hundreds of verification
conditions of comparable complexity. Thus one might
expect that operating systems containing up to 1000
lines of high-level code should be handled by the
proposed program verifier.

We might add that some additional theoretical work
is called for relative to parallel programs and operating
systems. Perhaps the main deficiency of the proofs
presented here is that a suspicious reader might not
believe the proofs. In establishing the correctness of the
programs it was required to carry out a nontrivial
analysis of the assertions. For example, we refer the
reader to the previous section where the subject of a
reader not encountering any delay in access is discussed.
Contrast this with a program that prints prime num­
bers, wherein the output assertion says that the nth
item printed is the nth prime-if the proof process
establishes the validity of the output assertion there is
no doubt that the program is correct. It is thus clear
that the operating system environment could benefit
from a specification language that would provide a
mathematical description of the behavior of an operating
system. Also some additional work is needed in under­
standing the impact of structured programming on the
proof of operating systems. We would expect that
structured programming techniques would reduce the
number of assertion points and the number of paths
that must be verified.

* See London16 for a review of current and proposed program
proving systems.

ACKNOWLEDGMENTS

The author wishes to thank Ralph London for many
stimulating discussions on program proving and oper­
ating systems and for providing a copy of his proof of
the two programs discussed in this paper. Peter
Neumann, Bernard Elspas and Jack Goldberg read a
preliminary version of the manuscript. Two referees
provide some extremely perceptive comments.

REFERENCES

1 E W DIJKSTRA
The structure of THE multiprogramming system
Comm ACM 11 5 pp 341-346 May 1968

2 P J COURTOIS F HEYMANS D L PARNASS
Concurrent control with "READERS" and WRITERS"
Comm ACM 14 10 pp 667-668 October 1971

3 R W FLOYD
Assigning meanings to programs
In Mathematical Aspects of Computer Science
J T Schwartz (ed) Vol 19 Am Math Soc pp 19-32
Providence Rhode Island 1967

4 P NAUR
Proof of algorithms by general snapshots
BIT 6 4 pp 310-316 1966

5 Z MANNA
The correctness of programs
J Computer and System Sciences 3 2 pp 119-127 May 1969

6 R L LONDON
Computer programs can be proved correct
In Proc 4th Systems Symposium-Formal Systems and
N onnumerical Problem Solving by Computer R B Banerji
and M D Mesarovic (eds) pp 281-302 Springer Verlag
New York 1970

7 R L LONDON
Proof of algorithms, a new kind of certification (Certification
of Algorithm 245, TREESORT 3)
Comm ACM 136 pp 371-373 June 1970

8 R L LONDON
Correctness of two compilers for a LISP subset
Stanford Artificial Intelligence Project AIM-151 Stanford
California October 1971

9 B ELSPAS K N LEVITT R J WALDINGER
A WAKSMAN
An assessment of techniques for proving program correctness
ACM Computing Surveys 4 2 pp 97-147 June 1972

10 E ASHCROFT Z MANNA
Formalization of properties of parallel programs
Stanford Artificial Intelligence Project AIM-110
Stanford California February 1970

11 A N HABERMANN
Synchronization of communicating processes
Comm ACM 153 pp 177-184 March 1970

12 J C KING
A program verifier
PhD Thesis Carnegie-Mellon University
Pittsburgh Pennsylvania 1969

13 D I GOOD
Toward a man-machine system for proving program correctness

Application of Program-Proving Techniques 45

PhD Thesis University of Wisconsin Madison Wisconsin
1970

14 B ELSPAS M W GREEN K N LEVITT
R J WALDINGER
Research in interactive program-proving technique
Stanford Research Institute Menlo Park California May
1972

15 S PATIL
Limitations and capabilities of Dijkstra's semaphore
primitives for coordination among processes
MIT Project MAC Cambridge Massachusetts February
1971 '

16 R L LONDON
The current status of proving programs correct
Proc 1972 ACM Conference pp 39-46 August 1972

17 R C HOLT
Comments on the prevention of system deadlocks
Comm ACM 14 1 pp 36-38 January 1971

APPENDIX

Proof of Courtois problem 2

Figure 6 displays the flow chart of the second control
problem of Courtois et al. 2 The intent of this program is
(1) similar to problem 1 in that the device can be shared
by one or more readers, but a writer is to be granted
exclusive access; (2) if no writers are on the device or
waiting for access, a requesting reader is to be granted
immediate access to the device; and (3) if one or more
writers are deferred, then a writer is to be granted
access before any reader that might subsequently
request access. As we show below, a formal statement
of the priorities can be expressed in terms of the vari­
ables of Figure 6. Also, as in problem 1, the intent of
the program is not quite achieved relative to the
receiving of requests at the entry points of the reader
and writer sections.

It is noted that the program contains semaphores
L, M, N, Q, S, all of which have initial value 1, and
"visible" integer variables RS, RD, RC, WS, WD, WC,
all of which have initial value o. In addition, as in
problem 1, there are the variables associated with the
various P and V operations. As in problem 1, the V
operators, with the exception of VeL) and those at
points @ and @ , embody both the SPLIT and CHOOSE
nodes; VeL) has only the SPLIT node, and the final V's
have only CHOOSE nodes. The dotted control lines
indicate paths that can be shown to be impossible.

The numbered points on the flow chart are suitable
for assertion placement in that each loop is cut by at
least one assertion and all commonly referenced vari­
ables are contained within critical sections. There are
several approaches toward deriving the assertions, but
once again the most sensible one involves case analysis.

46 Fall Joint Computer Conference, 1972

READER WRITER

0!®
P(L)-

---i®
P(S~)_.:... ______________ --,

l .. ------ .,
RS +- RS + 1 I

~ 0 I
P(M)- I

r-I-r------:::rl ® I

I RC :tc + 1 I
I! I
I TEST: RC = 1~ ® I
I N0l P(O)-=- I
I .. I I I 4------------,
I 4-------,
I RD +- RD + 1 I I
: l I I
L----V(M) l I

RS +-t -1 I!
vtS)------.l.--J
~

--V(L)

~
(DEVICE) (1)
~®
P(M)~

~t®
RD +- RD - 1

+
RC +- RC - 1

~ Yes

01
P~N).@.. @!

WC +- wc + 1

~ Yes
TEST: WC = 1~ @ No\ P(S)-=-+ ...--__ ,_=_ 1_,
WS+-WS+1 I

+ 1-V(N) 1-

+@
P(O)-

~l
WD+-WD+1

+
(DEVICE)@

• WD +- WD - 1

L-- _-===vtO)
~@

P(N)-

@t:=:======!=;
WC+-WC-1

+ Yes
TEST: WC = 0--,

TEST: RC = 0---, -I
Nol V(O)-:..------'

.. 1 1
WS+-WS-1

V!S)--_J 1_
.... _~I

V(N)=========~ L...-__ V(M)

l@ TA_710582-38

Figure 6-Flow chart representation of Courtois problem 2

From the view of control at point CD, we have derived
the assertion qi of the form qi = CI/\ (al V [a2/\ (bi V b2)]) ,
wherein al corresponds to a writer not processing S, i.e.,
WS =0, and [a2/\ (biV b2)] corresponds to a 'writer
processing S, i.e., WS = 1. The assertionql listed in
Table III reflects this case analysis: The global assertion

CI describes the domain of the individual variables and
is common to all assertions for the program. It was con­
venient to decompose the second disjunctive term into
two disjunctive terms, bl, b2, corresponding to the
reader processing Q and the reader not processing Q. A
similar case analysis for the al term is embedded in the
conjunctive terms. Note that, as in problem 1, the
prefixes W, R refer to writer and reader and the suffixes
1 and 2 refer to the upper and lower critical sections.

We will not burden the reader of the paper with a
listing of the assertions at all points or with a proof of
the various paths; the proof is quite similar to that
illustrated for problem 1. However, it is of interest to
abstract from qi sufficient information to prove the
program's intent. For a discussion of deadlock the
reader is referred to Reference 14.

As with problem 1 the decision concerning whether a
requesting reader or a requesting writer gains access to
the device is based on which one arrives first at the
corresponding P (8) operation-not on arrival time of
the readers and writers at the corresponding section
entry points. This point is discussed in more detail
below:

(1) The assertions indicate that any number of
readers can share the device provided no writers
are on, since if WD = 0, then from al we see there
are no constraints on RD. The assertions indi­
cate that at most one writer is on the device
because from observation of both al and a2 we
note that WD = ° or 1.

(2) The assertions indicate, as follows, that a reader's
access to the device is not delayed provided no
writers are processing S or are on the device, and
provided no writers are pending on Q or S.
The term al indicates that if WS = WD = 0, i.e.,
no writers are processing S or on the device, and
if WPENQ= WPENS=O, i.e., no writers are
pending on Q or S, then RPEN8=RPENQ=0,

TABLE III -Main Assertion for Courtois Problem 2

Global: (All. variables E I)I\(L~l)/\ (M ~l)/\ (N ~l)/\ (Q ~l)/\ (S~l)/\(RC~O)/\ (RD~O)/\ (WC~O)/\ (WD ~O)/\ (RPENS~O)
/\(WPENS~O)/\(RPENQ~O)/\(WPENQ~O)/\(RPENL~O)/\(RPENMI~O)/\(RPENM2]~0)/\(WPENNl~0)/\(WPENN2~0)
/\(RS~O)I\(WS~O)
ql: (Writer not processing S)
(RS=u(-S+l»/\(WS=O)!\(WD=O)/\(WC=u(WC»/\(WPENQ=O)/\(RPENQ=O)/\(RPENS=O)/\(u(WPENS)=u(S)-S)
/\ (RD = RC)/\ (u(Q) =u(l-RC»/\ (WPENS = WC)/\(WPENNI =u(N)-N/\ (WPENN2 =0)/\ (RPENL=u(L) -L)/\(u(L)
=u(S»/\ (RPENMI +RPENM2 =u(M)- M)/\ (RPENMI ~RD)
(Writer processing S)
{(WS=l)/\(RS=O)/\(WPENS=O)/\(RPENS= -S)/\(S= -u(-S»A (RPENQ =0)/\ (WPENQ =u(Q)-Q)/\(WPENNl
+ WPENN2 = u(N) - N)/\ (RC =RD)/\ (RPENL = u(L) - L)/\ (RPENMI = 0)/\ (RPENM2 = u(M) - M)/\ (L:::; u(S + 1» } /\ {[(Q :::;0)
/\(RC~l)/\(WD=O)/\(WC= -Q)/\(WPENN2=0)]V[(RC={)/\(M=1)/\(WC=WD+WPENNl+WPENQ)/\(WD=u(WD»
/\ (WD ~u(WPENQ»]1

indicating that no reader is deferred by S or Q
from access to the device.

The issue of writer priority will be handled by apply­
ing case analysis to ql.

• RPENQ is always 0; thus a V(Q) operation can
only grant access to a deferred writer, never to a
reader.

• RS is 0 or 1; thus, at most, one reader is processing
S. If RS = 1, then RPENS = 0 and WPENS = 0
or 1. This indicates that if a reader is processing S,
the subsequent YeS) operation can only signal a
deferred writer.

• If WS = 1 then WPENS = 0, and there are no
constraints on WPENQ. This indicates that all
deferred writers are pending on Q (or N as dis­
cussed below), and since RPENQ=O a writer must
get access to the device either immediately if
RD= WD=O, or when the next V(Q) is performed
by either a writer or a reader.

As we mentioned above, the issue of granting access

Application of Program-Proving Techniques 47

to a writer or a reader is determined by the arrival time
at peS). If this is indeed the intent of the program,
then the above discussion serves to prove the correct­
ness of the program. However, there are several impor­
tant exceptions that deserve discussion. For example,
while a writer is pending on S, all subsequent requesting
\\-Titers will be deferred by N . Now these writers should
be granted access to the device before any requesting
readers receive it, which will be the situation under
"normal" timing conditions. The deferred writer, at
point @, will be scheduled by a reader doing V(S), in
which case the writer will perform YeN) and in turn
will schedule a deferred writer. These previously
deferred writers will not get blocked by S but will pass
to P (Q). Of the readers requesting access, one will be
blocked by S and the remainder by L. The only way
this scheduling would not occur as stated would be if
the deferred writer at point @ passed through the
\\-Titer section and performed a YeS) operation, thus
scheduling a deferred reader before a writer processing
the upper critical section could get through the first
two instructions.

Exact calculation of computer network
reliability

by E. HANSLER

IBM Research Laboratory
Ruschlikon, Switzerland

G. K. McAULIFFE

IBM Corporation
Dublin, Ireland

and

R. S. WILKOV

IBM Corporation
Armonk, N ew York

INTRODUCTION

The exact calculation of the reliability of the communi­
cation paths between any pair of nodes in a distributed
computer network has not been feasible for large net­
works. Consequently, many reliability criteria have
been suggested based on approximate calculations of
network reliability. For a thorough treatment of these
criteria, the reader is referred to the book and survey
paper by Frank and Frisch1•2 and the recent survey
paper by Wilkov. 3

Making use of the analogy between distributed
computer networks and linear graphs, it is noted that
a network is said to be connected if there is at least one
path between every pair of nodes. A (minimal) set of
links in a network whose failure disconnects it is called
a (prime) link cutset and a (minimal) set of nodes
with the same property is called a (prime) node cutset.
If a node has failed, it is assumed that all of the links
incident to that node have also failed. A cutset with
respect to a specific pair of nodes ns and nt in a con­
nected network, sometimes called an s-t cut, is such
that its removal destroys all paths between nodes ns and
nt.

The exact calculation of PeeS, t], the probability of
successful communication between any pair of opera­
tive computer centers ns and nt, requires the examina­
tion of all paths in the network between nodes ns and
nt. More specifically, if each of the n nodes in any given

49

network fail with the same probability q and each of
the b links fail with the same probability p, then Pees, t]
is approximately given by

b

PeeS, t]= 2: A:.t(i) (l_p)ipb-i, p»q. (1)
i=O

In Eq. (1), A:.t(i) is the number of combinations of
i links such that if only they are operative, there is at
least one communication path between nodes ns and
nt. On the other hand, the calculation of the probability
P,[s, t] of a communication failure between nodes ns
and nt requires the examination of all s-t cuts. For
specified values of p or q, P,[s, t] is approximately
given by

b

P,[s, t]= 2:C:. t(i)pi(l-p)b-i, p»q. (2)
i=O

For q»p, a similar expression can be given replacing
C:.t(i) by C:.t(i). The coefficients ·C:.t(i) and
C:. t (i) denote the total number of link and node s-t
cuts of size i. The enumeration of all paths or cutsets
between any pair of nodes ns and nt is not computa­
tionally possible for very large networks.

RELIABILITY APPROXIMATION BASED ON
CUTSET ENUMERATION

If any network G of b links and n nodes, it is easily
shown that the order of the number of cutsets is 2n-

2

50 Fall Joint Computer Conference, 1972

whereas the order of the number of paths between any
pair of nodes is 2b-n+2. For networks having nodes of
average degree (number of incident links) greater than
four, b>2n and 2b-n+2>2n-2. Consequently, such net­
works have a larger number of paths than cutsets.
Computation time would clearly be reduced in such
cases by calculating network reliability from cutsets
instead of paths. In this case PeeS, tJ can be obtained
from PeeS, tJ= 1-Pr[s, tJ, where Pres, tJ can be calcu­
lated from Eq. (2). Alternatively,

PI[s, tJ~p[9JZ:.,] (3)

where Q!. t is the event that all links fail in the ith
prime s-t cut and N is the total number of prime cut­
sets with respect to nodes ns and nt. The calculation of
Pres, tJ from Eq. (2) clearly requires the examination
of all s-t cuts. The number of prime s-t cuts is usually
much smaller. However, Pres, tJ is not readily calcu­
lated from Eq. (3) because the Q!.t are not mutually
exclusive events.

Following Wilkov,4 we shall use Pr = Maxs.tPr[s, tJ
as an indication of the overall probability of service
disruption for a given computer network. For specified
values of p or q, Pr depends only on the topology of the
network. A maximally reliable network clearly has a
topology which minimizes Pr and hence minimizes
Maxs.tC:.t(m) or Maxs.tC:.tCm) for small (large)
values of m when p or q is small (large). Letting
X:,t(m) and X:.t(m) denote the number of
prime node and edge s-t cuts of size m, Xn (m) =
Maxs.tX:.t(m) and Xe(m) =Maxs.tX:,t(m) have been
proposed4 as computer network reliability mea­
sures. These measures Xn(m) and Xe(m) denote the
maximum number of prime node and edge cutsets of
size m with respect to any pair of nodes. A maximally
reliable network is such that Xn(m) and Xe(m) are as
small as possible for small (large) values of m when the
probability of node or link failure is small (large).

In the calculation of Xn(m) and Xe(m) for any given
network, all node pairs need not be considered if all
nodes or links have the same probability of failure. It
has been shown5 that in order to calculate Xn(m) and
Xe(m), one need only consider those node pairs whose
distance (number of links on a shortest route between
them) is as large as possible. For a specified pair of
nodes ns, nt, X:. t(m) can be calculated for all values of
m using a procedure given by Jensen and Bellmore.6

Their procedure enumerates all prime link cutsets be­
tween any specified pair of nodes in a non-oriented net­
work (one consisting only of full or half duplex links).
It requires the storage of a large binary tree with one
terminal node for each prime cutset. Although these
cutsets are not mutually exclusive events, it has been

suggested6 that Eq. (3) be approximated by
N

Pr[s, tJ ~ ~ P[Q!. tJ.
i=O

(4)

However, it is shown in the following section that no
additonal computation time is required to actually
compute Pr[s, tJ exactly.

EXACT CALCULATION OF COMPUTER
NETWORK RELIABILITY

A simple procedure is described below to iteratively
calculate a minimal set of mutually exclusive events
containing all prime link s-t cuts. This procedure starts
with the prime cutset consisting of the link incident to
node nt. Subsequently, these links are re-connected in
all combinations and we then cut the minimal set of
links adjacent to these that lie on a path between node
ns and nt, assuming that the network contains no pen­
dant nodes (nodes with only one incident link). The link
replacements are iterated until the set of links con­
nected to node ns are reached. The procedure is easily
extended to provide for node cutsets as well and re­
quires a very small amount of storage since each event
is generated from the previous one. PieS, tJ is obtained
by accumulating the probabilities of each of the mutu­
ally exclusive events.

Procedure I

1. Initialization

Let: N be the set of all nodes except nodes ns•

C be the set of all links not incident to node ns.
M1 = {ns}
F1 be the set of links incident to both ns and nt
Sl be the set of links incident to ns but not nt
b1 be a binary number consisting of only I Sl I

ones
i=l

2. Let:

Ti be a subset of Si consisting of those elements
in Si for which the corresponding digit in bi is
unity.

M i+1 be a subset of N consisting of nodes incident
to the links in T i.

N = N-Mi+l'
Fi+l be a subset of C consisting of links incident to

nt and adjacent to any member of T i •

Si+l be a subset of C consisting of links incident to
nodes in N other than nt and adjacent to any
member of T i •

C C- (Si+lUFi+1).

3. If Si+I¢0, then let:
bi+l be a binary number with I Si+l I ones
i = i+1

Go to step 2
Otherwise, let:
Ti+I=0

HI

CS= U [FkU1\U (Sk-Tk)],

4. Let:

k=l

where CS is a modified cutset and Tk indicates
that the links in set Tk are connected.

C=CUFi+IUSiH'
N=NUMi+1
bi = bi-l (modulo 2)
If bi<O, go to step 5. Otherwise, go back to step 2.

5. Let i = i -1. If i ¢ 0, go back to step 4; Otherwise,
terminate the procedure.

In the calculation of PI[s, t], Procedure I performs
a depth first search of the given network starting at
node ns and traversing several links at the same time.
The index i indicates how far from ns the search has
progressed and bi indicates the links traversed at the
ith level of the search. During the search, set N keeps
track of the nodes which have not yet been reached and
C is the set of links not yet traversed. At the ith level,
set Fi+l is a subset of the links not yet traversed which
are incident to node nt and hence must be disconnected
in the formation of an s-t cut. Set SHI consists of edges
in C which lie on a path to nt but which need not neces­
sarily be disconnected in the formation of an s-t cut.
The edges in TiH~Si+1 are those which are connected
as we traverse the network toward node nt. When set
Si+l is empty, the edges incident to nt have been reached
and this portion of the search is terminated with the
formation of a modified s-t cut in step 3 of the pro­
cedure. The modified s-t cut is actually a group of states
in the network or an event in which all links in an s-t
cut are disconnected and the links in all T i in this part
of the search are connected. It is the set of connected
links which makes this modified s-t cut mutually ex­
clusive of all of the modified s-t cuts previously gener­
ated during the execution of Procedure I. In step 4, we
back track one level and then continue the search by
traversing a different subset of the links in Sic After all
combinations of the links in Si have been traversed,
we back track one additional level and the search con­
tinues with traversal of a different combination of the
links in Si-l. The procedure terminates when we have
back tracked all the way up to node ns. It is shown in
the proof of the following theorem that the modified
s-t cuts generated are mutually exclusive and collec­
tively exhaustive.

Exact Calculation of Computer Network Reliability 51

Theorem I:

Procedure I generates a collectively exhaustive set of
mutually exclusive modified s-t cuts.

Proof:

Part I-Prime s-t cuts

In this part of the proof, it is shown that every modi­
fied cutset C S generated in step 3 of Procedure I con­
tains a prime s-t cut. We begin by noting that the links
in T k (1 :::; k :::; i + 1), traversed in the depth first search
through the given network, form subnetworks contain­
ing node ns. For any such subnetwork, set Mi contains
the nodes at a distance of i from ns. Each modified
cutset C S generated by the procedure consists of all
links in such a subnetwork being connected and all
links in Sk- Tk and Fk, that connect nodes inside the
subnetwork with those outside the subnetwork, being
disconnected. Node nt is never contained in the sub­
network since any link incident to nt must be contained
in some set Fk and is therefore always disconnected.

Part II-Mutually exclusive

In order to show that the modified cutsets obtained
from Procedure I are mutually exclusive, we shall
demonstrate that every pair of modified cutsets dis­
agree in the state of at least one link appended at some
level j. Specifically, for any pair of distinct modified
cutsets CSp and CSq, there exists a value of j for which
if TkCCSp and T/CCS q, then Tk=T/ for k:::;j-l but
Tj~T/. This implies that during the generation of CSp
and CSq from Procedure I, bk(k:::;j-l) was the same
in both cases but the value of bj was different. Other­
wise, if CSp and CSq were generated from the same
values of bk for all k, then CSp and CSq would be identi­
cal. It is now noted that if Tj~T/, there exists a link
e such that e E Tj and e €£ T/ which implies that
e E (Sj- T/). It follows that link e appears connected
in CSp and disconnected in CS q•

Part III -Collectively exhaustive

We shall prove that the modified s-t cuts obtained
from Procedure I are collectively exhaustive by show­
ing that every state of the network in which nodes
ns and nt cannot communicate is contained in one of the
modified s-t cuts. We proceed by noting that in any
given state of the network that includes an s-t cut,
there is a maximal set of nodes Ns connected to node
ns which does not include node nt. If set N were dis­
carded in Procedure I, then the resulting modified s-t
cuts would contain every state of the links on set Ns in
which there is a path between every pair of nodes in

52 Fall Joint Computer Conference, 1972

N s • This follows from the fact that in the generation of
all modifications of the same prime s-t cut, the deletion
of set N from Procedure I would result in set Sk for
all k containing every link on set N s • As we sequence
through all bk , these links would be connected and dis­
connected in Procedure I in every combination in the
traversal of all paths from ns to every other node in N s•

It is now noted that any modified s-t cut generated
from Procedure I that includes a connected subnetwork
on Ns specifies as cut all links connecting nodes Ns to
nodes in N - Ns, where N is the set of all nodes in the
network. All links in the network connecting pairs of
nodes in N - N s would be unspecified.

Taking advantage of the unspecified links, it is pos­
sible to extend one of the modified s-t cuts generated by
Procedure I with set N deleted to match any specified
state of the network in which nodes ns and nt are not
connected. The effect of using set N in Procedure I is
to omit several links from many of the Sk. Significantly
fewer modified s-t cuts are thereby generated since the
states of the redundant links joining pairs of nodE's in
Ns would not be specified. However, these modified s-t
cuts clearly include all of those generated when set N is
neglected. This is evident since each of the links on N s

not specified can be assigned a particular state in order
to match a given modified s-t cut obtained from Pro­
cedure I with set N omitted. Consequently, any speci­
fied state of the network containing an s-t cut is in­
cluded in one of the modified s-t cuts obtained from
Procedure I. Q.E.D.

It should be noted that the collectively exhaustive
set of mutually exclusive modified s-t cuts obtained
from Procedure I is not minimum. This is due to the
fact that for any prime s-t cut, Procedure I as given
generates too many subnetworks on the set of nodes
Ns connected to ns. However, Procedure I is easily
modified to eliminate the generation of any subnet­
works on Ns that contain circuits. This is done by
eliminating all Ti in step 2 of the procedure in which
two or more links are incident to the same node. The
formation of any other circuits in subnetworks on Ns is
avoided through the use of set N in Procedure I. The
result is that the connected links in any modified s-t
cut would form trees on N s•

It is noted that in the procedure given above, nodes
have been assumed to be perfectly reliable. However,
Procedure I can also be applied in the case that nodes
fail and links are perfectly reliable. In the event that
nodes and links may fail simultaneously, assuming that
their failures are statistically independent, following
Hansler7 we can easily modify Procedure I to obtain a
collectively exhaustive set of mutually exclusive modi­
fied s-t cuts consisting of nodes and links. We would
proceed by introducing a binary number b i consisting

of only Mi ones for each of the sets Mi in Procedure I.
Analogous to T i , in step 2 we form a set Ti+l consist­
ing of the nodes in Mi+1 for which the corresponding
digit in b~+1 is unity. Fi+l and Si+1 in step 2 would
consist of links in C incident to nodes in T~+l. Then
any modified s-t cut C S formed in step 3 of Procedure I
would consist of

i+l

CS= U [FkU1\U(Sk-Tk)
k=l

The only other s-t cut consists of node nt being inopera­
tive. The above modifications to Procedure I double
the number of levels and therefore significantly in­
crease the necessary computation time for any given
network. However, the storage requirement of the
modified procedure is still very small. A network of b
links and n nodes would only require approximately
3b+2n words of storage to compute Pj[s, tJ in the
presence of node and link failures. All modified cutsets
are either printed out or their probabilities accumulated.
Consequently, the exact calculation of Pj[s, tJ for any
given network is limited only by the computer time
required in view of the inherent computational com­
plexity of the problem.

EXAMPLES OF NETWORK RELIABILITY
CALCULATIONS

In this section, Procedure I will be used to obtain
Pj[s, tJ for several networks, assuming that all nodes
are perfectly reliable and all links fail with the same
probability p. We shall first consider the simple net­
work shown in Figure 1 in order to demonstrate the
modified 1-4 cuts obtained from Procedure I. Figure 1

3

Prime 1-4 Cuts Modified 1-'4 Cuts

d e a b d e

bed a b dec

ace a b d c

a b a b dec

a b

Figure l-'-Example illustrating the calculation of node pair
failure probability

1

Figure 2-Example for comparison of approximate and exact
reliability calculations

shows the four prime cutsets between nodes 1 and 4,
which are not mutually exclusive. Also listed there are
the six mutually exclusive modified 1-4 cuts obtained
from Procedure I in the order in which they are ob­
tained. Note that the second and fourth modified 1-4
cuts are not prime since link a or b has been discon­
nected in order for the corresponding events to be
mutually exclusive.

The network shown in Figure 2 has been given by
Jensen and Bellmore6 as an example of their procedure
for enumerating all prime cutsets with respect to a
given pair of nodes. 'They listed 16 prime 1-8 cuts for
the network of Figure 2. From these cutsets, Pt [l, 8J
was approximated by

(6)

However, from the mutually exclusive modified 1-8 cuts

Exact Calculation of Computer Network Reliability 53

5

(a)

(b)

Figure 3-ARPA subnetwork topologies having 9 nodes and 12
links: (a) actual, (b) example based on Xe(m)

obtained from Procedure I, Pt [l, 8J is actually given by 15

Pt [l, 8J = 4p2+6p3 -16p4 - 32p5 + 115p6 -134p7

+79p8_24p9+3plO (7)

It is clear from this example that the approximation to
Pt[s, tJ given by Jensen and Bellmore6 is reasonable

TABLE I-Polynomial Coefficients for Pi [9, 6]
for Networks of Figure 3

Coefficient Figure'3a Figure 3b

C2 ~'3 2
Ca 6 4
C4 -6 9
((5 -25 -22
'C6 -25 -153
C7 237 572
Cs -417 -874
C9 364 744
~lO ~rf!lll -<Wl!l

Cll 46 102
C12 -5 -12

(a)

15

Figure 4-ARP A subnetwork topologies having 15 nodes and .19
links: (a) actual, (b) example based on Xe(m)

54 Fall Joint Computer Conference, 1972

TABLE II-Polynomial Coefficients for Pj [15,2]
for Networks of Figure 4

Coefficient Figure 3a Figure 3b

C2 12 3
Ca 5 6
C4 -56 28
Cs 55 7
C6 -84 -620
C7 701 -1267
Cs -521 20379
C9 -6212 -77855
CIO 24039 171797
Cll -46457 -257512
Cl2 58369 279128
Cla -51647 -224691
Cl4 33123 135228
ClS -15433 -60303
Cl6 5121 19402
Cl7 -1152 -4269
ClS 158 576
Cl9 -10 -36

for only very small values of p since only the first co­
efficient in that approximation is exact.

Two topologies for 9 node and 15 link subnetworks
of the ARPA network are shown in Figure 3. The net­
work shown in Figure 3a was given by Frank, et al. 8

Figure 3b is a maximally reliable network based on
Xn(m) and Xe(m) for small m obtained by Wilkov.9

Assuming all nodes are perfectly reliable and all links
fail with the same probability p, P f[9, 6J can be ex­
pressed as

12

Pf [9, 6J = I: Cipi. (8)
i=2

The coefficients in Eq. 8 for Figures 3a and 3b are
listed in Table I. They have been obtained in 18 seconds
using an APL implementation of Procedure I on a 360
model 91 computer. Consistent with the results in
Reference 9, Figure 3b has smaller coefficients than
Figure 3a for small powers of p. Furthermore, we have
found that there are a total of 2,772 cutting states with
respect to nodes 9 and 6 in Figure 3b compared with
3,011 in Figure 3a. Similar results have been obtained
for the 15 node and 19 link ARPA subnetwork topolo­
gies shown in Figure 4. The topology shown in Figure
4a was given by Frank, et al. 8 and Figure 4b was ob­
tained by Wilkov9 based on Xn(m) and Xe(m). The
polynomial coefficients for Pf [15, 2J are given in Table
II. The total number of cutting states between nodes

15 and 2 is 49.7 thousand for Figure 4a and 44.9
thousand for Figure 4b.

CONCLUSION

A procedure has been given for calculating the node
pair failure probability in computer networks exactly,
using little more computation time than previously re­
quired to obtain an upper bound on Pf[S, t]. Further­
more, the storage requirement of the given procedure
grows only linearly with the number of links in the given
network. Unfortunately, due to the inherent computa­
tional complexity of the problem, the necessary com­
putation time grows exponentially with the size of the
given network. Nonetheless, it has been found to be
computationally feasible to use the procedure given
herein for networks as large as the ARPA network.

REFERENCES

1 H FRANK I T FRISCH
Communication, transmission, and transportation networks
Addison-Wesley Publishing Company Reading
Massachusetts 1971

2 H FRANK I T FRISCH
Analysis and design of survivable networks
IEEE Transactions on Communication Technology
Vol COM-18 1970 pp 501-519

3 R S WILKOV
Analysis and design of reliable computer networks
IEEE Transaction on Communications Vol COM-20
June 1972 pp 660-628

4 R S WILKOV
Reliability considerations in computer network design
Proceedings of IFIP Congress '71 Ljubljana Yugoslavia
August 1971

5 R S WILKOV
On the design of maximally reliable communication networks
Proceedings of the Sixth Annual Princeton Conference on
Information Sciences and Systems March 1972

6 P A JENSEN M BELLMORE
An algorithm to determine the reliability of a complex system
IEEE Transactions on Reliability Vol R-18 1969 pp 169-174

7 E HANSLER
A fast recursive algorithm to calculate the reliability of a
communication network
IEEE Transactions on Communications Vol COM-20
June 1972 pp 637-640.

8 H FRANK et al
Store and forward computer networks
Third Semiannual Technical Report for ARPA Contract
DAHC 15-70-C-0120 June 1971

9 R S WILKOV
Design of computer networks based on a new reliability measure
Proceedings of the International Symposium on
Computer-Communication Networks and Teletraffic
Polytechnic Institute of Brooklyn New York April 1972

A framework for hardware-software
tradeoffs in the design of
fault-tolerant computers

by K. M. CHANDY, C. V. RAMAMOORTHY and A. COWAN

The University of Texas at Austin
Austin, Texas

INTRODUCTION

The theory of fault-tolerant computer design has de­
veloped rapidly. Several techniques using hardware or
software have been suggested. A student is often faced
with the problem of developing a common perspective
for a variety of methods. In this paper we attempt to
develop a simple framework within which different
methods can be compared. We use a set of very ele­
mentary indices to construct the framework. The indices
are quite crude and our framework is somewhat ad hoc.
Though a unified theory would be extremely useful we
have not attempted to develop one here. Our discussion
is a first pass at identifying some goals of reliable design
and an attempt at quantifying some parameters. We
discuss only a very small set of the techniques that
have been proposed for fault-tolerant computers.
Methods for constructing relevant indices for these
techniques are presented. We feel that these indices are
relevant for most reliability techniques.

We shall classify all techniques for achieving reli­
ability into two categories: hardware techniques and
software techniques.

In the following discussion of reliability we consider
an aerospace system such as a missile interception sys­
tem or an air-traffic control system. The system has a
specific mission which should be accomplished in a
specified amount of time. A (large) penalty is incurred
if the system does not accomplish its mission. We shall
refer to this penalty as the cost of mission failure. A
lateness penalty is incurred if the time. taken to ac­
complish the mission exceeds the specified time. The
longer the time taken to complete the mission, the
greater the lateness penalty. Different methods for im­
proving reliability are evaluated with such a system in
mind.

55

Our approach to reliability rests on a framework of
four indices called the Hardware Reliability Efficiency
index (HRE), the Software Reliability Efficiency index
(SRE), the Real-Time Criticality index (RTC) of a
system, and the inclusion factor. For a given method
of achieving reliability HRE and SRE are measures of
the increase in reliability of the system per unit of
expenditure. For the same amount of expenditure, a
method with a high HRE (or SRE) gives better reli­
ability than a method with low HRE (or SRE). In
this paper we shall discuss ways of computing the ef­
ficiency indices for several different reliability methods.
The real-time criticality index is a measure of the
penalty incurred for a late completion of the system
mission. Thus an air-traffic control system would have a
high RTC compared to other systems. The inclusion
factor (defined later) is a dimensionless number; if the
inclusion factor for a given method is less than one, then
that method should not be used in the system. The in­
clusion factor is a function of the method being con­
sidered and of system objectives. Thus a given tech­
nique may be optimally included in the design of one
system and excluded from another.

We shall now discuss each of the indices in turn.

Hardware reliability efficiency index

Several modelsl - 5 have been constructed for designing
reliable machines from intrinsically less reliable com­
ponents by using redundant components: we shall refer
to these methods as hardware methods. The "cost" of a
hardware method is the dollar amount required to buy
or build the redundant hardware. We may define the
Hardware Reliability Efficiency index, (HRE), of a
hardware method as the incremental increase in reliabil-

56 Fall Joint Computer Conference, 1972

ity (defined in some appropriate manner) per incre­
mental increase in the amount spent on purchasing
redundant hardware.

Software reliability efficiency index

Methods have recently been devised to improve re­
liability primarily by means of software.5- 8 In one such
method, when an error is detected, the system is "rolled
back" to an error-free state, which was saved earlier,
and computation is restarted from that point. Fault­
tolerance is achieved in this case at the expense of the
time required to rollback and to reprocess to the point
of error. This is discussed later, in greater detail. Dead­
lock prevention methods5,6 are also examples of improv­
ing the reliability of a system at the expense of a re­
duced rate of utilization of system resources. We shall
call these methods of achieving reliability software
methods. The "cost" associated with software methods
is generally the additional time required for processing
(with these methods). The capital cost associated with
developing the software may sometimes be neglected.
An index of Software Reliability Efficiency (SRE) is
the incremental increase in reliability per unit of addi­
tional time spent in achieving this improved reliability.
In summary, reliability is achieved in hardware meth­
ods by spending more money, while in software methods
reliability is achieved at the expense of processing
time. When the capital cost of software methods can­
not be ignored a combination of HRE and SRE is
used.

Real-time criticality index

In some systems, software methods have to be ruled
out, since the time available to complete the mission is
too short to permit methods which require additional
time. In other cases, the longer the system takes to
complete a mission, the more expensive the conse­
quences. This is typically the case in a missile intercep­
tion system. A useful index is the Real-Time Criticality
index (RTC) which is the cost incurred per unit delay
in completing the system's mission. RTC will be high
in' many aerospace applications and comparatively low
in some commeroial systems. RTC is the penalty rate
for late mission completion.

I nclusion factors

'T,,[,he"inilices1HRID;'SRE; 'afldcfR,[,C~together-wlthlthe
penalty incurred if the mission fails indicate the meth-

ods to be selected for the design from the set of methods
available. We shall define the inclusion factor for a
hardware method as:

HRE X penalty of mission failure

and the inclusion factor for a software method as:

SRE If' . RTC X pena ty 0 mISSIOn failure.

The inclusion factors are dimensioIlless. The inclusion
factor is the ratio of the decrease in expected cost of
mission outcome and the cost incurred in achieving this
decrease. If the decrease in expected cost of mission
outcome is less than the cost incurred in using a method,
then that method should not be used in the system. In
other words, when designing a system, a designer may
exclude from consideration all methods with inclusion
factors less than one. In some aerospace applications
though the penalty of failure is high, the real-time
criticality index is so large that the inclusion factor for
software methods is less than one, and hence these
methods need not be considered.

It is possible that the indices HRE and SRE may be
interdependent: the index for a hardware method may
depend on whether a software method has been imple­
mented .. Furthermore, the additional costs associated
with implementing a method may not be continuous,
but may increase in discrete amounts.

We shall now study a few methods for improving
reliability and discuss techniques for computing hard­
ware and software reliability indices for these methods.
The real-time criticality index and the cost of failure
depend on the system rather than on the design used
and hence will not be discussed further.

SOFTWARE METHODS

Rollback

Discussion

In many real-time systems it is necessary to recover
rapidly from a transient error. One way of achieving
quick recovery is to "rollback" the program when a
transient error.js detected5 ,8 and to restart the program
at a previously saved ,error-free state. The state of a
program refers to the content of relevant areas in mem­
ory, to the content of registers, and to all other relevant

.i :jnJorlllation i ,n~ceS$.a,ry .tQ rest&rt. ,the p:r.pgr·aJ1t..a t ,t.ha t
Y' -point: l?H a'tTansientne'fTotcis' detected,~'i\d i~if 'an 'e'fror­

free state of the program has not been saved earlier, the

program will have to be restarted at the very begin­
ning, resulting in slow recovery. On the other hand, if
recovery is to be quick, error-free states of the program
will have to be saved very frequently resulting in large
overhead. Thus there is a tradeoff between recovery
time and overhead: the quicker the recovery time, the
larger the overhead.

Chandy and Ramamoorthy8 have discussed the prob­
lem of determining the optimum points in a program at
which the state of the program ought to be saved. They
suggested a technique for minimizing the overhead
given the maximum allowable recovery time. The
overhead is the time spent in saving states of the pro­
gram.

We shall briefly review the rollback design suggested
in Reference 8 and then compute the software reliability
efficiency index for this design.

INITIAL

EXIT

Figure 1

Framework for Hardware-Software Tradeoffs 57

no

Task t completed and

task j called next

Compute recovery time r

r = clocktime - E

save state of
the system

update E
E=clocktime - L .. IJ

Process
task j

Figure 2

The objective of the design is to determine the opti­
mum points at which states of the system should be
saved so as to minimize overhead (i.e., time spent in
saving states) subject to the constraint that the re­
covery time should not exceed some given value M.

The locus of control of a program may be represented

58 Fall Joint ,Computer Conference, 1972

by a directed graph where a vertex in the graph cor­
responds to a task in the program; an edge from vertex
i to vertex j exists if and only if control may pass (with
non-zero probability) to task j after task i is completed.
If there are edges from vertex i to vertices j and k,
then control may pass from task i to either task j or
task k; see Figure 1. A task consists of an arbitrary set
of instructions. If a transient error is detected during
the processing of a task, the program is rolled back to a
previously saved state (or if none exists to the very
beginning). If no error is detected, a short "detection
routine" may be run to check key variables and again
rollback is employed if an error is detected. On the other
hand, if no error is detected, the state of the program is
assumed to be error free. The state of a program may
be saved only after a task is finished and before another
task is, begun.

Let'Lij be an estimate of the time taken to load a
state of the system which was saved after task i was
finished and if task j was called next. At any point P
in the program, let r be the recovery time (i.e., the time
taken to load the most recently saved state and to re­
compute from this saved state to point P). It is shown
in Reference 8 that there exist numbers Bii such that
the optimal decision is to save the state of the system
after task i is completed and if task j is to be processed
next, if and only if r> B ij• A flow-chart for determin­
ing whether a state ought to be saved after task i is
finished and if task j is called next is shown in Figure 2.

Computing the software reliability efficiency index

Let T be the time required to complete the program
if there is no error, and without implementing a roll­
back method. Let H be the overhead incurred by imple­
menting a rollback procedure. H can be easily computed
for an arbitrary program as shown in Reference 8.
Recollect that the rollback procedure is designed so
that the maximum recovery time will not exceed a given
value M. If the mission is completed in T+S units
rather than T units a "lateness penalty" is incurred
which gets larger as S increases. We shall find the reli­
ability of a system with rollback as a function of S, the
amount of "lateness" permitted. We shall assume
that failures occur according to the exponential failure
law, and the mean time between failures is l/a.

If S = 0 then the program must finish in T time units
without error. The probability of no error in T time
units is e-aT• Letting R(S) be the reliability, defined as
the probability of completing a successful mission, we
have:

R(O) =e-aT

If S = H + M, then it is possible to implement roll­
back and to allow recovery from one error by means of
rollback. The reliability in this case is the probability
of no error in T+H time units (in which case no roll­
back is necessary) plus the probability of exactly one
error in T + H units followed by a period of M error free
units in which recovery is taking place.

[a(T+H)]te-a(T+H+M)
R(H+M) = e-a(T+H) + =-:---------

1!

By the same argument, if S = H + 2M then two error
recoveries are possible and

[a (T + H + M) J2e-a(T+H+2M)
R(H+2M)=R(H+M)+ ,

2.

In general

R(H+nM) =R(H+(n-1)M)

{ aCT + H + (n -1) MJ} ne-a(T+H+nM)

+ , n.

for n=2, 3, ...

If we are considering delaying the time required to
complete the mission by S units we get the Software
Reliability Efficiency index to be:

SRE= R(S) -R(O)
S

Note that in this analysis undetected and permanent
errors were ignored. They can be included quite simply.
Let Q(S) be the probability of the event that there is
no undetected or permanent error in S units and let it
be independent of other events. Then we have

SRE= Q(S) ·[R(S) -R(O)]
. S

I nstructional retrial

If an error is detected while the processor is executing
an instruction, the instruction could be retried, if its
operands have not already been modified. This tech­
nique is an elementary form of rollback: recovery time
never exceeds the execution time of an instruction, and
overhead is negligible. However, there is a probability
that an error will persist even after instruction retry.
Let this probability be Q. The SRE for this technique
can be computed in a manner identical to that for roll­
back and has the same form. The SRE for instruction
retrial will in general be higher than that for rollback.

Deadlock prevention

Discussion

Prevention of deadlocks is an important aspect of
overall system reliability. Deadlocks may arise when
procedures refuse to give up the resources assigned to
them, and when some procedures demand more re­
sources from the system than the system has left un­
assigned. Consider a system with one unit each of two
resources A and B, and two procedures I and II. Now
suppose procedure I is currently assigned the unit of
resource A while II is assigned B. Then if procedure I
demands B and II demands A, the system will be in a
deadlock: neither procedure can continue without the
resources already assigned to the other. The hardware
approach to this problem is to buy sufficient resources
so that requests can be satisfied on demand.

Habermann and others6,7 have discussed methods for
preventing deadlocks without purchasing additional
resources. In these methods sufficient resources are
always kept in reserve to prevent the occurrence of
deadlock. This may entail users being (temporarily)
refused resources requested, even though there are un­
assigned resources available. Keeping resources in re­
serve also implies that resource utilization is (at least
temporarily) decreased. An alternative approach is to
allocate resources in such a manner, that even though it
is possible that deadlocks might arise, it is very improb­
able that such a situation could occur. The tradeoff
here is between the probability of deadlock on the one
hand and resource utilization (or throughput) on the
other. The tradeoff is expressed in terms of the software
reliability efficiency index.

Determining the software reliability efficiency index

The probability P of a deadlock while the mission is
in progress and the time T required to complete the
mission (assuming no deadlock) using a scheme where
resources are granted on request are determined through
simulation. The time (T+H) required to complete the
mission using a deadlock prevention scheme is 'also de­
termined by means of simulation. If Q(L) is the proba­
bility that no malfunctions other than deadlock arise
in L time units, then assuming independence, we have:

SRE= Q(T+H) -Q(T)· (l-P)
H

At this time we know of no way of computing Hand P
analytically.

Framework for Hardware-Software Tradeoffs 59

INPUT --_ .. 1 ___ CO_",_P_UT_E_R ___ :-_ OUTPUT

Simplex Configuration

Figure 3a

Summary of software methods

Different methods for improving the overall reli ...
ability of a system using software have been dis­
cussed. The software reliability efficiency index was sug­
gested as an aid in evaluating software methods.
Techniques for computing SRE were discussed. Similar
techniques can be used for computing SRE for other
software methods.

HARDWARE METHODS

Triple modulo redundancy

Discussion

Triple Modulo Redundancy (TMR) was one of the
earliest methods! suggested for obtaining a reliable sys,;.
tem from less reliable components. The system output
(Figure 3) is the majority of three identical compo­
nents. If only one of the components is in error, the
system output will not be in error, since the majority of

System
Input

r - - ---------------,
I I
I I
I j

I 1
I I
i I
I I
I J
I I

I
I
I
I
I
I
I
I
I
I

SYSTEM I L _____________________ 1

Figure 3b

System
Output

60 Fall Joint Computer Conference, 1972

components will not be in error. Thus, the system can
tolerate errors in anyone component; note that these
errors may be transient or permanent. In this discussion
we discuss only permanent errors.

Computing the hardware reliability efficiency index

Let P be the probability that a permanent malfunc­
tion occurs in a given component before the mission is
completed. If failures obey an exponential law, and
if the average time to a failure is 1/ a, then P = 1-e-aT,

where T is the time required to complete the mission.
If the system is a discrete transition system (such as a .
computer system), then the time required to complete
the mission can be expressed as N cycles (iterations)
where computation proceeds in discrete steps called
cycles. If the probability of failure on any cycle is p
independent of other cycles then

P=l- (1-p)N

Let v be the probability of a malfunction in the vote­
taker before the mission is complete independent of
other events. The reliability R of a TMR system is the
probability that at least two components and the vote­
taker do not fail for the duration of the mission.

R= [(I-P)3+3(I-P)2 oPJo (I-v)

If C is the cost of each component, and D the cost of the
vote-taker, the hardware reliability efficiency index is:

HRE = =-[(c--1_-_P-,-) 3_+_3-,-(1_-_P---,)_2_o P-=Jc--0 (c--1_-_v)c-------.:-(1_-_P_)
2C+D

Transient errors can also be included quite easily in
HRE.

Hybrid system

Discussion

Mathur and Avizienis2 discuss an ingenious method of
obtaining reliability by using TMR and spares, see
Figure 4. The spares are not powered-on and will be
referred to as "inactive" components. If at any point
in time, one of the three active components disagrees
with the majority, the component in the minority is
switched out and replaced by a spare. The spare must
be powered-up and loaded; one method of loading the
component is to use rollback and load the component
with the last saved error-free state, and begin computa­
tion from that point. If at most one component fails

INPUT

r----------------,
I I
I I
I I
I I
I I
I I
I
I I----+-'-~-- OUTPUT

I
: I
I I
I I
I I
I I
I I I
L _____ 1 _______ ~~e~o~ __ J

I
I

8
I
I

EJ
Spare Un i ts

Hybrid System (5,3)

Figure 4

during a cycle and if the vote-taker is error-free, this
system is fail-safe until all the spares are used up, i.e.,
the system output will not be in error. Consider a com­
parison of a system with three active units and two
spares with another system which has five active units.
If at most one unit can fail at a time then the majority
is always right and the system with three active units
is at least as good as a system with five active units
(since a majority of two active units is as right as a
majority of four). Thus if at most one unit fails at a
time, the number of active units need never exceed
three; additional units should be kept as spares. Of
course in digital computer systems where computa­
tion proceeds in discrete steps such as cycles, itera­
tions, instruction-executions, task-executions, etc., it is
possible, though improbable, that more than one unit
may fail in a single step. In this case, an analysis which
assumes that at most one active unit can fail at a time
is an approximation to the real problem.

Computation /oJ the hardware reliability efficiency index

Mathur and Avizienis (op cit) assume that malfunc­
tions occur according to an exponential failure law. A
consequence of this assumption is that at most one unit

Number of
Active Units

Passive Units

Markov diagram of a hybrid conflguratlon

Figure 5

can fail at a given instant which in turn implies that the
majority is always right. Now consider what happens if
the improbable event does occur and the majority is in
error and the minority is correct. The correct minority
unit will be switched out to be replaced by a spare which
is powered up and initialized. A comparison with the
other two active units will show that the powered-on
spare is in the minority, and it will in turn be switched
out to be replaced by yet another spare and so on. Even­
tually all the spares will be used up and the system will
crash. Thus even though the probability of failure of two
units in one iteration is indeed small, the consequence
of this improbable event is catastrophic. Hence we feel
that in calculating SRE it is important to back-Up the
¥athur-Avizienis study of this ingenious method with
an analysis that does not assume that simultaneous
failures never occur.

In this analysis we will assume that computation pro­
ceeds in discrete steps called tasks; a task may consist
of several instructions or a single instruction. Key
variables of the active units are compared at the end of
a task completion, and the minority element, if any, is
switched out. Let the probability of failure of a unit
on any step of the computation be P, independent of
other units and earlier events. A discrete-state, dis­
crete~transistion Markov process may be used to model
this system. A Markov state diagram is shown in Figure
5. If the system is in state F, then a system failure has
already occurred. The reliability of the system is the
probability that the system is not in state F at the Nth
iteration, where N is the number of computation steps
required in the mission. The reliability can be com­
puted analytically from the Jordan normal form. A

Framework for Hardware-Software Tradeoffs 61

curve of reliability as a function of N is shown in Figure
8. Let RH be the reliability of the hybrid system, C the
cost of each unit and D the cost of the vote-taker. The
hardware reliability efficiency index with two spares is
then:

HRE =R __ H_-_C_1_-_P_)_N
4C+D

Self-purging system

Discussion

Consider a self-purging system shown in Figure 6.
Initially there are five active units and no spares. If
at any instant the vote-taker detects a disagreement
among the active units, the units whose outputs are in
the minority are switched out, leaving three, active,
error-free units. If the failure rates for active and pas­
sive units are the same, the self-purging system will
tolerate two simultaneous failures, which may be
catastrophic for the hybrid system.

Computation of the hardware reliability efficiency index

In this analysis we shall assume that computation
proceeds in discrete steps, as in the analysis for the

OUTPUT

INPUT

Self-purging System with 5 Units

Figure 6

62

Number of
fault free
processors

Fall Joint Computer Conference, 1972

Markov dlagram of a self-purging configuration

Figure 7

hybrid system. Let P be the probability of failure of a
unit on a computation step, independent of other units
and earlier steps. A Markov state diagram for this
process is shown in Figure 7. As in the hybrid case the

1
Z;-
0-

~

0-

.0

o~

~
«:

0
0

....

o
'" o

120 240
Time

Figure 8

reliability of the system is the probability that the sys­
tem is not in state F one the Nth computation step. A
curve showing the reliability of this system as a func­
tion of N is shown in Figure 8. Let Rs be the reliability
of a self-purging system with five active units initially.
Then

Rs- (l-P)N
HRE= 4C+D

If the cost of power supplies are included HRE for the
hybrid system is larger than that for self-purging.

Summary of hardware methods

TMR, hybrid, and a system called a self-purging
system were discussed. Some of the problems of ap­
proximating these systems as continuous transition
systems were analyzed. Techniques for obtaining the
hardware reliability efficiency indices were presented.
Similar techniques can be used for other hardware
methods.

CONCLUSION

We have attempted to develop a set of simple indices
which may be useful in comparing different techniques
for achieving reliability. We feel that an important re­
search and pedogogical problem is to develop a more
comprehensive, sophisticated framework. Models for
rollback and discrete transition models for hybrid and
self-purging systems were discussed briefly.

ACKNOWLEDGMENT

This research was supported in part by NSF grants
GJ-35109 and GJ-492.

REFERENCES

1 J VON NEUMANN
Probabilistic logics and the synthesis of reliable organisms
from unreliable components
Automata Studies p 43-98 Princeton University Press
Princeton N J 1956

2 F P MATHUR A AVIZIENIS
Reliability analysis and architecture of a; hybrid-redundant
digital system: Generalized triple module redundancy with
self-repair
Proc Spring Joint Computer Conference 1970

3 M BALL F H HARDIE
Redundancy for better maintenance of computer systems
Computer Design pp 50-52 January 1969

4 M BALL F H HARDIE
Self-repair in a T M R computer
Computer Design pp 54-57 February 1969

5 A COWAN
Hardware-software tradeojJs in the design of reliable computers
Master's thesis in the Department of Computer Sciences
University of Texas December 1971

6 A N HABERMANN
Prevention of system deadlocks
Comm ACM Vol 12 No 7 July 1969

7 J HOWARD
The coordination of multiple processes in computer operating
systems

Framework for Hardware-Software Tradeoffs 63

Dissertation Computer Sciences Department University of
Texas at Austin 1970

8 K M CHANDY C V RAMAMOORTHY
Optimal rollback
IEEE-C Vol C-21 No 6 pp 546-556 June 1972

9 G OPPENHEIMER K P CLANCY
Considerations of software protection and recovery from
hardware failures
Proc FJCC 1968 AFIPS pp 29-37

10 A N HIGGINS
Error recovery through programming
Proc FJCC 1968 AFIPS pp 39-43

11 A N HABERMANN
On the harmonious cooperation of abstract machines
Thesis Mathematics Department Technological
U Eindhoven The Netherlands 1967

Automation of reliability evaluation procedures through
CARE-The computer-aided reliability estimation program*

by FRANCIS P. MATHUR

University of Missouri
Columbia, Missouri

INTRODUCTION

The large number of different redundancy schemes
available to the designer of fault-tolerant systems, the
number of parameters pertaining to . each scheme, and
the large range of possible variations in each parameter
seek automated procedures that. would enable the
designer to rapidly model, simulate and analyze pre­
liminary designs and through man-machine symbiosis
arrive at optimal and balanced fault-tolerant systems
under the constraints of the prospective application.

Such an automated procedural tool which can model
self-repair and fault-tolerant organizations, compute
reliability theoretic functions, perform sensitivity
analysis, compare competitive systems with respect to
various measures and facilitate report preparation by
generating tables and graphs is implemented in the
form of an on-line interactive computer program called
CARE (for Computer-Aided Reliability Estimation).
Essentially CARE consists of a repository of mathe­
matical equations defining the various basic redundancy
schemes. These equations, under program control, are
then interrelated to generate the desired mathematical
model to fit the architecture of the system under
evaluation. The math model is then supplied with
ground instances of its variables and then evaluated to
generate values for the reliability theoretic functions
applied to the model.

The math models may be evaluated as a function of
absolute mission time, normalized mission time, non­
redundant system reliability, or any other system
parameter that may be applicable.

* The work presented here was carried out while the author was
with the Jet Propulsion Laboratory, California Institute of
Technology, and under Contract No. NAS7-100, sponsored by the
National Aeronautics and Space Administration.

65

Unifying notation

A unifying notation, developed to describe the
various system configurations using selective, massive,
or hybrid redundancy is illustrated in Figure 1.

N refers to the number of replicas that are made
massively redundant (NMR) ; S is the number of spare
units; W refers to the number of cascaded units, i.e.,
the degree of partitioning; R() refers to the reliability
of the system as characterized in the parentheses;
TMR stands for triple modular redundant system
(N =3); the NMR stand for N-tuple modular re­
dundancy.

A hybrid redundant system H(N, S, W) is said to
have a reliability R(N, S, W). If the number of spares
is S = 0, then the hybrid system reduces to a cascaded
NMR system whose reliability expression is denoted by
R(N, 0, W) ; in the case where there are no cascades,
it reduces to R(N, 0,1), or more simply to R(NMR).
Thus the term W may be elided if W = 1. The sparing
system R (1, S) consists of one basic unit with S spares.

Furthermore, the convention is used that R * indicates
that the unreliability (1- Rv) due to the overhead
required for restoration, detection, or switching has
been taken into account e.g., R*(NMR) =Rv.R(NMR);
if the asterisk is elided then it is assumed that the over­
head has a negligible probability of failure. This pro­
posed notation is extendable and can incorporate a
number of functional parameters in addition to those
shown here by enlarging the vector or lists of parameters
within the parentheses, e.g., R (N, S, W, ... , X, Y, Z).

Existing reliability programs

Some reliability evaluation programs, known to the
author, are the RCP, the RELAN, and the REL70.
The RCpl,2 is a reliability computation package
developed by Chelson (1967). This is a program which

66 Fall Joint Computer Conference, 1972

NMR SYSTEMS
r--~---------------------l
: R(NrMRI\ R(TiMRI~,:
I ., S=O \ S=O'
, W=l \/ W=l\~ I
• ~ , I
: R(N,O,W) \ R(3,O,W) \ I

SPARING --------,-----------"t-.J
SYSTEMS t s = 0 \ I S =0 \ r-------, --------.&..---_______ l.

I RH, S, WIl+--l R(N, S, WI I R(3 S WI : i '! I, I ' , " I W=l 1 I· /---+ /'
; : N = 1 ,I W = 1 ,/ N = 3 lW = 1 / I
I I 1. " I I
L~E:..~ ___ J+--L R(N, SI .. / R(3, SI /' I ------------_______ -J

HYBRID SYSTEMS

Figure l-Unifying notation

can model a network of arbitrary series-parallel com­
binations of building blocks and analyzes the system
reliability by means of probabilistic fault-trees. RE LAN3
is an interactive program developed by TIME/WARE
and is offered on the Computer Sciences Corporation's
INFONET network. RELAN like Rep models arbi­
trary series-parallel combinations but in addition allows
a wide choice (any of 17 types) of failure distributions.
RELAN has concise and easy to use input formats and
provides elegant outputs such as plots and histograms.
REL 704 and its forerunner REL5 developed by Bouricius,
et al., are interactive programs developed in APL/360.
Unlike RCP and RELAN, REL70 is more adapted for
evaluating systems other than series-parallel such as
standby-replacement and triple modular redundancy.
It offers a large number of system parameters, in
particular C the coverage factor defined as the proba­
bility of recovering from a failure given that the failure
exists and Q, the quota, which is the number of modules
of the same type required to be operating concurrently.
REL 70 is primarily oriented toward the exponential
distribution though it does provide limited capabilities
for evaluating reliability with respect to the Weibull
distribution; its outputs are primarily tabular. Since
APL is an interpretive language, REL is slow in opera­
tion; however, its designers have overcome the speed
limitation by not programming the explicit reliability
equations but approximate versions6 which are appli­
cable to short missions by utilizing the approximation
(l-exp(- AT» = AT for small values of AT.

The CARE program is a general program for eval­
uating fault-tolerant systems, general in that its relia­
bility theoretic functions do not pertain to anyone
system or equation but to all equations contained in its
repository and also to complex equations which may be
formed by interrelating the basic equations. This

repository of equations is extendable. Dummy routines
are provided wherein new or more general equations
may be placed as they are developed and become
available to the fault-tolerant computing community.
For example, the equation developed by Bouricius,
et al., for standby-replacement systems embodying
the parameters C and Q has been bodily incorporated
into the equation repository of CARE.

CARE'S ENVIRONMENT, USERS AND
AVAILABILITY

CARE consists of some 4150 FORTRAN V state­
ments and was developed on the UNIVAC 1108 under
EXEC 8 (version lIe). The particular FORTRAN V
compiler used was the Level 7E having the modified
2/3/4 argument ENCODE-DECODE commands. The
amount of core required by the unsegmented CARE is
64K words. The software for graphical outputs is
designed to operate in conjunction with the Stromberg
Carlson 4020 plotter. The software enabling three­
dimensional projections, namely the Projectograph
routines,7 are a proprietary item of Technology Service
Corporation.

In addition to the Jet Propulsion Laboratory, the
originator, currently there are three other users of
CARE, namelyN ASA Langley Research Center (a
FORTRAN II version operational on a CDC 3600),
Ultrasystems Corp. (operational on a UNIVAC 1108
under EXEC II), and MIT Draper Laboratory. The
CARE program, minus the Projectograph routines, has
been submitted to COSMIC** and is available to
interested parties from them along with users manuals.
Its reference number at COSMIC is NPO-13086.

CARE's repository of equations

The equations residing in CARE, based on the
exponential failure law, model the following basic
fault-tolerant organizations:

(1) Hybrid-redundant (N, S) systems.8 •9

(a) NMR (N, 0) systems.lO
(b) TMR (3,0) systems.10

(c) Cascaded or partitioned versions of the
above systems.

(d) Series string of the above systems.

The equation representing the above family of

** Computer Software Management and Information Center,
University of Georgia, Athens, Georgia 30601.

The Computer-Aided Reliability Estimation Program 67

systems is the following:

R*(N, S)

_ 8-2 (Kl+S)(_l _)i+I}] r
j={} j+1 s

L
RI/W

1 . RV

J
for l~K< 00 and S>I

= {RNIWR81IW [1+(NK+I) t (~) f (i)
-r=O ~ l=O l

(_I)i-Z(1)] }WZ
X (Kl+I) R81IWRlIW -1 RV

for l~K< 00 and S= 1

(2) Standby-sparing redundant (1, S) systems.a,10

(a) K-out-of-N systems,S
(b) Simplex systems.
(c) Series string and cascaded versions of the

above.

The general equation for the above is:

R(l, S) = [RQIW {H E [~(l-R,'IW);
X fi (QK+i))}T"

for l~K< 00

[

S (CQAT/W)iJwz
= R QIW L --'--.--'-, -'--

i=0 1.

for K= 00

(3) TMR systems with probabilistic compensating
failures.Io

(a) Series string and cascaded versions of the
~

above,
The equation characterizing this system is:

R*(3, 0) = {RV[3R2IW -2R3IW

+6P(1- P)RIIW (1- RIIW)2]} wz

(4) Hybrid/simplex redundant (3, S)sim systems.ll

(a) TMR/simplex systems,s
(b) Series string and cascaded versions of the

above.
The general equation for this class of systems is

the following:

R(3, S)sim[T]

{ (
1) 8 (3K +i) =R3Rs8 1+1·5 -2-8 -1 II --,

R Rs i=I 2K+~

- II ' J L (-I)i
8 (3K+ ') 8-1 (S)

i=1 J i=0 i

X (R~-l -1) (2K+:~~K+i)}
for S>O and ",>0

and

= (I.5)8+IR-R3 ± (3AT)~+~-i
i=I (S-1,),

and

X[(I.5) i-I]-R3[(1.5)8+1-1]

for S>O and JL=O

R*(3, S)sim=Rv ·R(3, S)sim

For the description of the above systems and their
mathematical derivations, refer to the cited references.
These equations are the most general representation of
their systems parameterizing mission time, failure
rates, dormancy factors, coverage, number of spares,
number of multiplexed units, number of cascaded
units, and number of identical systems in series. The
definitions of these parameters reside in CARE and
may be optionally requested by the user. More complex
systems may be modeled by taking any of the above
listed systems in series reliability with one another.

68 Fall Joint Computer Conference, 1972

TABLE I-Table of Abbreviations and Terms

x = Powered failure rate
p, = U npowered failure rate

K = AI J1, = Dormancy factor
T = Mission time

X T = Normalized mission time
R = Simplex reliability
R = Dormant reliability, exp(-p,T).
S = Number of spares
n = (N-1)/2 where N is the total number of multiplexed

units
Q = Quota or number of identical units in simplex

C
RV

Z
W
P

TMR

systems
= Coverage factor, Pr(recovery /failure)
= Reliability of restoring organ or switching overhead
= Number of identical systems in series
= N umber of cascaded or partitioned units
= Probability of unit failing to "zero"
= Triple modular redundancy

TMRp = TMR system with probabilistic compensating
failures

(1, S) = Standby spare system
(N , S) = Hybrid redundant system
(3, S)sim = Hybrid/simplex redundant system
MTF = Mean life

R(MTF) = Reliability at the mean life

Reliability theoretic functions

The reliability equations in the repository may be
evaluated as a function of absolute mission time (T),
normalized mission time (AT), nonredundant system
reliabili ty (R), or any other system parameter that
may be applicable. The set of reliability theoretic
functions defined in CARE are applicable to any of the
equations in the repository. This independence of the
equations from the functions to be applied to the
equations impart generality to the program. Thus the
equation repository may be upgraded without effecting
the repertoire of functions. The various reliability
theoretic functions useful in the evaluation of fault­
tolerant computing systems have been presented in
Ref. 11, the measures of reliability have been defined,
categorized into the domains of probabilistic measures
and time measures and their effectiveness compared.
Among the various measures of reliability that the user
may request for computation are: the system mean-life,
the reliability at the mean-life, gain in reliability over a
simplex system or some other competitive system, the
reliability improvement factor, and the mission time
availability for some minimum tolerable mission
reliability.

Operational features

Although CARE is primarily an interactive program,
it may be run in batch mode if the user prespecifies the

protocol explicitly. In the interactive mode CARE
assumes minimum knowledge on the user's part. Default
values are provided to many of the items that a user
should normally supply. This safeguards the user and
also makes usage simpler by providing logical default
values to conventionally used parameters. Instructions
provided by CARE are optional thus the experienced
user can circumvent these and operate in fast mode.
Definitions of reliability terms and abbreviations used
in the program may be optionally requested. An optional
"echo" feature that echoes user's responses back to the
terminal is also provided .. A number of diagnostics and
recovery features that save users from some common
fatal errors are in the program.

Model formulation-an example

A typical problem submitted for CARE analysis may
be the following: Given a simplex system with 8 equal
modules which is made fault-tolerant by providing two
standby spares for each module, where each module
has a constant failure rate of 0.5 failures per year and
where the spares have a dormancy factor of 10 and the
applicable coverage factor being 0.99, it is required to
evaluate the system survival probability in steps of
1/10 of a year for a maximum mission duration of 12
years. It is required that the system reliability be com­
pared against the simplex or nonredundant system and
that all these results be tabulated and also plotted. It is
further required that the mean-life of the system as well
as the reliability at the mean-life be computed. It is
of interest to know the maximum mission duration that
is possible while sustaining some fixed system reliability
objective and to display the sensitivity of this mission
duration with respect to variations in the tolerable
mission reliability.

I t is also required that the above analysis be carried
out for the case where three standby spares are provided
and these configurations of three and two spares be
compared and the various comparative measures of
reliability be evaluated and displayed.

The above problem formulation is entered into CARE
by stating that Equation 2 (which models standby
spare systems) is required and the pertinent data
(S=2,3; Z=8; K=10; T=12.0; LAMBDA =0.5;
C=0.99; STEP=O.l) is inserted into CARE between
the VARiable namelist delimiters $V AR ... $END.

The above example illustrates the complexity of
problems that may be posed to CARE, and the sim­
plicity with which the specifications are entered. The
reliability theoretic functions to be performed on the
above specified system are acknowledged interactively
by responding a YES or NOon the demand terminal to
CARE's questions at the time it so requests.

The Computer-Aided Reliability Estimation Program 69

A PRIMITIVE SYSTEM: O,S), (N,S), (3,S)SIM OR TMRp

----m---rn- ... -1:ID-
AN m- PARTITIONED PRIMITIVE SYSTEM (W = m).

~ ... --c:z::::::J---
SERIES - STRI NG OF A PRIMITIVE SYSTEM (Z =.i).

1 2 i
~~~~.~ ... L.ii%~.~ 

L _______ .J L ______ .J L ______ J 

AN m- PARTITIONED SERIES - STRING OF A PRIMITIVE SYSTEM (W = m, Z = 2). 

--1'--_~_----J~ ..... _---,,,--_ ....... 1- ... -1'--__ 

AN ARBITRARY SERIES-STRING OF m-PARTITIONED SERIES-STRING OF 
PRIMITIVE SYSTEMS. 

Figure 2-Formation of complex systems 

COMPLEX SYSTEMS 

The basic equations in CARE's repository define the 
primitive systems: (1, S), (N, S), (3, S)sim and TMRp. 
Equations representing more complex systems may be 
fabricated by combining the primitive systems in 
series reliability with one another as shown in Figure 2. 

The description of a complex system is entered by 
first enumerating the equation numbers of the primitive 
systems involved in namelist VARiable 1. Thus 
"$V AR1; PROD = 1, 2; $END;" states that equation 
1 and equation 2 are to be configured in series reliability. 
N ext, the parameter specifications for these equations 
are then entered using the namelist VARiable. 

The set of values for any parameter pertaining to a 
complex system is stored as a matrix, thus in the general 
case of PARAMETER (m, n) n refers to the equation 
involved m is the internal index for the set of values that 
will be attempted successively. For example, C(I, 2) = 
1.0, 0.99 states that in equation 2 (the equation for 
standby-spares system) the value of the coverage 
factor should be taken to be 1.0 and having evaluated 
the complex system for this value the system is to be 
reconsidered with coverage factor being 0.99. 

Complex model formulation-an example 

It was required to evaluate a system consisting of 8 
equally partitioned modules in a standby-spares (1, S) 
configuration having 2 spares· for each module. The 9th 
module was the hard-core of the system and was 
configured in a Hybrid redundant (3, S) system having 
2 spares (S = 2). The coverage on the (1, S) system 
modules was to be initially considered to be 1.0. The 
lower bound on the failure rate A on all the modules 
had been evaluated to be .01752 failures/year on the 
basis of parts count. This complex system as specified 

here was to be evaluated for the worst case dormancy 
factors K of 1 and infinity. 

On completing the evaluation of the above system, 
the effect of reducing coverage to 0.99 was to be re­
evaluated. Also the effect of increasing the number of 
spares to 3, as also the effect of increasing the module 
failure rates to their upper bound value of .0876 
failures/year. All combinations of these modifications 
on the original system are to be considered. The mission 
time is 12 years and evaluations are to be made in 
steps of 1/10th of a year. 

The above desired computations are specified using 
the V AR namelist thus: 

$VAR; T=12.0; STEP=O.I; Z(I, 1) =1, 
Z(I,2)=8; C(1, 2) =1.0, 0.99; N(I,I)=3; 
S(I, 1) =2,3,S(I,2) =2,3;LAMBDA(I, 1) = 
.01752, .0876, LAMBDA(I, 2)=.01752, 
.0876; K(1, 1) = 1.0, INF, K(I, 2) = 1.0, INF; 
$END; 

(N ote the semicolons (;) denote carriage returns.) The 
ease and compactness with which complex systems can 
be specified in CARE is demonstrated by the above 
example. The reader will note the complex system 
configured in this example corresponds to a STAR-like 
system having eight functional units in standby-spare 
mode and a hard-core test-and-repair unit in Hybrid 
redundant mode (Figure 3). 

SOlVIE SIGNIFICANT RESULTS USING CARE 

Some significant results pertaining to the behavior 
of W partitioned NMR system (Figure 4) will now be 
presented. These results pertain to the behavior or 
reliability theoretic functions of an NMR system such 
as its mean life or mean time to first failure (MTF) 
and the reliability of the system at the mean life, 
R(MTF). The reliability theoretic system measure-

1 0 00000 DOD 
Figure 3-Configuration for an example of a STAR-like 

complex model 



70 Fall Joint Computer Conference, 1972 

1.00 

~ 0.60 
... 

o 
... 

z -0:: 0.401----
N= 

.125-

.0625-
0.00 .03125 

0.0 0.5 I 
0.694 

AT 

I 
2.78 

TMR, 
N=3 

R(N,~O, W) vs AT AS A FUNCTION OF NAND W 

Figure 4-R(N ,0, W) vs AT as a function of Nand W 

reliability at the mean life, R(MTF)-is the reliability 
of the system computed for missions or time durations 
of length equal to the mean time to first failure of the 
system. The behavior of these functions were evaluated 
under the limiting conditions of the system parameters 
in order to establish system performance bounds. The 
results presented here have been both proven mathe­
maticallylO and been verified by CARE analysis. 

Since it is well-known that mean-life (MTF) is not a 
credible measure of reliability performance (e.g., MTF 
of a simplex system is greater than the MTF of a TMR 
system!), another measure the reliability at the mean­
life R(MTF) has been used to supplant MTF. 'This 
measure essentially uses a typical reliability estimate of 

the system. The typical reliability value being taken at 
a specific and hopefully a representative time of the 
system. This representative time is taken to be the 
time to first failure of the system, namely the MTF of 
the system. The foregoing is the rationale for choosing 
R(MTF) as a viable measure of system reliability. 

However, contrary to general belief this measure 
R(MTF) is not a good measure for partitioned NMR 
systems due to its asymptotic behavior as a function of 
the number of partitions W. It is proved in [10J that 
the reliability at MTF of a (3, 0, W) system in the 
limit as W becomes very large approaches the value 
exp ( -11"/4) asymptotically from below and that this 
bounding value is reached very rapidly, see Figure 5. 



The Computer-Aided Reliability Estimation Program 71 

TABLE II--MTF and R(MTF) as a Function of W 

W 

o (Simplex) 
1 (TMR) 
co (3,0, co) 

(3,0, W) System 

MTF 

1.0 
0.83 

co 

R(MTF) 

0.368 
0.402 
exp( -11"/4) = 0.454 

Some other results observed graphically in Figure 4 
and the detailed mathematical proof of which are in 
[10J are summarized below. These results follow from 
the general reliability equation for a W partitioned 
NMR system, which is: 

[
<N_l)/2 (N) JW 

R(N, 0, W) = E i . (l-RIIW)i·R(N-i)1W 

and that the normalized mean-life, 

MTF(N, 0, W) = 1«) R(N, 0, W) dAt 
o 

The bounds on the mean-life as a function of the 
degree of redundancy N is: 

lim MTF(N, 0, W) = WIn 2 where In is the 
N-+«) N aperian logarithm. 

and in the particular case of W = 1 

lim MTF(NMR) = In 2~0.694 
N .... oo 

1.0 I 

0.8 

~ 
• 0.6 

o 
C'I"\-

~ 
~-:E 

~ 0.4 

0.2 

4 6 8 10 12 14 16 18 20 

MTm, 0, WI 

RfMTF(3, 0, WII vs MTF(3, 0, WI 

Figure 5-R{MTF(3,0,W)] vs MTF (3,0,W) 

1.00 

0.80 

r:::;t 
c::: 0.60 
:E 
z: 
IE 
~ 
c::: 0.40 

0.20 

0.00 

r-;·· .. 

I 

I 
1 
i I 

, ' 

i I!! 
ii' ! 
II i 
j,.. 

I 

I 

I 
! II i 

I ! 

j+t ii 
: j: 
III 

, 

I 

iH' I i I I 
• .+ 

I i 

i i 
j 

i 

! I! I ! I i 

I, I i: i 1 I 
Ii I I j 1 

I 
! , I 
I 

I T ! II 
! I 

I i ill 

i I 
I 
I 

• ·"T"-

j . ! I ! 
............... -+-•. 

' , j 

I I ' i 
' i : : i 

, 

: i I I 
" , 

I iii! I ' I 
, ,: 'I 

II 
: Ii, ' i iii I I, I! I! 

ii' ; i: i! ; i: i 
j : i!; 'I! I ~ , i 

I! I ! 
I' 
! 'I iii: 

j ,; 

I II i! I ! II 
I' ! Ii II' 

II ! I II 
i 

i I 
i I:, 

iii I 
III 

o 11 21 31 41 51 61 71 81 91 101 

N 
RELIABILITY AT MTF vs N FOR NMR SYSTEMS 

Figure 6-Reliability at MTF vs N for NMR systems 

Also, for the reliability at the MTF: 

lim R(MTF) of (3, 0, W) =exp( -'11/4) ~0.454 
W-+oo 

and lim R (MTF) of NMR = 0.5 
N-+oo 

The family of reliability curves representing the 
NMR system as shown in Figure 4 exhibits the classical 
cross-over point which for (3,0, 1) system occurs at 
the coordinates Rsys=0.5 and AT=0.69;4. The general 
specification of the coordinates of the cross-over point 
for arbitrary values of Nand W may be expressed 
as follows: 

Cross-over point [R; ATJ of a 
(N, 0, W) system = [(0.5)W; lim MTF(N, 0, W)J 

N-+oo 

=[(0.5)W; W In 2J 

These results are tabulated in Tables II and III . 

TABLE III-Coordinates of Cross-Over Point [R; hT] 
as a Function of VV and N 

1 
2 
x 

(N , 0, W) System 

[R;hT] 

0.5; In 2 
(0.5)2; 2 In 2 
(0.5)x; x In 2 



72 Fall Joint Computer Conference, 1972 

FUNCTIONS 

RELIAB I LlTY 
EQUATIONS 

} OUTPUTS 

INPUT AND 
INITIALIZATION 

Figure 7-CARE's structure 

CARE'S STRUCTURE 

The foregoing described the performance capabilities 
of CARE; in this section the implementation structure 
is described. 

CARE consists of .a number of primary subroutines. 
The relationship amongst these primary subroutines is 
shown in the simplified flow diagram of Figure 7. 

The overall program has four broadly defined seg­
ments: 

(i) dealing with reading in of data and initializing 
of the logical flow of the program, 

(ii) dealing with the functions that are to be per­
formed using the input data, 

(iii) dealing with the repository of the general 
equations that model fault-tolerant systems and 
the relevant mathematical routines required to 
evaluate these equations, and 

(iv) dealing with initializing output formats, passing 
the data, and outputting it as 2D plots, 3D 
proj ections, or as tables. 

All these four segments are under the control of MAIN 
which sets the DO loops and determines what and how 
many times each function is to be performed and 
controls the mode in which the results are to be out­
putted. 

Parameter Handling 

The system parameters, LAMBDA, Mu, S, N, K, Q, 
C, RV, Z, W, and P are two dimensional parameter 
arrays, dimensioned as being 16 XNPT and reside in 
the labeled COMMON /P ARA/. Si.xteen is the maxi­
mum number of values that anyone parameter may be 
assigned in $VAR. The NPT (short for "number of 
products") pertains to the total number of equations 



The Computer-Aided Reliability Estimation Program 73 

LEGEND: o INDICATES QUESTIONS THAT THE USER IS 
REQUIRED TO ANSWER 
ITALICIZED WORDS DENOTE THE CORRESPONDING 
PROGRAM VARIABLES 

Figure 8-Flowchart of CARE's protocol 

that may be used in forming the product. If a complex 
equation is not being formed, then NPT = 1. The 
maximum value that NPT can currently take is 10. 
Thus the rows of the parameter matrices contain the 
values of the parameter while the columns contain the 
index of the equation numbers (with reference to the 
order in which they were entered in $V ARl) that these 
parameters pertain to. 

The time pertinent parameters, such as Time, 
LAMT (AT) and ELAMT (exp( -AT)) are single 
valued. Their values are the maximum values that the 
parameter is to take, the incremental steps at which 
computations are to be performed is specified by 
assigning a value to the variable STEP in $ V AR (the 
default value for STEP is one) . 

The number of values specified for each parameter is 
determined by the subroutine SEARCH, these values 

then form the values of the DO limits in the MAIN 
program. The actual value is obtained by accessing the 
particular element of the 16 XNPT parameter matrix. 

Logical relationship between the routines 

As shown in Fig. 7, MAIN is the driver for the 
CARE program. MAIN calls READIN, the subroutine 
READIN writes out questions for the user to answer 
and records his answers. These questions are asked in a 
logical manner with a large number of options per­
mitting the user flexibility in the specification of his 
problem. A large number of diagnostics and automatic 
recovery from user's input errors are provided. 

Typically, READIN writes out a question, reads in 
the user's answer to the question, and if the echo 
feature had been requested, READ IN echoes back the 



74 Fall Joint Computer Conference, 1972 

YES 

T 

WRITE MIN, MAX 
AND STEP OF 
PARAMETER 

Figure 8 (continued) 

LEGEND: 

r--\ INDICATES QUESTIONS 
\...--./ THAT THE USER IS 

REQUIRED TO ANSWER 
ITALICIZED WORDS 
DENOTE THE CORRES­
PONDING PROGRAM 
VARIABLES 



The Computer-Aided Reliability Estimation Program 75 

LEGEND: 

SPECIFY 
COMPARISON 

OPTIONS 
1, 2, OR 3 

r--\ INDICATES QUESTION THAT THE USER IS 
'---/ REQUIRED TO ANSWER 

ITALICIZED WORDS DENOTE THE CORRESPONDING 
PROGRAM VARIABLES 

Figure 8 (continued) 

RETURN 

READ R2, 
Rl MIN, 

Rl MAX, STEP 



76 Fall Joint Computer Conference, 1972 

answer just read. READIN then calls SCAN passing to 
it the array containing the information read-in for 
recognition. SCAN determines whether the answer was 
a YES or a NO or whether it was a parameter input; 
if it was a parameter input, then it determines its 
identity. If an input error is detected, the user is asked 
to try again. This is implemented by using the 
$RETURN call parameter feature which returns from 
SCAN jumping back to preceding read of answer 
statement in the calling program (READ IN) . READIN 
thus gathers input data from the user thus determining 
which subroutines and features need to be called and in 
what order. The logic of READIN and the decision 
tree that the user has to traverse is shown in Figure 8. 

Returning from READIN, MAIN calls SEARCH. 
SEARCH proceeds to count the number of values that 
were inputted for each of the system parameters, these 
determine how many times a particular subroutine or 
function has to be iterated. 

Returning from SEARCH, MAIN asks the user to 
specify which parameter shall be the family variable, 
the user's response is read, optionally echoed back and 
recognized by SCAN. MAIN then determines which 
one of three possible time parameters-T, AT, or 
exp( -AT)-had been inputted. MAIN then prepares 
the DO loop limits and rearranges their order in ac­
cordance with the inputted family parameter. The 
inherent nested order of the DO loops with respect to 
the system parameters is LAMBDA, Mu, S, N, K, Q, 
C, RV, Z, W, and P. This initial ordering of the param­
eter requires to be changed since (i) any of these param­
eters may be specified to be the family parameter and 
(ii) since the innermost DO loop must necessarily 
correspond to this family parameter. Thus effectively 
the original position of the parameter selected is inter­
changed with the innermost parameter, namely P. 

MAIN also requires to call the subroutine RELATE 
in order to determine the unspecified parameters of the 
class A, p" AT, p,T, exp( -AT) and K. Since these 
parameters are interrelated, hence not all may have been 
directly inputted. RELATE determines values for those 
parameters unspecified by knowing the ones that were 
explicitly inputted. 

MAIN, using the subroutine RITE, writes the table 
header for the table of reliability calculations. The 
header identifies the equation number and the param­
eters involved. MAIN then calls RELEQS which in 
turn supplies the desired reliability equation with the 
necessary parameter values in order to perform the 
basic reliability calculation. The respective equation 
subroutines make use of the standard FORTRAN 
math routines and the math routines provided by 
CARE. 

Depending on the options read-in by READIN, 
MAIN then calls upon the subroutines that evaluate 
the functions to be performed such as MTF and relia­
bility at MTF by subroutine INTEGER, differences 
and gain in reliabilities by subroutine RIFDIF, etc. 
Finally, MAIN asks if the user wishes to specify another 
parameter as the family parameter in which case the 
date read-in by READIN is retained and using the new 
family parameter MAIN starts its new cycle. 

CONCLUSION 

A significant portion of concepts and techniques of 
fault-tolerant computing is embodied in the imple­
mentation of this Computer-Aided Reliability Estima­
tion program. Both the performance capabilities and 
implementation structure have been described here. 

The advantages offered by such a special purpose 
procedural program are that (i) it is conversational, 
fast and easy to use, (ii) no other program exists that 
implements CARE functions, (iii) CARE is general in 
that all its functions pertain to all equations, (iv) has 
the ability to form complex equations from primitives, 
(v) the equation repository is extendible, and (vi) 
has efficient input-output and data handling. 

The need and usefulness of such a program to the 
fault-tolerant computing community is evidenced by 
the growing number of users of CARE. It is hoped that 
this description of CARE will motivate and aid practi­
tioners to write more powerful reliability evaluation 
programs. 

ACKNOWLEDGMENTS 

The programming support given by G. L. Winje of the 
Data Systems Division of JPL is gratefully acknowl­
edged. The author also wishes to thank A. A vizienis, 
D. Rennels, J. Rohr, D. Rubin, and J. Wedel of the 
Astrionics Division of JPL for the benefit of useful dis­
cussions on the subject of fault-tolerant computing. 

REFERENCES 

1 PO CHELSON 
Reliability math modeling using the digital computer 
Jet Propulsion Laboratory TR-32-1089 April 1967 

2 P 0 CHELSON 
Reliability computation using fault tree analysis 
Jet Propulsion Laboratory TR-32-1542 December 1971 



The Computer-Aided Reliability Estimation Program 77 

3 COMPUTER SCIENCES CORPORATION 
RELAN: Reliability analysis package 
CSC Sales Brochure No 333 1970 

4 W C CARTER et al 
Design techniques for modular architecture for reliable 
comp'uter systems 
IBM T J \Vatson Research Center Report No 70-208-0002 

, March 1970 
5 W G BOURICIUS W C CARTER J P ROTH 

P R SCHNEIDER 
Investigations in the design of an automatically repaired 
computer 
Digest of the First Annual IEEE Computer Conference 
Sept 1967 pp 64-67 

6 J P ROTH W G BOURICIUS W C CARTER 
P R SCHNEIDER 
Phase I I of an architectural study for a self-repairing computer 
IBM Report SAMSO TR-67-106 Nov 1967 

7 TECHNOLOGY SERVICE CORPORATION 
Projectograph user's manual 
Santa Monica Calif Sept 1969 

8 F P MATHUR 
Reliability modeling and analysis of a dynamic 1'M R system 
utilizing standby spares 
Proceedings of the Seventh Annual Allerton Conference on 
Circuit and System Theory University of Illinois Urbana 
October 8-10 1969 pp 243-252 

9 F P MATHUR A A VIZIENIS 
Reliability analysis and architecture of a hybrid redundant 
digital system: generalized triple modular redundancy with 
self-repair 
AFIPS Conference Proceedings (Spring Joint Computer 
Conference) Vol 36 Atlantic City May 5-7 1970 

10 F P MATHUR 
Reliability modeling and architecture of ultra-reliable 
fault-tolerant digital computers 
PhD Thesis University of California at Los Angeles 
Computer Sciences Dept June 1970 University Microfilms 
Inc Ann Arbor Mich Reorder No 71-662 

11 F P MATHUR 
On reliability modeling and analysis of ultrareliable 
fault-tolerant digital computers 
Special Issue on Fault-Tolerant Computing IEEE 
Transaction on Computers Vol C-20 No 11 Nov 1971 
pp 1376-1382 

12 A AVIZIENIS G C GILLEY F P MATHUR 
D A RENNELS J A ROHR D K RUBIN 
The STAR (self-testing and repairing) computer:· An 
investigation of the theory and practice of fault-tolerant 
computer design 
Special Issue on Fault-Tolerant Computing IEEE 
Transaction on computers Vol C-20 No 11 Nov 1971 
pp 1312-1321 



78 Fall Joint Computer Conference, 1972 

APPENDIX 

CARE's protocol and sample run 

XQT ATMAN.CARE 
HELLO TERMINAL-I AM YOUR RELIABILITY ANALYST WITH THE CARE (COMPUTER-AIDED RELIABILITY 
ESTIMATION) PACKAGE DO YOU WISH TO HAVE YOUR ANSWERS TO THE QUESTIONS PRINTED BACK. 
ANSWER YES OR NO 
YES 
DO YOU WISH TO KNOW THE DEFINITIONS OF RELIABILITY PARAMETERS AND TERMS. 
ANSWER YES OR NO 
YES 
THE DEFINITIONS OF THE VARIOUS RELIABILITY PARAMETERS AND TERMS ARE AS FOLLOWS. 

T = MISSION TIME. 
R = SYSTEM RELIABILITY. 
S = THE TOTAL NUMBER OF SPARES. 
N = THE NUMBER OF MULTIPLEXED UNITS. 
K = DORMANCY FACTOR = (LAMBDA/MU). 
C = COVERAGE FACTOR. 

= CONDITIONAL PROBABILITY OF SYSTEM RECOVERING GIVEN A FAILURE OCCURRENCE. 
Q = QUOTA, NUMBER OF IDENTICAL UNITS IN A SIMPLEX SYSTEM. 

W = NUMBER OF CASCADED UNITS. 
Z = NUMBER OF IDENTICAL SYSTEMS IN SERIES. 
P = PROBABILITY OF A UNIT FAILING TO A LOGIC ZERO. 

RV = RELIABILITY OF THE RESTORING ORGAN. 
MU = UNPOWERED FAILURE RATE OF A SIMPLEX SYSTEM = K/LAMBDA. 
LAMBDA = POWERED FAILURE RATE OF A SIMPLEX SYSTEM = K*MU. 

LAMT = NORMALIZED TIME = LAMBDA*MISSION TIME. 
ELAMT = EXP(-LAMT). 
REL = SYSTEM RELIABILITY. 
UNREL = SYSTEM UNRELIABILITY = (1 - REL). 
SIMREL = SIMPLEX RELIABILITY = ELAMT. 
SIMGAIN = GAIN IN RELIABILITY WITH REFERENCE TO A SIMPLEX SYSTEM. 

= REL/SIMREL. 
SIMRIF = RELIABILITY IMPROVEMENT FACTOR WITH REFERENCE TO A SIMPLEX SYSTEM. 

= (1 - SIMREL)/(l - REL). 

DO YOU NEED INSTRUCTIONS FOR RUNNING THE CARE PROGRAM 
ANSWER YES OR NO 
YES 
SHORTCOMMENT - THE CARE PROGRAM COMPUTES, WITH RESPECT TO THE SELECTED EQUATIONS AND 
PARAMETERS THE FOLLOWING RELIABILITY FUNCTIONS - THE RELIABILITY (REL), UNRELIABILITY 
(UNREL), SIMPLEX RELIABILITY (SIMREL), SIMPLE GAIN (SIMGAIN), SIMPLE RELIABILITY IMPROVEMENT 
FACTOR (SIMRIF), MEAN TIME TO FAILURE (MTF), RELIABILITY AT THE MTF, RELIABILITY DIFFERENCE 
(DIFF), RELIABILITY GAIN (GAIN), RELIABILITY IMPROVEMENT FACTOR (RIF), SIMPLE MAXIMUM MISSION 
TIME (SIMTMAX), MAXIMUM MISSION TIME (TMAX), SIMPLE TIME IMPROVEMENT FACTOR (SIMTIF), AND 
THE RATIO OF TIME IMPROVEMENT FACTORS (RATIF). 

2D AND SOME 3D PLOTS CAN BE OBTAINED FOR THE ABOVE COMPUTATIONS. 
VARIOUS PLOTTING OPTIONS TO SPECIFY THE ABSCISSA, THE RANGE OF ABSCISSA AND ORDINATE VALUES 
ARE AVAILABLE. ABILITY TO PLOT 3D INTERSECTIONS OF 3D PROJECTIONS WITH 2D PLANES IS ALSO A V AIL­
ABLE. THE CARE PROGRAM ALSO EVALUATES COMPLEX RELIABILITY FUNCTIONS FORMED BY TAKING 
PRODUCTS OF THE BASIC RELIABILITY EQUATIONS. 

CARE HAS A MAXIMUM OF 10 DIFFERENT RELIABILITY EQUATIONS. THESE ARE TABULATED BELOW. 
1. R(N,S) = F(T, LAMBDA, MU, S, N, K, RV, Z, W) 

THIS IS THE GENERAL RELIABILITY EQUATION OF AN HYBRID-REDUNDANT SYSTEM. 
2. R(Q,S) = F(T,LAMBDA,MU,S,K,Q,C,Z,W) 

THIS IS THE GENERAL RELIABILITY EQUATION OF A STANDBY-REPLACEMENT SYSTEM. 
3. VOID 
4. VOID 



The Computer-Aided Reliability Estimation Program 79 

5. R(3,0) = F(T,LAMBDA,RV,Z,W,P) 
THIS IS THE EQUATION FOR A TMR SYSTEM WHERE THE PROBABILITY OF A UNIT FAILING TO LOGICAL 
ONE OR ZERO IS PARAMETERIZED. 

6. R(l,O) = (EXP(-LAMBDA*T»**(Z/W) 
THIS IS A GENERAL EQUATION FOR A SIMPLEX SYSTEM. 

7. DUMMY 
THIS IS A DUMMY EQUATION WHICH IS ALL SET UP TO RECEIVE A NEW EQUATION. 

8. BLANK 
9. BLANK 

10. BLANK 

INSTRUCTIONS WILL BE GIVEN FOR ENTERING INPUT DATA AT THE TIME THE INPUT DATA IS NEEDED BY 
THE PROGRAM. 

DO YOU WISH TO FORM A PRODUCT OF RELIABILITIES 
ANSWER YES OR NO 

"NO 
TYPE IN COLUMN 1 THE NUMBER OF THE RELIABILITY EQUATION TO BE USED - 1 THRU 7 

1 
INPUT VARIABLES FOR EQUATION 1 
T, LAMT, OR ELAMT MUST BE SPECIFIED AND ITS VALUE IS THE MAXIMUM VALUE FOR THAT VARIABLE. 
MIN IS THE MINIMUM AND STEP IS THE INCREMENT FOR T, LAMT, OR ELAMT. 

SOME VARIABLES THAT ARE NEEDED BY THE EQUATIONS ARE SET EQUAL TO A DEFAULT VALUE IF THEY 
ARE NOT INPUTTED. THESE VARIABLES AND THEIR DEFAUI~T VALUES ARE: S=l, N=l, Z=l, W=l, Q=1.0DO, 
C = .999 ... DO, P = 1.0DO, MIN =O.ODO, STEP = 1.0DO, AND ELAMT = 1.0DO. 

IF B IS INPUTTED, THEN THISVALUE IS USED AS THE FIRST GUESS FOR THE UPPER LIMIT OF INTEGRATION 
IN THE CALCULATION OF MTF. 

IF OPTION = 1, THEN DIFF, RIF, AND GAIN ARE CALCULATED FOR ALL POSSIBLE COMBINATIONS OF THE 
PARAMETER. IF OPTION =2, THEN DIFF, RIF', AND GAIN ARE CALCULATED FOR THE LAST TWO PARAMETER 
VALUES. IF OPTION =0 OR IS NOT INPUTTED, THEN THE PROGRAM WILL ASK THE USER AS TO "WHICH PARAM­
ETER VALUES DIFF, RIF, AND GAIN ARE TO BE CALCULATED. 
NOTE: DIFF, RIF, AND GAIN ARE NOT COMPUTED IF THE USER IS CALCULATING THE PRODUCT OF RELIABILI­
TIES OR PLOTTING 3-D. THE VARIABLES FOR EQUATION 1 ARE INPUTTED USING VAR AS THE NAMELIST NAME. 
A SAMPLE INPUT FOR EQUATION 5 FOLLOWS: 

$VAR " 
T=12.0DO, 
LAMBDA = 1.0DO,1.5DO,2.0DO, 
RV=1.0DO, 
Z=I, 
W=1,6, 
OPTION =2 
B=10.0DO 
$END 

NOTE: NAMELIST INPUT IGNORES COLUMN 1 
THE INPUT VARIABLES ARE TYPED AS FOLLOWS 

DOUBLE PRECISION: T, LAMT, ELAMT, MUT, LAMBDA, MU, K, RV, Q, C, P, MIN, STEP, AND B 
INTEGER: S, N, W, Z, AND OPTION 

INPUT VARIABLES NOW 
DO YOU WISH TO MAKE ALTERATIONS TO THE $VAR LIST 
ANSWER YES OR NO 
NO 
DO YOU WISH TO HAVE 2-D RELIABILITY PLOTS-ANSWER YES OR NO 
YES 
INPUT A 1 IN THE COLUMN SPECIFIED BELOW IF YOU WISH THE CORRESPONDING PLOT OPTION. OTHERWISE 
INPUT O. 
NOTE: WHEN PERFORMING PRODUCT OF RELIABILITIES, NO OTHER PLOT OPTION BESIDES PRODUCT OF RE­
LIABILITIES MAY BE SPECIFIED. 
COLUMN I-PLOTS PRODUCT DF RELIABILITIES 
COLUMN 2-PLOTS RELIABILITY 
COLUMN 3-PLOTS DIFF, RIF, AND GAIN 
COIAUMN 4-PLOTS MTF AND RELIABILITY AT MTF 
COLUMN 5-PLOTS UNRELIABILITY 
01100 



80 Fall Joint Computer Conference, 1972 

FOR ABSCISSA, INPUT 1 IN COLUMN 1 IF ABSCISSA IS T, 
1 IN COLUMN 2 IF ABSCISSA IS LOG(T)-BASE 10, 
1 IN COLUMN 3 IF ABSCISSA IS LAMT, 
1 IN COLUMN 4 IF ABSCISSA IS LOG(LAMT)-BASE 10, 
1 IN COLUMN 5 IF ABSCISSA IS EXP(-LAMBDA*T), 
1 IN COLUMN 6 IF ABSCISSA IS LOG(EXP(-LAMT»-BASE 10. 

IF YOU WISH TO PLOT A CERTAIN RANGE OF X-AXIS VALUES FOR THE 2-D PLOTS, ENTER LEFT-END POINT IN 
COLUMNS 1-8 WITH FORMAT F8.0 AND RIGHT-END POINT IN COLUMNS 9-16 WITH FORMAT F8.0j OTHERWISE 
INPUT NO 
NO 
IF YOU WISH TO PLOT A CERTAIN RANGE OF Y-AXIS VALUES FOR THE 2-D PLOTS, ENTER LEFT-END POINT 
IN COLUMNS 1-8 WITH FORMAT F8.0 AND RIGHT-END POINT IN COLUMNS 9-16 WITH FORMAT F8.0j OTHERWISE 
INPUT NO 
NO 
DO YOU WISH TO PLOT THE LOCUS OF RV SUCH THAT THE SYSTEM RELIABILITY EQUALS THE UNIT RELI­
ABILITY. 
ANSWER YES OR NO 
NO 
DO YOU WISH TO HAVE 3-D RELIABILITY PLOTS-ANSWER YES OR NO 
NO 
DO YOU WISH TO CALCULATE MAXIMUM MISSION TIME AND SIMPLE TIME FOR GIVEN RELIABILITY-ANSWER 
YES OR NO 
YES 
DO YOU WANT PLOTS FOR THESE CALCULATIONS-ANSWER YES OR NO 
YES 
DO YOU WISH TO CALCULATE MAXIMUM MISSION TIME FOR GIVEN RELIABILITY AND COMPARE IT AGAINST 
OTHER PARAMETERS 
ANSWER YES OR NO 
YES 
INPUT IN COLUMN 1 ONE OF THE FOLLOWING THREE OPTIONS: 
1. MAXIMUM MISSION TIME IS COMPARED AGAINST ALL POSSIBLE COMBINATIONS OF THE PARAMETER, 
2. MAXIMUM MISSION TIME IS COMPARED AGAINST THE LAST TWO PARAMETER VAIJUES, 
3. THE PROGRAM ASKS. THE USER AS TO WHICH PARAMETER VALUES MAXIMUM MISSION TIME IS TO BE 

COMPARED. 
1 
DO YOU WANT PLOTS FOR THESE CALCULATIONS-ANSWER YES OR NO 
NOTE: WHEN EXERCISING OPTION 1, THE PROGRAM PLOTS ONLY THE FIRST 15 PARAMETER COMPARISONS 
YES 
INPUT THE FOLLOWING 4 VARIABLES EACH WITH FORMAT F8.0 
COLUMNS 1-8 -REFERENCE RELIABILITY R2 
COLUMNS 9-16-MINIMUM RELIABILITY Rl 
COLUMNS 17-24-MAXIMUM RELIABILITY Rl 
COLUMNS 25-32-RELIABILITY Rl STEP SIZE 

1.000 .000 1.000 .100 
DO YOU WISH TO HAVE PRINTED TABLE OF RELIABILITY RESULTS 
ANSWER YES OR NO 
YES 
DO YOU WISH TO HAVE PRINTED TABLE OF DIFF, RIF, AND GAIN RESULTS-ANSWER YES OR NO 
YES 
DO YOU WISH MTF AND RELIABILITY AT MTF RESULTS PRINTED 
ANSWER YES OR NO 
YES 
DO YOU WANT PRINTED RESULTS OF THE MAXIMUM MISSION TIME CALCULATIONS-ANSWER YES OR NO 
YES 
TYPE IN THE VARIABLE THAT IS TO BE USED FOR THE FAMILY OR PARAMETERS-MUST BE SPECIFIED 
K 



The Computer-Aided Reliability Estimation Program 81 

CALCULATIONS FOR EQUATION lA (NI MEANS NOT INPUTTED) 
PARAMETER IS K 

IJAMBDA MU S N K Q 
NI .0000000 1 .1000000+01 NI 
C RV Z W P MUT 

NI .1000000+01 1 1 .1000000+01 NI 

LAMT REL UNREL SIMREL SIMGAIN SIMRIF 
.000 1.0000000 .0000000 1.0000000 .1000000+01 .1000000+36 
.100 .9967989 .0032011 .9048374 .1101633+01 .2972798 +02 
.200 .9794141 .0205959 .8187307 .1196259+01 .8805495+01 
.300 .9438952 .0561048 .7408182 .1274125+01 .4619598+01 
.400 .8921096 .1078904 .6703200 .1330871+01 .3055694+01 
.500 .8282412 .1717588 .6065307 .1365539+01 .2290825 +01 
.600 .7569280 .2430720 .5488116 .1379213+01 .1856192+01 
.700 .6823605 .3176395 .4965853 .1374105+01 .1584862+01 
.800 .6079221 .3920779 .4493290 .1352955+01 .1404494+01 
.900 .5361204 .4638796 .4065697 .1318643+01 · 1279277 +01 

1.000 .4686621 .5313379 .3678794 .1273956+01 .1189677+01 
1.100 .4065856 .5934144 .3328711 .1221451+01 · 1124221 +01 
1.200 .3504072 .6495928 .3011942 .1163393+01 .1075760+01 
1.300 .3002559 .6997441 .2725318 .1101728+01 .1039620+01 
1.400 .2559894 .7440107 .2465970 . 1038088+01 .1012624+01 
1. 500 .2172867 .7827133 .2231302 .9738114-00 · 9925343 -00 
1.600 .1837199 .8162801 .2018965 .9099707 -00 .9777324 -00 
1.700 .1548070 .8451930 .1826835 .8474052-00 .9670175 -00 
1.800 .1300494 .8699506 .1652989 .7867533-00 · 9594811 - 00 
1.900 .1089583 .8910417 .1495686 . 7284834 - 00 .9544237 -00 
2.000 .0910702 .9089298 .1353353 .6729228-00 .9512998 -00 
2.100 .0759576 .9240424 .1224564 .6202829 -00 .9496789 -00 
2.200 .0632333 .9367667 .1108032 .5706813 -00 .9492191-00 
2.300 .0525518 .9474482 .1002588 .5421617 -00 .9496468-00 
2.400 .0436090 .9563910 .0907180 .4807095 -00 .9507430-00 
2.500 .0361392 .9638608 .0820850 .4402657 -00 .9523315 -00 
2.600 .0299128 .9700872 .0742736 .4027382 -00 .9542714 -00 
2.700 .0247324 .9752676 .0672055 .3680110-00 .9564498 -00 
2.800 .0204293 .9795707 .0608101 .3359521-00 .9587770 -00 
2.900 .0168601 .9831399 .0550232 .3064186-00 .9611824 -00 
3.000 .0139037 .9860963 .0497871 .2792626- 00 .9636107 - 00 

MEAN TIME TO FAILURE - MTF = .10833333+01. 
UPPER LIMIT FOR INTEGRATION - B = . 15000000 +02 
RELIABILITY AT MTF = .41653059-00 

MAXIMUM MISSION 
TIME REFERENCE R2 = 1.0000 

Rl SIMLAMTMAX LAMTMAX SIMTIF 
.00000 INFINITY INFINITY .1000000+01 
.10000 .2302585+01 .1948467+01 .8462084 -00 
.20000 .1609438+01 . 1549781 +01 .9629332 -00 
.30000 . 1203973 +01 .1300594+01 . 1080252 +01 
.40000 .9162907 -00 .1111202+01 .1212718+01 
.50000 .6931472-00 .9526588 -00 .1374396+01 
.60000 .5108256 -00 .8108549 -00 .1587342+01 
.70000 .3566749 -00 .6764670 -00 .1896592+01 
.80000 .2231436-00 .5404841-00 .2422136+01 
.90000 .1053605+00 .3862209 -00 .3665708+01 

1.00000 .0000000 .0000000 .1000000+01 
TMAX AND SIMTIF PLOT COMPLETED 



The Computer-Aided Reliability Estimation Program 82a 

TMAX AND SIMIF PLOT COMPLETED 
MAXIMUM MISSION TIME FOR K .1000000+001 
AND K = .1000000+006 FOLLOWS FOR EQUATION IB 

REFERENCE R2 = 1.00000 

Rl TMAXI TMAX2 RATIF 

.00000 INFINITY INFINITY .1000000+01 

.10000 . 1948467 +01 .2083571 +01 · 1069339 +01 

.20000 .1549781 +01 .1666156+01· .1075091 +01 

.30000 . 1300594 +01 .1403234+01 .1078918+01 

.40000 .1111202+01 .1202074+01 · 1081777 +01 

.50000 .9526588 -00 . 1033006 +01 · 1084340 +01 

.60000 .8108549 -00 .8812095-00 · 1086766 +01 

.70000 .6764670 -00 . 7366257 -00 · 1088931 +01 

.80000 .5404841-00 .5897715-00 .1091191 +01 

.90000 .3862209 -00 .4224357-00 · 1093767 +01 
1.00000 .0000000 .0000000 .1000000+01 

1 MAXIMUM MISSION TIME PLOTS FOR VARYING 
PARAMETER VALUES COMPLETED 
DIFF, RIF, AND GAIN FOR K = .1000000+001 
AND K = .1000000+006 FOLLOWS FOR EQUATION IB 

LAMT 

.00000 

.10000 

.20000 

.30000 

.40000 

.50000 

.60000 

.70000 

.80000 

.90000 
1.00000 
1.10000 
1.20000 
1.30000 
1.40000 
1.50000 
1.60000 
1.70000 
1.80000 
1.90000 
2.00000 
2.10000 
2.20000 
2.30000 
2.40000 
2.50000 
2.60000 
2.70000 
2.80000 
2.90000 
3.00000 

1 PLOTS COMPLETED 
3 PLOTS COMPLETED 

DIFF 

.000000 

.741191-03 

.439928-02 

.110269-01 

.194312-01 

.282420-01 

.363528-01 

.430437-01 

.479568-01 

.510157-01 

.523365-01 

.521486-01 

.507338-01 

.483841-01 

.453738-01 

.419440-01 

.382964-01 

.345917-01 

.309523-01 

.274670-01 

.241955-01 

.211747-01 

.184230-01 

.159450-01 

.137352-01 

.117814-01 

.100665-01 

.857121-02 

.727480-01 

.£15657-02 

.519645-02 

RIF 

INFINITY 
.130131+01 
.127178+01 
.124462+01 
.121966+01 
.119679+01 
.117486+01 
;115674+01 
.113936+01 
.112357+01 
.110926+01 
.109635+01 
.108472+01 
.107428+01 
.106495+01 
.195662+01 
.104923+01 
.104267+01 
.103689+01 
.103181+01 
.102735+01 
.102345+01 
.102006+01 
.101712+01 
.101457+01 
.101237+01 
.101049+01 
.100887+01 
.100748+01 
.100630+01 
.100530+01 

DO YOU WISH TO SPECIFY ANOTHER PARAMETER 
ANSWER YES OR NO 
NO 
-FIN 

GAIN 

.100000+01 

.100074+01 

.100449+01 

.101168+01 

.102178+01 

.103410+01 

.104803+01 

.106308+01 

.107889+01 

.109516+01 

.111167+01 

.112826+01 

.114470+01 

.116114+01 

.117725+01 

.119304+01 

.120845+01 

.122345+01 

.123800+01 

.125209+01 

.126568+01 

.127877+01 

.129135+01 

.130341+01 

.131496+01 

.132600+01 

.133653+01 

.134656-01 

.135610+01 

.136516+01 

.137375+01 



82 Fall Joint Computer Conference, 1972 

CALCULATIONS FOR EQUATION IB (NI MEANS NOT INPUTTED) 
PARAMETER IS K 

LAMBDA MU S N K Q 
NI NI 1 1 INF NI 
C RV Z W P MUT 
NI .1000000+01 1 1 · 1000000+01 NI 

LAMT REL UNREL SIMREL SIMGAIN SIMRIF 
.000 1.0000000 .0000000 1.0000000 .1000000+01 .1000000+36 
.100 .9975401 .0024599 .9048374 .1102452+01 .3868510+02 
.200 .9838134 .0161866 .8187370 .1201632+01 · 1119870 +02 
.300 .9549221 .0450779 .7408182 .1289010+01 .5749636+01 
.400 .9115409 .0884591 .6703200 .1359859+01 .3726918+01 
.500 .8564832 .1435168 .6065307 .1412102+01 .2741626+01 
.600 .7932808 .2067192 .5488116 · 1445452 +01 .2182615+01 
.700 .7254042 .2745958 .4965853 .1460785+01 · 1833294 +01 
.800 .6558789 .3441211 .4493290 · 1459685 +01 .1600224+01 
.900 .5871361 .4128639 .4065697 .1444122+01 .1437351+01 

1.000 .5209986 .4790014 .3678794 .1416221 +01 .1319663+01 
1.100 .4587342 .5412658 .3328711 · 1378114 +01 · 1232535 +01 
1.200 .4011410 .5988590 .3011942 .1331835+01 .1166895+01 
1.300 .3486400 .6513600 .2725318 .1279264+01 .1116845+01 
1.400 .3013631 .6986369 .2465970 .1222088+01 .1078390+01 
1.500 .2592307 .7407693 .2231302 · 1161791 +01 · 1048734 +01 
1.600 .2220163 .7779837 .2018965 · 1099654 +01 · 1025861 +01 
1.700 .1893986 .8106014 .1826835 .1036758+01 .1008284+01 
1.800 .1610018 .8389982 .1652989 .9740040 -00 .9948783 -00 
1.900 .1364252 .8635748 .1495686 .9121246 -00 .9847802 -00 
2.000 .1152657 .8847343 .1353353 .8517048 -00 .9773157 -00 
2.100 .0971323 .9028677 .1224564 .7931990 -00 .9719515-00 
2.200 .0816563 .9183438 .1108032 · 7369488-00 .9682614 -00 
2.300 .0684968 .9315032 .1002588 .6831996-00 .9659024 -00 
2.400 ' .0573442 .9426558 .0907180 .6321152-00 .9645960 -00 
2.500 .0479206 .9520794 .0820850 .5837922 -00 .9641160-00 
2.600 .0399793 .9600207 .0742736 .5382713 -00 .9642776 -00 
2.700 .0333036 .9666964 .0672055 .4955484-00 .9649301-00 
2.800 .0277041 .9722959 .0608101 .4555835 -00 .9659507-00 
2.900 .0230167 .9769833 .0550232 .4183091-00 .9672395 -00 
3.000 .0191001 .9808999 .0497871 .3836361 -00 .9687155 -00 

MEAN TIME TO FAILURE - MTF = .11666667+01 
UPPER LIMIT FOR INTEGRATION - B = .15000000+02 
RELIABILITY AT MTF = .41978696-00 

MAXIMUM MISSION 
TIME REFERENCE R2 = 1.00000 

Rl SIMLAMTMAX LAMTMAX SIMTIF 
.00000 INFINITY INFINITY .1000000 +01 
.10000 .2302585+01 .2083571 +01 .9048836 -00 
.20000 .1609438+01 .1666156+01 · 1035241 +01 
.30000 .1203973 +01 . 1403234 +01 · 1165503 +01 
.40000 .9162907 -00 .1202074+01 .1311891 +01 
.50000 .6931472 -00 .1033006+01 .1490313+01 
.60000 .5108256 -00 .8812095 -00 .1725069 +01 
.70000 .3566749 -00 .7366257 -00 .2065258+01 
.80000 .2231436-00 .5897715 -00 .2643014+01 
.90000 .1053605+00 .4224357 -00 .4009430+01 

1.00000 .0000000 .0000000 · 1000000 +01 



An adaptive error correction scheme 
for computer memory system 

by A. M. PATEL and M. Y. HSIAO 

IBM Corporation 
Poughkeepsie, New York 

INTRODUCTION 

Many of the modern computer memories contain single­
error correction capability in order to enhance relia­
bility.I In a large scale memory, an even more pmverful 
error correction code may be desirable. In particular, a 
double-error correction capability can reduce the main­
tenance cost significantly, while keeping the unscheduled 
system interruptions within tolerable limits. Since most 
faults are effectively masked and logged out, the per­
manent failures can be replaced at the time of scheduled 
maintenance, thus leaving the user unaffected. The cost 
and complexity of the known double error correcting 
code, however, seems to outweigh the advantages. The 
long decoding time and large amount of redundancy in 
double error correction cannot be justified in every 
fetch instruction for the sake of correcting an occasional 
double error. 

This paper describes a memory error correction 
scheme which can be used in an adaptive manner. The 
code used in this scheme is derived from a full length 
BCH double error correcting code2 by deleting certain 
columns of the parity check matrix. This code corrects 
single errors as well as double errors on different memory 
word boundaries while the number of check bits required 
is much less and the normal memory cycle remains 
unaffected except in the presence of a double error. 

GENERAL SYSTEM FEATURES 

In this section, the adaptive error correction scheme 
is illustrated through an example. Let us assume that 
the word length of a basic memory unit is 64 data bits 
plus 8 check bits for single error correction and double 
error detection. If the double error correction (DEC) 
feature using BCH code is desired, then additional 
7 check bits are required. Since a memory system may 
have several, say m, basic memory units rather than 

83 

one, it requires 7Xm extra check bits for DEC in the 
total system. This results into high cost of implementa­
tion and also increases the memory cycle time even if 
only a single error has occurred. The adaptive ECC 
scheme guarantees the SEC-DED capability on each 
basic memory unit and only uses 7 extra check bits or 
8 bits if an overall triple error detection (TED) capa­
bility is required for DEC on the entire system. Single 
errors are corrected without referring to the additional 
check bits, hence nominal memory cycle time is not 
affected. Only in the case of double errors, the memory 
cycle time is increased. The parity check matrix has 
the following form: 

[H64 18J---------- <P <P \ <P 

H= (1) 
<p __________ [H64 18J <p 

[A cJ>J----------[A 
The construction of the submatrices H64 and A is done 
by an APL program3 given in the appendix with theory 
stated in Section III. The sub matrix <p is a null matrix 
of all zeros and 18 is a 8X8 identity matrix. 

In the memory system, each word of 64 information 
bits independently carries 8 check bits which provide 
the SEC-DED capability on every word separately. 
Thus, any single error in any word can be corrected 
separately without any reference to other words. How­
ever, in the presence of two errors in one word (DED 
indicator), one will compute the error pattern from the 
correlation of the SEC 7 -bit syndrome of the erroneous 
word with the DEC 7-bit syndrome computed over all 
m contributing words. Any single error in other words 
is either eliminated separately before computing the 
DEC syndrome or is detected by the TED check bit. 
If two or more words in a group indicate double errors, 



84 Fall Joint Computer Conference, 1972 

DEC syndrome will be a composite of two syndromes 
and, hence, the errors in such case cannot be corrected. 
However, the probability of a double-error being very 
low, two errors in each of the two words in a group, is 
highly improbable. Hence, in most cases the double 
error in a word will be correctible. 

CONSTRAINTS FOR THE MODIFIED DEC BCH 
CODES 

The double error correcting code for such adaptive 
correction scheme must have the following two features: 

(1) The 14 check bits are divided into two groups of 
7 check bits each. Each group must be in­
dependent of the other. 

(2) The parity rules for the first group must satisfy 
the constraints of the SEC-DED code and the 
parity rules of the two groups together must 
provide the DEC-TED capability. 

We examine the double-error correcting BCH code for 
these two SEC-separability properties: 

There are at least three methods of generating the 
parity check matrix of a double error ·correcting 
code. The parity check matrix denoted by HI has 
Xi mod ml(x)ma(X) as its ith column (0 origin) where 
ml(x) and ma(X) are minimum functions of the field 
elements a and aa of GF (27). The parity check matrix 
H2 generated by the second method has the concatenated 
vector Xi mod ml(X), Xi mod ma(X) as its ith column. 
The parity check matrix Ha generated by the third 
method has the concatenated vector Xi mod mi (x) , 
x3 i mod ml(x) as its ith column. The codes generated 
by thes~ three matrices are not only equivalent but also 
isomorphic. These three matrices possess different 
desirable properties. In particular, the matrix HI 
possess the property (1) for the adaptive correction 
scheme-presently under consideration. The firs t 14 
columns of HI represent an identity matrix which 
corresponds to 14 independently-acting check digits. 
However, any 7 check bits as a group do not provide 
SEC capability which is the required property (2). 
The matrix H2 on the other hand can be divided into 
two parts where the first group of seven check bits, 
corresponding in the part column Xi mod ml (x), does 
provide SEC capability, however, the two groups of 
check bits do not act independently and hence are not 
separable. The matrix Ha behaves in the same manner 
as H2 except that the syndrome in Ha is easily 
decodable.4 

As it seems from the above discussions, the full 
length DEC code does not possess the SEC-separa­
bility properties (1) and (2). However, it is easy to see 
that one could drop a number of columns from matrix 
HI in order to obtain the SEC capability with the first 
seven check bits. We examine the first seven digits of 
each column i(i> 13) and drop the column if this seven 
digit vector has already appeared in a previously taken 
column. This guarantees that these columns along with 
the first 7 columns for check bits form a single error 
correcting code. This exercise was carried out using an 
APL computer program which generated a (104,90) 
and (172, 154) DEC codes which has separable SEC 
and can be shortened to handle data bit lengths 64 and 
128. The codes are given in the Appendix. The DED 
capability is obtained by adding a check bit on the 
SEC code which makes a SEC-DED odd-weight­
column-code.5 The number in front of each column of 
H-matrix in the Appendix represents the cyclic position 
number in the full length code. These position numbers 
are used in the algebraic decoding algorithm4 in error 
correction process. 

SYSTEM IMPLEMENTATION 

Let us use a simple example for illustration. Figure 1 
shows a memory system which contains two basic 
memory units. Each unit has a (72, 64) SEC-DED 
code. 

The following is the parity check matrix for this 
simple system. 

[

[H64 IsJ cf> 

H= cf> cf> [HS4 

[A cf>J [A 

cf> cf>] 

IsJ cf> 

cf>J Is 

(2) 

Where H64 is the first group of 7 columns of the matrix 
in the Appendix and an additional column is added to 
make it odd weight. The A-matrix is the second group 
of 7 columns of the matrix in the Appendix. Another 
column is added to these 15 columns to make the 
overall parity matrix odd weight. This means that the 
overall code has double error correction and triple 
error detection capability. The encoding follows directly 
from the H-matrix of Equation (2). The decoding is 
classified as follows: 

1. Any single error in each memory unit can be 
corrected separately and simultaneously. 

2. If a double error is detected in one of the memory 
units and no error indication in the other memory 



Adaptive Error Correction Scheme for Computer Memory System 85 

MEM MEM Check 

DECODER 

To CPU or Channel 

Figure 1 

unit for the corresponding word, then this 
double error can be corrected by the additional 
8 check bits. 

The decoding of the double errors as stated in class 2 
needs the data bits portion of both memory units. The 
data bit portion for the error free memory is required 
to cancel its effects in the last 8 syndrome bits. There­
fore, the double error correction can be done as that 
given in Reference 4. 

SUl\1MARY 

An adaptive ECC scheme with SEC-DED feature can 
be expanded to DEC feature in a memory system con­
taining several memory units environment. The normal 
memory cycle time remains unaffected, except in the 
presence of a double error when extra decoding time is 
required for the double error correction procedure. 
Other major advantage is cost savings in terms of 
number of check bits required. If the memory system 
contains m basic memory units then 8(m-l) check bits 
can be saved by using this scheme. The number m is 
chosen such that the probability of double-errors in two 

words out of a group of m words is very small. Such 
adaptive error correction scheme more closely matches 
the requirements of modern computer memory systems 
and can be used very effectively for masking faults and 
reducing cost of maintenance. 

REFERENCES 

1 J F KEELEY 
System/370-Reliability from a system viewpoint 
1971 IEEE International Computer Society Conference 
September 22-24 1971 Boston Massachusetts 

2 W W PETERSON 
Error correcting codes 
MIT Press 1961 

3 A D F ALKOFF K ElVERSON 
APL/360 user's manual 
IBM Watson Research Center Yorktown Heights New 
York 1968 

4 A M PATEL S J HONG 
Syndrome trapping technique for fast double-error correction 
Presented at the 1972 IEEE International Symposium on 
Information Theory IEEE Catalog No 72 CHO 578-S IT 
1972 

5 M Y HSIAO 
A class of optimal minimum odd-weight-column SEC-DED 
codes 
IBM J of Res & Dev Vol 14 No 4 pp 395-402 July 1970 

APPENDIX A-CODE GENERATION PROGRAl\1 

[1] 
[21 
[3] 
[4) 
[5] 
[6) 
[7] 
[8] 
[9) 
[10] 
[11] 
[12] 
[13] 
[14] 

APL 360 

VSECDEC[O]V 

V SEC DEC C 
M+-1+pG 
}l+2*(!tf+2 ) 

V 

V+,~1p 0 
Z+l'JpO 
(j+(MpO),l 
I+O 
V+MpQ+(-l4>q)~(Gx.q[M-l]) 
~9+(I>M)x«X+(2i«M+2)+V»)€Z) 
'0123456789*'[(10 10 10 TI).10,V] 
Z[I]+X 
I+I+1 
~7+(7x(I=N» 

'DONE' 
~15 



86 Fall Joint Computer Conference, 1972 

APPENDIX B-PARITY CHECK l\;fATRIX FOR (104, 90) SEC-SEPARABLE DEC CODE 

SEeDEC 1 0 0 0 0 1 1 0 1 1 1 0 1 1 1 

000*10000000000000 
001*01000000000000 
002*00100000000000 
003*00010000000000 
004*00001000000000 
005*00000100000000 
006*00000010000000 
007*00000001000000 
008*00000000100000 
009*00000000010000 
010*00000000001000 
011*00000000000100 
012*00000000000010 
013*00000000000001 
014*10000110111011 
015*11000101100110 
016*01100010110011 
017*10110111100010 
018*01011011110001 
019*10101011000011 
020*11010011011010 
021*01101001101101 
022*10110010001101 
023*11011111111101 
024*11101001000101 
025*11110010011001 
026*11111111110111 
027*11111001000000 
028*01111100100000 
029*00111110010000 
030*00011111001000 
031*00001111100100 
032*00000111110010 
037*00110001010110 
03$*00011000101011 
039*10001010101110 
040*01000101010111 
041*10100100010000 
042*01010010001000 
043*00101001000100 
044*00010100100010 
045*00001010010001 
046*10000011110011 
047*11000111000010 
050*11011101011110 

051*01101110101111 
052*10110001101100 
053*01011000110110 
054*00101100011011 
055*10010000110110 
056*01001000011011 
057*10100010110110 
058*01010001011011 
059*10101110010110 
060*01010111001011 
061*10101101011110 
065*00101011011011 
066*10010011010110 
074*10001100000010 
075*01000110000001 
077*11010100000110 
078*01101010000011 
083*11101111000111 
084*11110001011000 
085*01111000101100 
086*00111100010110 
088*10001001111110 
094*11001111110100 
095*01100111111010 
096*00110011111101 
097*10011111000101 
098*11001001011001 
099*11100010010111 
100*11110111110000 
101*01111011111000 
108*10010110110001 
109*11001101100011 
110*11100000001010 
111*01110000000101 
112*10111110111001 
113*11011001100111 
114*11101010001000 
115*01110101000100 
116*00111010100010 
117*00011101010001 
119*11000010110010 
120*01100001011001 
124*00110111011100 
125*00011011101110 
126*00001101110111 



Adaptive Error Correction Scheme for Computer Memory System 87 

APPENDIX C-(172, 154) SEC-SEPARABLE DEC CODE 

SEC DEC 
SECDEC 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 

000*1000000000000000 
001*0100000000000000 
002*0010000000000000 
003*0001000000000000 
004*0000100000000000 
005*U000010000000000 
006*0000001000000000 
007*0000000100000000 
008*0000000010000000 
009*0000000001000000 
010*0000000000100000 
011*0000000000010000 
012*0000000000001000 
013*0000000000000100 
014*000000000CO n 0010 
015*0000000000000001 
01~*1011011110110001 

017*1110110001101001 
01q*11000001100001~1 

011*1101111101110011 
020*1101110000001000 
021*°110111000000100 
022*OOliolll000000l0 
023*0001101110000001 
024*1011101001110081 
025*1110101010001001 
026*1100001011110101 
l27*1101011011001011 
031*1010110000101011 
032*1110000110100100 
033*0111000011010010 
034*0011100001101001 
035*1010101110000101 
030*1110001001110011 
o37*1100011~laOOlnoo 

038*0110001101000100 
03·::J*QOll00nll0l000l0 
040*0001100011010001 
041*1011101111011001 
045*0110101101111111 
04r*1000001000001110 
047*010Q0001COOOOlll 
048*1001011100110010 
04J*0100101110011001 
050*1001001001111101 
051*1111111010001111 
052*1100100011110110 
053*0110010001111011 
o 5 II * 1 000 n 11 110 0011 0 0 
05S*0100001011000110 
05C*0010000101100011 
057*1010011100000000 
058*0101001110000000 
05j*0010100111J000JO 
06J*Q0010ljOlll00000 
I) 61 * ,) 0 (; 0 1 0 10 Q 111 :) 0 :I 0 
062*0000J11100111000 

~~7·~1~11-11·111"""~ 

063*1001101001001001 
069*1111101010010101 
070*1100101011111011 
071*1101001011001100 
072*0110100101100110 
073*0011010010110011 
074*1010110111101000 
075*0101011011110100 
076*0010101101111010 
077*0001011110111101 
078*1011110101101111 
079*1110100100000110 
08~*0111a10010000011 

~81*100Dll0lllll00CO 

082*0100011011111000 
083*0010001101111100 
o [lll * 'i 0 r) 1800110111110 
085*1011001111011110 
187*0181100111101111 
088*10011:lllJ1nOOll0 
() 8 ') * 0 1 'J (; 11 r; 11 0 1 r) 0 0 11 
090*1001000101100000 
,) 91 * ,:; 1 :) 0 1 0 0 0 1 0 11 ~; 0 () 0 
092*0010010001011000 
093*0001001000101100 
094*0000100100010110 
096*1011010111110100 
097*0101101011111010 
098*0010110101111101 
099*1010000100001111 
100*1110011100110110 
101*0111001110011011 
102*1000111001111100 
103*0100011100111110 
105*1010011001111110 
107*1001111800101110 
108*010011111001~111 

109*1001iJ00000111010 
111*1001001110111111 
11 3 * 0 1111111 () () 11 0 111 
114*1001100000101010 
115*0100010000010101 
11~*100101011nlll0ll 

117*1111110101101100 
llR*nllllll0l0ll0ll0 
11~*OOlllll101011Qll 

120*1010100000011100 
121*0101010000001110 
1 2 2 * .J 0 1 ,1 1 0 10 0 0 0 0 0 111 
123*1010001110111010 
124*~1()liJOOlalJll0Jl 

125*10011111JOOlll0l 
126*11111J0000111111 
127*1110101110101110 
128*0110010111010111 
131*1001011011100111 
132*1111110011000010 

135*1111001111110001 
136*1100111001001001 
137*1101000010010101 
138*1101111111111011 
130*1101100001001100 
140*0110110000100110 
141*0011011000010011 
147*0101111010111101 
143*1001100011101111 
143*1111101111000110 
150*0111110111100011 
151*1000100101000000 
153*0010001001010000 
15l*lnll0llQl01JOOll 
lGO*Oll1111nOlllQono 
161*0011101100111000 
162*0001110110011100 
163*0000111011001110 
164*0000011101100111 
165*1011110000000010 
171*11DllllollCllo00 
172*0110111101101100 
176~alnlll01J010llln 

177*0010111010010111 
178*1010008011111010 
179*0101000001111101 
182*0111110000111011 
189*1010001101100001 
190*1110011000000001 
191*1100010010110001 
192*1101010111101001 
193*1101110101000101 
19 11 * 11 0110 () 100010011 
195*1101101100111000 
1 96* 0 11 () 11 () 11 00111 f) 0 
201*1001100100110001 
209*0000110111101110 
210*0000011011110111 
21G*OOll111010111100 
217*0001111101011110 
71~*0000111110101111 

210*1011000001100110 
220*0101100000110011 
223*001001101110101i 
)24*8001001101110101 
225*1011111000001011 
226*1110100010110100 
228*0011101000101101 
229*1010101010100111 
23J*nll1a~OlUlllJOOl 

232*1000111100001001 
233*1111000000110101 
234*1100111110101011 
23G*Ol10100000110010 
240*1100011100000110 
242*1000011001110000 
243*0100001100111000 





Dynamic confirmation of system integrity * 

by BARRY R. BORGERSON 

University of California 
Berkeley, California 

INTRODUCTION 

It is always desirable to know the current state of any 
system. However, with most computing systems, a 
large class of failures can remain undetected by the 
system long enough to cause an integrity violation. 
What is needed is a technique, or set of techniques, for 
detecting when a system is not functioning correctly. 
That is, we need some way of observing the integrity 
of a system. 

A slight diversion is necessary here. Most nouns 
which are used to describe the attributes of computer 
systems, such as reliability, availability, security, and 
privacy, have a corresponding adjective which can be 
used to identify a system that has the associated 
attribute. Unfortunately, the word "integrity" has no 
associated adjective. Therefore, in order to enhance the 
following discourse, the word "integral" will be used 
as the adjective which describes the integrity of a 
system. Thus, a computer system will be integral if it 
is working exactly as specified. 

Now, if we could verify all of the system software, 
then we could monitor the integrity of a system in real 
time by providing a 100 percent concurrent fault 
detection capability. Thus, the integrity of the entire 
system would be confirmed concurrentlYJ where "con­
current confirmation" of the integrity of any unit of 
logic means that the integrity of this unit is being 
monitored concurrently with each use. 

A practical alternative to providing concurrent 
confirmation of system integrity is to provide what will 
be called "dynamic confirmation of system integrity." 
With this concept, the parts of a system that must be 

* This research was supported by the Advanced Research Projects 
Agency under· contract No. DAHC15 70 C 0274. The views and 
conclusions contained in this document are those of the author 
and should not be interpreted as necessarily representing the 
official policies, either expressed or implied, of the Advanced 
Research Projects Agency or the U.S. Government. 

89 

continuously integral are identified, and the integrity 
of the rest of the system can then be confirmed by 
means less stringent than concurrent fault detection. 
For example, it might be expedient to allow certain 
failures to exist for some time before being detected. 
This might be desirable, for instance, when certain 
failure modes are hard to detect concurrently, but where 
their effects are controllable. 

QUALITATIVE JUSTIFICATION 

In most contemporary systems, a multiplicity of 
processes are active at any given time. Two distinct 
types of integrity violations can occur with respect to 
the independent processes. One type of integrity 
violation is for one process to interfere with another 
process. That is, one process gains unauthorized access 
to another's information or makes an illegitimate 
change of another process' state. This type of trans­
gression will be called an "interprocess integrity 
violation." The other basic type of malfunction which 
can be caused by an integrity violation occurs when the 
state of a single process is erroneously changed without 
any interference from another process. Failures which 
lead to only intraprocess contaminations will be called 
"intraprocess integrity violations." 

For many real-time applications, no malfunctions 
of any type can be tolerated. Hence, it is not particu­
larly useful to make the distinction between inter­
process and intraprocess integrity violations since 
concurrent integrity-confirmation techniques must be 
utilized throughout the system. For most user-oriented 
systems, however, there is a substantial difference in the 
two types of violations. Intrapr{)cess integrity violations 
always manifest themselves as contaminations of a 
process' environment. Interprocess integrity violations, 
on the other hand, may manifest themselves as security 
infractions or contaminations of other processes' 
environments. 



90 Fall Joint Computer Conference, 1972 

We now see that there can be some freedom in defining 
what is to constitute a continuously-integral, user­
oriented system. For example, the time-sharing system 
described below is defined to be continuously integral if 
it is providing interprocess-interference protection on a 
continuous basis. Thus other properties of the system, 
such as intraprocess contamination protection, need 
not be confirmed on a continuous basis. 

Although the concept of dynamic confirmation of 
system integrity has a potential for being useful in a 
wide variety of situations, the area of its most obvious 
applicability seems to be for fault-tolerant systems. 
More specifically, it is most useful in those systems 
which are designed using a solitary-fault assumption. 
Where "solitary fault" means that at most one fault is 
present in the active system at any time. The notion of 
"dynamic" becomes more clear in this context. Here, 
"dynamic" means in such a manner, and at such times, 
so that the probability of encountering simultaneous 
faults is below a predetermined limit. This limit is 
dictated not only by the allowable probability of a 
catastrophic failure, but also by the fact that other 
factors eventually become more prominent in deter­
mining the probability of system failure. Thus, there 
often becomes a point beyond which there is very little 
to be gained by increasing the ability to confirm 
integrity. The rest of this paper will concern itself with 
dynamic confirmation in the context of making this 
concept viable with respect to the solitary-fault 
assumption. 

DYNAMIC CONFIRMATION TECHNIQUES 

In this section, and the following section, a particular 
class of systems will be assumed. The class of systems 
considered will be those which tolerate faults by 
restructuring to run without the faulty units. Both the 
stand-by sparing and the fail-softly types of systems are 
in this category. These systems have certain char­
acteristics in common; namely, they both must detect, 
locate, and isolate a fault, and reconfigure to run 
without the faulty unit, before a second fault can be 
reliably handled. 

Obviously, if simultaneous faults are to be avoided, 
the integrity of all parts of the system must be verified. 
This is reasonably straightforward in many areas. For 
instance, the integrity of data in memory can be rather 
easily confirmed by the method of storing and checking 
parity. Of course, checks must also be provided to make 
sure that the correct word of memory is referenced, but 
this can be done fairly easily too. 1 It is generally true 
that parity, check sums, and other straightforward 

concurrent fault-detection techniques can be used to 
confirm the integrity of most of the logic external to 
processors. However, there still remains the problems 
of verifying the integrity of the checkers themselves, of 
the processors, and of logic that is infrequently used 
such as that associated with isolation and reconfigura­
tion. 

All too often, there is no provision made in a system 
to check the fault detection logic. Actually, there are 
two rather straightforward methods of accomplishing 
this. One method uses checkers that have their own 
failure space. That is, they have more than two output 
states; and when they fail, a state is entered which 
indicates that the checker is malfunctioning. This 
requires building checkers with specifically defined 
failure modes. It also requires the ability to recognize 
and handle this limbo state. An example of this type of 
checker appears in Reference 2. 

Another method for verifying the integrity of the 
fault-detection logic is to inject faults; that is, cause a 
fault to be created so that the checker must recognize it. 
In many cases this method turns out to be both cheaper 
and simpler than the previously mentioned scheme. 
With this method, it is not necessary to provide a 
failure space for the checkers themselves. However, it is 
necessary to make provisions for injecting faults when 
that is not already possible in the normal design. With 
this provision, confirming the integrity of the checking 
circuits becomes a periodic software task. Failures are 
injected, and fault detection inputs are expected. The 
system software simply ignores the fault report or 
initiates corrective action if no report is generated. 

Associated with systems of the type under discussion, 
there is logic that normally is called into use only when a 
fault has been detected. This includes the logic dedicated 
to such tasks as diagnosis, isolation, and reconfiguration. 
This normally idle class of hardware units will collec­
tively be called "reaction logic." In order to avoid 
simultaneous faults in a system, this reaction logic must 
not be allowed to fail without the failure being rapidly 
detected. Several possibilities exist here. This logic can 
be made very reliable by using some massive redundancy 
technique such as triple-modular-redundancy.3 Another 
possibility is to design these units such that they 
normally fail into a failure space which is detected and 
reported. However, this will not be as simple here as it 
might be for self-checking fault detectors because the 
failure modes will, in general, be harder to control. A 
third method would be to simulate the appropriate 
action and observe the reaction. This also is not as 
simple here as it was above. For example, it may not be 
desirable to reconfigure a system on a frequent periodic 
basis. However, one way out of this is to simulate the 



action, initiate the reaction, and confirm the integrity 
of this logic without actually causing the reconfigura­
tion. This will probably require that the output logic 
either be made "reliable" or be encoded so as to fail 
into a harmless and detectable failure space. 

The final area that requires integrity confirmation is 
the processors. The technique to be employed here is 
very dependent on the application of the system. For 
many real-time applications, nothing short of con­
current fault detection will apparently suffice. However, 
there are many areas where less drastic methods may 
be adequate. Fabry4 has presented a method for veri­
fying critical operating-system decisions, in a time­
sharing environment, through a series of independent 
double checks using a combination of a second processor 
and dedicated hardware. This method can be extended 
to verifying certain decisions made by a real-time 
control processor. If most of the tasks that a real-time 
processor performs concern data reduction, it is possible 
that software-implemented consistency checks will 
suffice for monitoring the integrity of the results. When 
critical control decisions are to be made, a second 
processor can be brought into the picture for consistency 
checks or dedicated hardware can be used for validity 
checking. Alternatively, a separate algorithm, using 
separate registers, could be run on the same processor 
to check the validity of a control action, with external 
time-out hardware being used to guarantee a response. 
These procedures could certainly provide a substantial 
cost savings over concurrent fault-detection methods. 

For a system to be used in a general-purpose, time­
sharing environment, the method of checking pro­
cessors non-concurrently is very powerful because 
simple, relatively inexpensive schemes will suffice to 
guarantee the security of a user's environment. The 
price that is paid is to not detect some faults that could 
cause contamination of a user's own information. But 
conventional time-sharing systems have this handicap 
in addition to not having a high availability and not 
maintaining security in the presence of faults, so a clear 
improvement would be realized here at a fairly low cost. 
In order to detect failures as rapidly as possible in 
processors that have no concurrent fault-detection 
capability, periodic surveillance tests can be run which 
will determine if the processor is integral. 

VALIDATION OF THE SOLITARY-FAULT 
ASSUMPTION 

Fault-tolerant systems which are capable of isolating 
a faulty unit, and reconfiguring to run without it, 
typically can operate with several functional units 

Dynamic Confirmation of System Integrity 91 

removed at any given time. However, in order to design 
the system so that all possible types of failures can be 
handled, it is usually necessary to assume that at most 
one active unit is malfunctioning at any given time. 
The problem becomes essentially intractable when 
arbitrary combinations of multiple faults are considered. 
That is not to say that all cases of multiple faults will 
bring a system down, but usually no explicit effort is 
made to handle most multiple faults. Of course by 
multiple faults we mean multiple independent faults. 
If a failure of one unit can affect another, then the 
system must be designed to handle both units mal­
functioning simultaneously or isolation must be added 
to limit the influence of the original fault. 

A quantitative analysis will now be given which 
provides a basis for evaluating the viability of utilizing 
non-concurrent integrity-confirmation techniques in an 
adaptive fault-tolerant system. In the analysis below, 
the letter "s" will be used to designate the probability 
that two independent, simultaneous faults will cause a 
system to crash. 

The next concept we need is that of coverage. Coverage 
is defined5 as the conditional probability that a system 
will recover given that a failure has occurred. The 
letter "e" will be used to denote the coverage of a 
system. 

In order to determine a system's ability to remain 
continuously available over a given period of time, it is 
necessary to know how frequently the components of 
the system are likely to fail. The usual measure em­
ployed here is the mean-time-between-failures. The 
letter "m" will be used to designate this parameter. It 
should be noted here that "m" represents the mean­
time-between-internal-failures of a system; the system 
itself hopefully has a much better characteristic. 

The final parameter that will be needed here is the 
maximum-time-to-recovery; This is defined to be the 
maximum time elapsed between the time an arbitrary 
fault occurs and the time the system has successfully 
reconfigured to run without the faulty unit. The letter 
"r" will be used to designate this parameter. 

The commonly used assumption that a system does 
not deteriorate with age over its useful life will be 
adopted. Therefore, the exponential distribution will 
be used to characterize the failure probability of a 
system. Thus, at any given time, the probability of 
encountering a fault within the next u time units is: 

p= jU (llm)*exp( -tim) dt 
o 

= 1-exp( -ulm) 

From this we can see that the upper bound on the 



92 Fall Joint Computer Conference, 1972 

conditional probability of encountering a second in­
dependent fault is given by: 

q= l-exp( -rim) 

Since it is obvious that r must be made much smaller 
than m if a system is to have a high probability of 
surviving many internal faults, the following approxi­
mation is quite valid: 

q= l-exp( -rim) 

00 

=1- 2: (-r/m)k/k! 
k=O 

= 1-I+r/m- (Y2)*(r/m)2+ Oi)*(r/m)3- ..• 

~r/m 

Therefore, the probability of not being able to recover 
from an arbitrary internal failure is given by: 

x= (I-c) +c*q*s 

= (I-c) +c*s*r/m 

where the first term represents the probability of failing 
to recover due to a solitary failure and the second term 
represents the probability of not recovering due to 
simultaneous failures given that recovery from the first 
fault was possible. 

If we now consider each failure as an independent 
Bernoulli trial and make the assumption that faulty 
units are repaired at a sufficient rate so that there is 
never a problem with having too many units logically 
removed from a system at any given time, then it is a 
simple ~atter to determine the probability of surviving 
a given period, T, without encountering a system crash. 
The hardware failures will be treated as n independent 
samples, each with probability of success (1- x), where 
n is the smallest integer greater than or equal to T /m. 
Thus, the probability of not crashing on a given fault is 
(I-x) =c*(1-r*s/m) and the probability, P, of not 
crashing during the period T is given by: 

P= [c*(I-r*s/m) In 

=cll*(I-r*s/m)n 

With this equation, it is now possible to establish the 
validity of using the various non-concurrent techniques 
mentioned above to confirm the integrity of a system. 
What this equation will establish is how often it will be 
necessary to perform the fault injection, action simula­
tion, and surveillance procedures in order to gain an 
acceptable probability of no system crashes. Since the 
time required to detect, locate, and isolate a fault, and 
reconfigure to run without the faulty unit, will be 
primarily a function of the time to detection for the non-

. concurrent schemes and since this time is essentially 
equivalent to how frequently the confirmation pro­
cedures are invoked, we can assume that r is equal to 
the time period between the periodic integrity con­
firmation checks. In order to gain a feeling for the order 
of r, rather pessimistic numbers can be assumed for m, 
s, and T. Assume m=1 week, s= Y2, and T=10 years; 
this gives an n of 520. For now, assume c is equal to one. 
Now, in order to attain a probability of .95 that a system 
will survive 10 years with no crashes under the above 
assumptions, r will have to be: 

r= m/ s*[I-. 95(1/520) ] 

= 119 seconds 

Thus, if the periodic checks are made even as infre­
quently as every two minutes, a system will last 10 
years with a probability of not crashing of approxi­
mately.95. 

The effects of the coverage must now be examined. 
In order for the coverage to be good enough to provide 
a probability of .95 of no system crashes in 10 years 
due to the system's inability to handle single faults, 
it must be: 

c= .95(11520) 

=.9999 

Now this would indeed be a very good coverage. Since 
the actual coverage of any given system will most 
likely fall quite short of this value, it seems that the 
coverage, and not multiple simultaneous faults, is the 
limiting factor in determining a system's ability to 
recover from faults. 

The most important conclusion to be drawn from this 
section is that the solitary-fault assumption is not only 
convenient but quite justified, and this is true even when 
only periodic checks are made to verify the integrity of 
some of the logic. 

INTEGRITY CONFIRMATION FEATURES OF 
THE "PRIME" SYSTEM 

In order to better illustrate the potential power of 
dynamic integrity confirmation techniques, a descrip­

, tion. will now be given of how this concept is being used 
to economically provide an integrity confirmation 
structure for a fault-tolerant system. 

At the University of California, Berkeley, we are 
currently building a modular computer system, which 
has been named PRIME, that is to be used in a multi­
access, interactive environment. The initial version of 
this system will have five processors, 13 8K-word by 
33-bit memory blocks with associated switching units, 



Dynamic Confirmation of System Integrity 93 

I 
DISK I 

I 
DISK . . . . . I DISK IEXTERNAL I I"'TERNAL 

.... I EXTERNAL I DRIVE DRIVE DRIVE DEVICE DEVICE DEVICE 

I I I I 

I INTERCONNECTION NETWORK I 

CATED EACH nIDI 
LINE REPRE 
16 TERMIN 

SENTS 
AL 

CONNECT IONS 

I I I I I I 

CONTROLLER ~ I/O I~I 1/0 1*11ri CONTROLLER 

I 
I I I T I I I 

I/O 1*1 ~ I/O * CONTROLLER CONTROLLER 
~ I/O 

CONTROLLER *1 
*RECONFIGURAT ION 

LOGIC 

I PROCESSOR I I PROCESSOR I I PROCESSOR I I PROCESSOR I I PROCESSOR I 

MEMORY I MEMORY 1 MEMORY I I MEMORY r MEMORY r :rnTERFACE :rnTERFACE INTERFACE INTERFACE :rnTERFACE 

j -

~~E\j ~ 1 EJ~~ 88 MB4 MB5 ~ MBlO MBn 

EACH MEMORY BLOCK (MB) CONSISTS OF TWO 4K MODULES 

Figure 1-Block diagram of the PRIME system 

15 high-performance disk drives, and a switching net­
work which allows processor, disk, and external-device 
switching. A block diagram of PRIME appears in 
Figure 1. 

The processing elements in PRIME are 3-bus, 16-bit 
wide, 90ns cycle time microprogrammable processors 
called IVIETA 4s.6 Each processor emulates a target 
machine in addition to performing I/O and executive 
functions directly in microcode. At any given time, one 
of the processors is designated the Control Processor 
(CP), while the others are Problem Processors (PPs). 
The CP runs the Central Control Monitor (CCM) 
which is responsible for scheduling, resource allocation, 
and interprocess message handling. The Problem Pro­
cessors run user jobs and perform some system functions 
with the Extended Control l\1onitor (ECl\1) which is 
completely isolated from user processes. Associated with 
each PP is a private page, which the ECM uses to store 
data, and some target-machine code which it occa­
sionally causes to be executed. A more complete descrip-

tion of the structure and functioning of PRIME is 
given elsewhere.7 

The most interesting aspects of PRIl\1E are in the 
areas of availability, efficiency, and security. PRIME 
will be able to withstand internal faults. The system 
has been designed to degrade gracefully in the presence 
of . internal failures. 8 Also, interprocess integrity is 
always maintained even in the presence of either hard­
ware or software faults. 

The PRIME system is considered continuously 
integral if it is providing interprocess interference 
protection. Therefore, security must be maintained at 
all times. Other properties, such as providing user 
service and recovering from failures, can be handled in 
a less stringent manner. Thus, dynamic confirmation of 
system integrity in PRIl\1E must be handled con­
currently for interprocess interference protection and 
can be handled periodically with respect to the rest of 
the system. Of course, there are areas which do not 
affect interprocess interference protection but which 



94 Fall Joint Computer Conference, 1972 

will nonetheless utilize concurrent fault detection simply 
because it is expedient to do so. 

Fault injection is being used to check most of the 
fault-detection logic in PRIlVIE. This decision was made 
because the analysis of non-concurrent integrity­
confirmation techniques has established that periodic 
fault injection is sufficiently effective to handle the job 
and because it is simpler and cheaper than the alter­
natives. There is a characteristic of the PRIME system 
that makes schemes which utilize periodic checking very 
attractive. At the end of each job step, the current 
process and the next process are overlap swapped. That 
is, two disk drives are used simultaneously; one of these 
disks is rolling the current job out, while the other is 
rolling the next job in. During this time, the associated 
processor has some potential free time. Therefore, this 
time can be effectively used to make whatever periodic 
checks may be necessary. And since the mean time 
between job steps will be less than a second, this pro­
vides very frequent, inexpensive periodic checking 
capabilities. 

The integrity of Problem Processors is checked at 
the end of each job step. This check is initiated by the 
Control Processor which passes a one-word seed to the 
PP and expects the PP to compute a response. This 
seed will guarantee that different responses are required 
at different times so that the PP cannot accidently 
"memorize" the correct response. The computation 
requires the use of both target machine instructions 
and a dedicated firmware routine to compute the ex­
pected response. The combination of these two routines 
is called a surveillance procedure. This surveillance 
procedure checks all of the internal logic and the control 
storage of the microprocessors. The target machine code 
of the surveillance routine is always resident in the 
processor's private page. The microcode part is resident 
in control storage. A fixed amount of time is allowed for 
generating a response when the CP asks a PP to run a 
surveillance on itself. If the wrong response is given or 
if no response is given in the allotted time, then the PP 
is assumed to be malfunctioning and remedial action is 
initiated. In a similar manner, each PP periodically 
requests that the CP run a surveillance on itself. If a 
PP thinks it detects that the CP is malfunctioning, it 
will tell the CP this, and a reconfiguration will take 
place followed by diagnosis to locate the actual source 
of the detected error. More will be said later about the 
structure of the reconfiguration scheme. 

While the periodic running of surveillance procedures 
is sufficient for most purposes, it does not suffice for 
protecting against interprocess interference. As pre­
viously mentioned, this protection must be continuous. 
Therefore, a special structure has been developed which 

is used to prevent interprocess interference on a con­
tinuous basis.4 This structure provides double checks on 
all actions which could lead to interprocess interference. 
In particular, the validity of all memory and disk 
references, and all interprocess message transmissions, 
are among those actions double checked. A class code is 
used to associate each sector (lK words) of each disk 
pack with either a particular process or with the null 
process, which corresponds to unallocated space. A 
lock and key scheme is used to protect memory on a 
page (also lK words) basis. In both cases, at most one 
process is bound to a lK-word piece of physical storage. 
The Central Control ]VIonitor is responsible for allo­
cating each piece of storage, and it can allocate only 
those pieces which are currently unallocated. Each 
process is responsible for deallocating any piece of 
storage that it no longer needs. Both schemes rely on 
two processors and a small amount of dedicated hard­
ware to provide the necessary protection against some 
process gaining access to another process' storage. 

In order for the above security scheme to be extremely 
effective, it was decided to prohibit sharing of any 
storage. Therefore, the Interconnection Network is 
used to pass files which are to be shared. Files are sent 
as regular messages, with the owning process explicitly 
giving away any information that it wishes to share 
with any other process. All interprocess messages are 
sent by way of the CPo Thus, both the CCM and the 
destination EC]VI can make consistency checks to make 
sure that a message is delivered to the correct process. 

The remaining area of integrity checking which 
needs to be discussed is the reaction hardware. In the 
PRIlVIE system, this includes the isolation, power 
switching, diagnosis, and reconfiguration logic. A 
variety of schemes have been employed to confirm the 
integrity of this reaction logic. In order to describe the 
methods employed to confirm the integrity, it will be 
necessary to first outline the structure of the spon­
taneous reconfiguration scheme used in the PRIME 
system. 

There are four steps involved in reorganizing the 
hardware structure of PRIME so that it can continue 
to operate with internal faults. The first step consists 
of detecting a fault. This is done by one of the many 
techniques outlined in this paper. In the second step, 
an initial reconfiguration is performed so that a new 
processor, one not involved in the detection, is given the 
job of being the CPo This provides a pseudo "hard core" 
which will be used to initiate gross diagnostics. The 
third step is used to locate the fault. This is done by 
having the new CP attach itself to the Programmable 
Control Panel9 of a Problem Processor via the Inter­
connection Network, and test it by single-stepping this 



PP through a set of diagnostics. If a PP is found to be 
functioning properly, then it is used to diagnose its own 
I/O channels. After the fault is located, the faulty 
functional-unit is isolated, and a second reconfiguration 
is performed to allow the system to run without this 
unit. 

Of the four steps involved in responding to a fault, 
the initial reconfiguration poses the most difficulty. In 
order to guarantee that this initial reconfiguration could 
be initiated, a small amount of dedicated hardware waS 
incorporated to facilitate this task. Associated with 
each processor is a flag which indicates when the pro­
cessor is the CPo Also associated with each processor is a 
flag which is used to indicate that this processor thinks 
the CP is malfunctioning. For every processor, these 
two flags can be interrogated by any other processor. 
Each processor can set only its own flag that suggests 
the CP is sick. The flag which indicates that a processor 
is the CP can be set only if both the associated pro­
cessor and the dedicated hardware concur. Thus, the 
dedicated hardware will not let this flag go up if another 
processor already has its up. Also, this flag will auto­
matically be lowered whenever two processors claim 
that the CP is malfunctioning. 

There is somewhat of a dilemma associated with 
confirming the integrity of this logic. Because of the 
distributed nature of this reconfiguration structure, it 
should be unnecessary to make any of it "reliable." 
That is, the structure is already distributed so that a 
failure of any part of it can be tolerated. However, if 
simultaneous faults are to be avoided, the integrity of 
this logic must be dynamically confirmed. Unfortu­
nately, it is not practical to check this logic by frequently 
initiating reconfigurations. This dilemma is being solved 
by a scheme which partially simulates the various 
actions. The critical logic that cannot be checked during 
a simulated reconfiguration is duplicated so that infre­
quent checking by actual reconfiguration is sufficient to 
confirm the integrity of this logic. 

The only logic used in the diagnostic scheme where 
integrity confirmation has not already been discussed is 
the Programmable Control Panel. This pseudo panel is 
used to allow the CP to perform all the functions 
normally available on a standard control panel. No 
explicit provision will be made for confirming the 
integrity of the Programmable Control Panel because 
its loss will never lead to a system crash. That is, failures 
in this unit can coexist with a failure anywhere else in 
the system without bringing the system down. 

For powering and isolation purposes, there are only 
four different types of functional units in the PRIlVIE 
system. The four functional units are the intelligence 
module, which consists of a processor, its I/O controller 

Dynamic Confirmation of System Integrity 95 

and the subunits that directly connect to the controller, 
its memory bus, and its reconfiguration logic; the 
memory block, which consists of two 4K-word by 33-bit 
1\10S memory modules and a 4X2 switching matrix; 
the switching module, which consists of the switch part 
of two processor-end and three device-end nodes of the 
Interconnection Network; and the disk drive. The disk 
drives and switching modules can be powered up and 
down manually only. The intelligence modules must be 
powered up manually, but they can be powered down 
under program control. Finally, the memory blocks can 
be powered both up and down under program control. 

No provision was made to power down the disks or 
switching modules under program control because there 
was no isolation problem with these units. Rather than 
providing very reliable isolation logic at the interfaces 
of the intelligence modules and memory blocks, it was 
decided to provide additional isolation by adding the 
logic which allows these units to be dynamically powered 
down. Also, because it may be necessary to power 
memory blocks down and then back up in order to 
determine which one has a bus tied up, the provision 
had to be made for performing the powering up of these 
units on a dynamic basis. Any processor can power down 
any memory block to which it is attached, so it was not 
deemed necessary to provide for any frequent con­
firmation of the integrity of this power-down logic. 
Also, every processor can be powered down by itself and 
one other processor. These two power-down paths are 
independent so again no provision was made tofre­
quently confirm the integrity of this logic. In order to 
guarantee that the independent power-down paths do 
not eventually fail without this fact being knmvll, these 
paths can be checked on an infrequent basis. 

All of the different integrity confirmation techniques 
used in PRIlVIE have been described. The essence of 
the concept of dynamic confirmation of system integrity 
is the systematic exploitation of the specific char­
acteristics of a system to provide an adequate integrity 
confirmation structure which is in some sense minimal. 
For instance, the type of use and the distributed intel­
ligence of PRI1\1E were taken advantage of to provide 
a sufficient integrity-confirmation structure at a much 
lower cost and complexity than would have been 
possible if these factors were not carefully exploited. 

REFERENCES 

1 B BORGERSON C V RAVI 
On addressing failures in merrwry systems 
Proceedings of the 1972 ACM International Computing 
Symposium Venice Italy pp 40-47 April 1972 

2 D A ANDERSON G METZE 
Design of totally self-checking check circuits for M-out-of-N 



96 Fall Joint Computer Conference, 1972 

codes 
Digest of the 1972 International Symposium on 
Fault-Tolerant Computing pp 30-34 

3 R A SHORT 
The attainment of reliable digital systems through the use of 
redundancy-A survey 
IEEE Computer Group News Vol 2 pp 2-17 March 1968 

4 R S FABRY 
Dynamic verification of operating system decisions 
Computer Systems Research Project Document No P-14.0 
University of California Berkeley February 1972 

5 W G BOURICIUS W C CARTER 
P R SCHNIEDER 
Reliability rrwdeling techniques for self-repairing computer 
systems 
Proceedings of the ACM National Conference pp 295-309 
1969 

6 META 4. computer system microprogramming referlmce 
manual 
Publication No 7043MO Digital Scientific Corporation 
San diego California June 1972 

7 H B BASKIN B R BORGERSON R ROBERTS 
P RI M E-A rrwdular architecture for terminal-oriented 
systems 
Proceedings of the 1972 Spring Joint Computer Conference 
pp431-437 

8 B R BORGERSON 
A fail-softly system for time-sharing use 
Digest of the 1972 International Symposium on 
Fault-Tolerant Computing pp 89-93 

9 G BAILLIU B R BORGERSON 
A multipurpose processor-enhancement structure 
Digest of the 1972 IEEE Computer Society Conference 
San Francisco September 1972 pp 197-200 



The in-house computer department 

by JOHN J. PENDRAY 

TECSI-SOFTW ARE 
Paris, France 

INTRODUCTION 

Over fifteen years ago, in some inner recess of some 
large corporation, a perplexed company official stood 
pondering before a large corporate organizational chart 
on his office wall. In his hand he held a small square of 
paper on which the words "Computer Department" 
were inscribed. Behold one of the modern frontiersmen 
of twentieth century business: the first man to try to 
stick the in-house computer department on the com­
pany organizational chart. He probably failed to find a 
place with which he felt comfortable, thereby becoming 
the first of many who have failed to resolve this prob­
lem. 

Most of the earlier attempts ended by putting the 
computer department somewhere within the grasp of 
the corporate financial officer. The earliest computer 
applications were financial in nature, such as payroll, 
bookkeeping, and, after all, anything that costs as much 
as a computer must belong in the financial structure 
somehow. Many corporations are still trying to get 
these financial officers to recognize that there are many 
non-financial computer applications which are at least 
as important as the monthly corporate trial balances. 
Additionally, and perhaps even worse, the allocation of 
the computer department's resources is viewed as a 
relatively straightforward financial matter subject to 
budgeting within financial availability. This method of 
resource dispensing seems not to provide the right 
balance of performance and cost generally sought in the 
business world. 

As the computer department growth pattern followed 
the precedent of Topsy, many corporations began to 
wonder why something that had become an integral 
part of every activity in the company should belong to 
one function, ·like finance. This questioning led to a 
blossoming forth of powerful in-house computer depart­
ments disguished under surcharged names like Informa­
tion Services Department. Often, this square on the 
organizational chart had a direct line to the chief execu-

97 

tive's office. This organizational form has created two of 
the most widely adopted erroneous concepts ever to 
permeate corporate activity. The first, and perhaps 
least damaging of these, is the concept that the highest 
corporate officers should be directly in touch with the 
computer at all times (and at any cost) to take advan­
tage of something called the J\1:anagement Information 
System (MIS). (Briefly, a MIS is a system designed to 
replace a fifteen-minute telephone call to the research 
department by a three-second response from a com­
puter, usually providing answers exactly fourteen min­
utes and fifty-seven seconds faster than anyone can 
phrase his precise question.) The second concept to 
follow the attachment of the computer department to 
the chief executive's office has been the missionary work 
which has been undertaken in the name of, and with the 
power or influence of, the chief executive. Information 
service missionary work generally consists of the com­
puter experts telling each department exactly what 
their information needs are and how they should go 
about their business. 

This article will examine the nature of· the in-house 
computer department in terms of its place in the corpo­
rate structure, its product, its function in the maturing 
of the product, and its methods of optimizing its re­
source utilization. Additionally, one possible internal 
structure for an in-house computer department will be 
presented. 

THE IN-HOUSE COMPUTER DEPARTMENT 
WITHIN THE CORPORATE STRUCTURE 

Most of the blocks on the corporate organizational 
chart have some direct participation in the business of 
the company. Take an example. The Whiz-Bang Corpo­
ration is the world's leader in the production of whiz­
bangs. Its sales department sells whiz-bangs. Its pro­
duction department produces whiz-bangs. Its develop­
ment department develops new types of whiz-bangs. Its 



98 Fall Joint Computer Conference, 1972 

computer department has nothing to do with whiz­
bangs. The people in the computer department know 
lots about computers, but their knowledge about whiz­
bangs comes from what other departments have told 
them. What are they doing in the whiz-bang operation? 

The computer department provides services to all 
the other departments in the company. These other 
departments are directly involved in the business of the 
company, but the function of the computer department 
is to provide services to the company, not to contribute 
directly in the business of the company. In this light, 
the computer department is like an external supplier of 
services. 

How should such a supplier of services be funded? 
Let's return to the Whiz-Bang Corporation analogy. 
The marketing department is allocated sufficient re­
sources to market whiz-bangs; the production depart­
ment gets resources adequate to produce whiz-bangs, 
etc. It is not possible to allocate r~sources to the comput­
er department on the basis of its direct contribution 
to whiz-bangs. 

The computer department provides services, and 
these services are what should be funded. The value of 
these services provides the basis for funding. Other 
departments use the computer services, and it follows 
that only these departments can place the value on a 
service and that each department should pay for the 
services which it gets. Therefore, the funding of the com­
puter department is the sum total of the payments 
received from the other departments for services ren­
dered. 

How should the computer department be controlled? 
First of all, it is necessary to define what is to be con­
trolled. Either one can control product specifications or 
one can control the resources necessary to produce a 
product. Product specifications are generally controlled, 
in one way or another, by the buyer, while resource 
control is usually an internal problem concerned with 
the production of the buyer-specified product. At the 
Whiz-Bang Corporation, the marketing determines the 
buyer-desired product specifications, but each internal 
department calculates and controls its resource require­
ments to yield the specified number and type of whiz­
bangs. 

If the nature of the computer department is to pro­
vide services as its product, the users of these services 
should control their specifications. Mter all, they are 
paying for them (or should be). 

If the computer department has the task of providing 
services that the other departments will be willing to 
fund, it should have the responsibility to allocate its 
resources to optimize its capability to provide the ser­
vices. Mter all, they are the experts (or should· be). 

In resume, the departments in the corporation are 

using an external type of service from an internal source, 
the in-house computer department. Only they can value 
the service, but they won't do this job of valuation 
unless they are charged for the service. This valuation 
will automatically produce customer-oriented specifi­
cations for the services. On the other hand, once the 
services are specified and accepted at a certain cost, it 
is the job of the computer department to use its reve­
nues in the best manner to produce its services. That is, 
the funding flows as revenues from the other depart­
ments; but the utilization of this funding is the proper 
responsibility of the provider of the services, the comput­
er department. 

These principles indicate that the in-house computer 
department can be melded into the corporate structure 
in any position where it can be equally responsive to all 
of the other departments while controlling, itself, the 
utilization of its resources. 

THE PRODUCT OF THE COl\fPUTER 
DEPARTMENT-THE COMPUTER 
SERVICE 

A computer service, which is the product produced 
and sold by the computer department, has an average 
life span of between five and ten years. It is to be expect­
ed that as the speed of computer technological change 
diminishes, this life span will lengthen. To date, many 
computer services have been conceived and developed 
without a real understanding of the nature of a comput­
er service. The lengthening of the life span of the com­
puter service should produce a more serious interest in 
understanding this nature in order to produce more 
economical and responsive services. 

A well-conceived computer service is a highly tuned 
product which depends on the controlled maturing and 
merging of many technical facets. Too often this ma­
turing and merging is poorly controlled because the life 
cycle of the computer service is not considered. The net 
result may be an inflexible and unresponsive product 
which lives on the edge of suicide, or murder, for the 
entirety of its operational life. Computer services 
management should not allow this inflexibility to exist, 
for the computer is one of the most flexible tools in the 
scientific grabbag. This innate flexibility should be 
exploited by management in the process of maturing a 
computer service. 

MATURING THE COMPUTER SERVICE 

There are four major phases in the maturing process: 
definition, development, operation, and overhaul. Per­
haps the most misunderstood aspect of this maturing 



process is the relation between the phases in the life 
cycle of a computer service and the corresponding 
changes required in the application of technical special­
ties. Each phase requires a different technical outlook 
and a different level of technical skills. 

The definition phase 

Defining the service is oriented toward producing 
the functional specifications which satisfy the needs and 
constraints of the client. From another point of view, 
this is the marketing and sales problem for the computer 
department. It should be treated as a selling problem 
because the service orientation of the computer depart­
ment is reinforced by recognition that the buyer has the 
problem, the money, and the buying decision. 

The technical outlook should be broad and long term, 
for the entire life of the service must be considered. 
Technical details are not desirable at this stage, but it 
is necessary to have knowledge of recent technical 
advances which may be used to the benefit of the ser­
vice. Also, a good understanding of the long-range 
direction and plans of the computer department is 
necessary in order to harmonize the proposed service 
with these goals. 

The first step in defining a computer service is to 
locate the potential clients and estimate their sus­
ceptibility to an offer of a computer service. At first 
glance, this seems an easy task as the potential clients 
are well-known members of the corporate structure. Not 
so! Many of the most promising avenues of computer 
services cut across the normal functional separations 
and involve various mixtures of the corporate hierarchy. 
These mixtures are frequently immiscible, and the sell­
ing job involves convincing each participant of his 
benefit and helping him justify his contribution. The 
corporate higher-ups would also need to be convinced, 
but the money will seldom come from their operating 
budgets. In any case, the responsibility to seek out and 
sell new computer services lies with the computer de­
partment; however, the decision to buy is the sole prop­
erty of the client departments. 

Mter potential clients are identified, a complete 
understanding of the problem must be gained in order 
to close the sale. This understanding should give birth 
to several alternative computer system approaches 
giving different performance and cost tradeoffs. The 
potential customer will want to understand the param­
eters and options available to him in order. to select his 
best buy. This is a phase of the life cycle of the service 
where the computer department provides information 
and alternatives to the prospective client. 

Closing of the agreement should be in contractual 
terms with each party obligated for its part of the 

The In-House Computer Department 99 

responsibility. All terms such as financing schedules, 
product specifications, development schedules, modifi­
cation procedures, and penalties should be reduced to 
writing and accepted before work begins. A computer 
department that cannot (or will not) make firm com­
mitments in advance of a project is poorly managed. 
(Of course there can always be a periodic corporate 
reckoning to insure that imbalances are corrected.) 

The development phase 

The contract is signed; the emphasis for the comput­
er department changes from sales to development and 
implementation of the service. This phase calls for a 
concentrated, life-of-the-effort technical outlook with 
in-depth and competent technical ability required at 
all levels. The specialists of the computer department 
must be organized to produce the system which will 
provide the service as specified. The usual method for 
accomplishing this organization is the "project". Many 
learned texts exist on the care and feeding of a technical 
project, so let's examine here only the roles of the com­
puter department and the client within the general 
framework of a project. 

Computer department participation centers on its 
role as being the prime responsible party for the proj­
ect. It is the computer department's responsibility to 
find the best techniques for satisfying all the goals of 
the project. 

The correct utilization of the resources available to 
the computer department is a key to the project's 
success. One resource is time, and time runs put for a 
project. That is to say that no true project succeeds 
unless it phases out on time. A project team produces a 
product, turns it over to the production facility, and 
then the project ceases to exist. 

The personnel resource of the computer department 
is also viewed differently in a project. The project team 
is composed of a hand-tailored mix of specialists who 
are given a temporary super-incentive and then re­
moved from the project after their work is done. Super­
incentives and fluid workforces are not easily arranged 
in all companies, and this is one of the reasons why the 
computer department must maintain control of the 
utilization of its resources. 

The computer department should acquire new re­
sources for a project within the following guideline: 
don't. Projects should not collect things around them 
or they become undisintegratable. The only exception: 
acquisitions which form part of the product, and not 
part of the project, and which will go with the product 
into the production phase. 

Assuring the continuing health of the project's prod­
uct is another critical aspect of the computer depart-



100 Fall Joint Computer Conference, 1972 

ment's responsibility in the project. Since the project 
team will die, it must provide for the product to live 
independently of the project. This involves produc­
ing a turnoverable product which is comprehensible 
at all levels of detail. Also, the final product must be 
flexible enough to respond to the normal changes 
required during its lifetime. 

It is interesting to note that in the development 
phase of the life cycle of a service, the project philosophy 
dictates that the computer department orient itself 
toward project goals and not just toward satisfying 
the specifications of the service. That is, the service 
specifications are only one of the project goals along 
with time, cost, etc. 

On the other hand, the eventual user of the service, 
i.e., the client department, views the project as only a 
part of the total process necessary to have the service. 
To the client, the project is almost a "necessary evil"; 
however, the development project philosophy depends 
on active client involvement. Three distinct client 
functions are required. In their order of importance 
they are: 

1. Countinuing decision-making on product per­
formance and cost alternatives surfaced during 
the project work. 

2. Providing aid to the technical specialists of the 
computer department to insure that the func­
tional specifications are well understood. 

3. Preparing for use of the service, including data 
preparation, personnel training, reorganization, 
etc. 

These three client functions are certainly important 
aspects of a project, but it should not be forgotten that 
the development project is a method used by the comput­
er department to marshal its resources and, therefore, 
must be under the responsibility of the computer 
department. 

Development of the service may be an anxious phase 
as the client has been sold on the idea and is probably 
eager for his first product. This eagerness should not be 
blunted by the project team, nor should it affect the 
sound judgment of the team. Consequently, contact 
between the technical experts and the client should be 
controlled and directed toward constructive tasks. 

The operation phase 

The third step in the life cycle of a service begins when 
the development project begins to phase out. This is the 
day-to-day provision of the service to the client. In 
this phase, the computer department has a production 

philosophy which is single-minded: to assure the con­
tinuing viability of the service. This is often a fire-fight­
ing function in which the quick-and-dirty answer is the 
best answer. There isn't much technical glory in this 
part of the life cycle of a service, but it's the part that 
produces the sustaining revenues for the computer 
department. 

The computer department enhances continuing prod­
uct viability by performing two functions. Of primary 
importance is to reliably provide the specified service 
with minimum expenditure of resources. Secondarily, 
the client must be kept aware of any possible opera­
tional changes which might affect the performance or 
cost of his service. Again, the client has a strong part in 
the decision to effect a change. 

The client must contribute to the continuing via­
bility of the product by using it intelligently and 
periodically evaluating its continuing worth. 

The overhaul phase 

As a service ages during its operational heyday, the 
environment around it changes little by little. Also, the 
quick-and-dirty maintenance performed by the opera­
tions personnel will begin to accumulate into a patch­
work quilt which doesn't look much like the original 
edition. These two factors are not often self-correcting, 
but they can go unnoticed for years. 

The only answer is a complete technical review and 
overhaul. Every service should be periodically dragged 
out of the inventory and given a scrub-down. This is 
another job where the technical glamor is quite limited; 
however, overhauling services to take advantage of new 
facilities or concepts can provide significant gains, not 
to mention that the service will remain neat, control­
lable, flexible, and predictable. 

Thus definition, development, operation, and over­
haul are the four phases in the life cycle of a computer 
service. All of these phases directly affect the clients and 
are accomplished with their aid and involvement. How­
ever, there is another area of responsibility for the 
computer department that does not touch the clients as 
closely. This area is the control over the utilization of 
the computer department's resources. 

OPTIMIZING THE UTILIZATION OF THE 
COMPUTER DEPARTMENT'S RESOURCES 

This important responsibility of the computer depart­
ment is an internally-oriented function which is not 
directly related to the life cycles of the services. This is 
the problem of selecting the best mix of resources which 
fulfills the combined needs of the clients. In the comput-



er service business there are two main resources, people 
and computing equipment. 

Effective management of computer specialists in­
volves at least training, challenging, and orienting. If 
these three aspects are performed well, a company has 
a better chance of keeping its experts, and keeping 
them contributing. 

Training should be provided to increase the pro­
fessional competence of the staff, but in a direction 
which is useful to the company. It is not clear, for 
instance, that companies who use standard off-the­
shelf programming systems have a serious need to train 
the staff in the intricate design of programming systems 
software. It's been done, and every routine application 
suddenly became very sophisticated, delicate, and 
incomprehensible. However, training which is benefi­
cial for the company should be made interesting for the 
personnel. 

Challenging technical experts is a problem which is 
often aggravated by a poor hiring policy which selects 
over-qualified personnel. Such people could certainly 
accomplish the everyday tasks of the company if only 
they weren't so bored. The management problem of 
providing challenge is initially solved by hiring people 
who will be challenged by the work that exists at the 
company. Continuing challenge can be provided by 
increasing responsibility and rotating tasks. 

Orienting the technical personnel is a critical part 
of managing the computer department. If left alone, 
most technical specialists tend to view the outside 
world as it relates to the parameter list of his logical 
input/output module, for example. He needs to be 
oriented to realize that his technical specialty is impor­
tant because it contributes to the overall whole of the 
services provided to the clients. This client-oriented 
attitude is needed at all levels within a service organi­
zation. 

Besides personnel, the other major resource to be 
optimized by the computer department is the comput­
ing system. This includes equipment and the basic 
programs delivered with the equipment, sometimes 
called "hardware" and "software". 

Optimizing of a computing system is a frequently 
misunderstood or neglected function of the computer 
department. In a sense this is not surprising as there 
are three factors which obscure the recognition of the 
problem. First of all, computers tend to be configured 
by technical people who like computers. Secondly, most 
computer systems have produced adequate means of 
justifying themselves, even in an unoptimized state. 
Lastly, computer personnel, both manufacturers and 
users, have resisted attempts to subject their expendi­
tures to rigorous analysis. It seems paradoxical that the 
same computer experts who have created effective 

The In-House Computer Department 101 

analysis methodologies for so many other fields main­
tain that their field is not predictable and not suscepti­
ble to methodological optimization. 

The utilization of computer systems is capable of 
being analyzed and may be seen as three distinct steps 
in the life cycle of the resource. These three steps can be 
presented diagrammatically as follows: 

general requiremBnts 

I development of the 
hardware strategy 

computing requirements I selection of a system 

system options 

j tuning of the system 

system configuration 

All too often, the strategy is chosen by default, the 
selection is made on the basis of sales effectiveness, and 
the tuning is something called "meeting the budget." 

Development of the hardware strategy 

Many computer departments don't even realize that 
different strategies exist for computing. This is not to 
say that they don't use a strategy; rather that they 
don't know it and haven't consciously selected a 
strategy. 

The hardware strategy depends on having an under­
standing of the general needs of the computer depart­
ment. The needs for security, reliability, independence, 
centralization of employees, type of computing to be 
done, amount of computing, etc., must be formulated 
in general terms before a strategy decision can be made. 
There are many possible ways to arrange computing 
equipment, and they each have advantages, disadvan­
tages, and, as usual, different costs. The problem is to 
pick the strategy which responds to the aggregate of 
the general needs. 

Perhaps some examples can best demonstrate the 
essence of a computing strategy. A large oil company 
having both significant scientific and business process­
ing decides to separate the two applications onto two 
machines with each machine chosen for its performance/ 
cost in one of the two specialized domains. A highly 
decentralized company installs one large economical 
general purpose computer but with remote terminals 
each of which is capable of performing significant 



102 Fall Joint Computer Conference, 1972 

independent processing when not being used as a ter­
minal. A highly centralized company installs two large 
mirror-image general purpose computers with remote 
terminals which are efficient in teletransmission. 

This is one area where the in-house computer depart­
ment is not exactly like an external supplier of services, 
for the system strategy must reflect the general needs, 
and constraints, of the whole corporation. 

Selection of a system 

Mter the strategy is known, it becomes possible to 
better analyze and formulate the computing needs in 
terms of the chosen strategy. This usually results in a 
formal specification of computing requirements which 
includes workload projections for the expected life of 
the system. This is not a trivial task and will consume 
time, but the service rendered by the eventual system 
will directly depend on the quality of this task. 

Once an anticipated workload is defined, one is free to 
utilize one, or a combination, of the methods commonly 
used for evaluating computer performance. Among 
these are simulation, benchmarks, and technical expert 
analysis. 

One key decision will have a great influence on the 
results of the system selection: is a complete manufac­
turer demonstration to be required? This question 
should not be answered hastily; because a demonstra­
tion requires completely operational facilities, which 
may guarantee that the computer department will get 
yesterday's system, tomorrow. On the other hand, not 
having a demonstration requirement may bring to­
morrow's most advanced system, but perhaps late and 
not quite as advanced as expected. 

In any case, some methodology of system selection is 
required, if only to minimize the subjectivity which is 
so easily disguised behind technical jargon. 

Tuning of the system 

The winner of the hardware selection should not be 
allowed to start to take advantage of the computer 
department once the choice is made. On the contrary, 
the computer department is now in its strongest posi­
tion as the parameters are much better defined. 

One more iteration on the old specifications of 
requirements can now be made in light of the properties 
of the selected system. Also, an updating of the work­
load estimates is probably in order. Armed with this 
information, the computer department is now ready to 
do final battle to optimize the utilization of the system. 

This optimization involves more than just configur­
ing the hardware. It is a fine tuning of the computing 

environment. Take an example. As a result of the 
characteristics of the selected computer system, it might 
turn out that the mix of jobs "required" during the peak 
hours dictates that the expensive main memory be 50 
percent larger than at any other time. Informing the 
clients of this fact, and that the additional memory cost 
will naturally be spread over their peak period jobs, will 
usually determine if all the requirements are really this 
valuable to the client. The client has the right to be 
informed of problems that will directly affect his service 
or costs. Only he can evaluate them and decide what is 
best for him. 

Tuning of the environment involves selecting the best 
technical options, fully exploiting the potential of the 
computing configuration, and otherwise varying the 
parameters available. The trick is to examine all the 
parameters in the environment, not just the technical 
ones. This tuning process should be made, on a periodic 
basis, to insure that the environment remains as respon­
sive as possible to the current needs. 

PROPOSAL-AN ORGANIZATIONAL 
STRUCTURE FOR THE IN-HOUSE 
COMPUTER DEPARTMENT 

It may not be possible to organize every computer 
department in the same manner, but some orientation 
should be found which would minimize the lateral 
dependencies in the organization. Perhaps a division of 
responsibilities based on the time perspective would be 
useful. Something as simple as a head office with three 
sections for long-range, medium-range, and short-range 
tasks could minimize lateral dependencies and still 
allow for exploitation of innate flexibility. In the lan­
guage of the computer department, these sections might 
be called the head office, planning, projects, and 
operations, as shown in Figure 1. 

The head office 

There are three functions which must be performed 
by the head office. These functions are those which 

HEAD 

OFFICE 

PROJECTS 
SECTION 

Figure 1 



encompass all of the other sections and are integral to 
the computer department. 

The first, and most important, of the functions for 
the head office is certainly marketing and client rela­
tions. All aspects of a service's life cycle involve the 
customer and he must be presented with a common 
point of contact on the business level. Every client 
should feel that he has the attention of city hall for 
resolving problems. In the opposite direction, the three 
sections should also use the head office for resolving 
conflicts or making decisions which affect the clients. 

The second function of the head office is to control 
the life cycle of a service. As a service matures from 
definition to development to operations, it will be passed 
from one section to another. This phasing avoids 
requiring the technical people to change their outlook 
and skills to match the changes in the maturing process, 
but may create problems as a service is passed from 
hand to hand. Only the head office can control the 
process. 

Resource control is the last function of the head office. 
The allocation of the various resources is an unavoidable 
responsibility and must reflect the changing require­
ments of the computer department. 

The planning section 

This is the long-range oriented group which must 
combine technical and market knowledge to plan for 
the future. The time orientation of this section will vary 
from company to company, but any task which can be 
considered as being in the planning phase is included. 

Among the planning tasks is the development of long­
range strategy. This strategy must be founded on a 
knowledge of expected customer needs (market re­
search), advances in technical capabilities (state-of-the­
art studies), and constraints on the computer depart­
ment (corporate policy). Development of an equipment 
strategy is a good example of this task. 

Another planning function is the developing of 
functional specifications for potential new services. In 
this respect, the planning section directly assists the 
head office in defining new services for clients. 

Lastly, -the planning section assists the projects sec­
tion by providing state-of-the-art techniques which can 
be used in developing a specified service. 

The projects section 

This section has responsibility for the tasks in the 
computer department which are between planning and 
operation. Included is both development of services and 
changes in the technical facilities. The time orientation 

The In-House Computer Department 103 

is limited for each task and each task is executed in a 
project approach. 

A permanent nucleus of specialists exists to evaluate 
and implement major changes in the equipment. Each 
such major change is limited in its scope and accom­
plished on a project basis. 

Development of services is naturally a task for the 
projects section. Each such project is performed by a 
team composed of people from the permanent nucleus 
and from the other two sections. The leadership comes 
from the projects section to insure that the project 
philosophy is respected, but utilization of personnel 
from the other sections assists in the transistions from 
planning to projects and from projects to operations. 

This latter transition from development to operations 
is a part of the third function of the projects section. 
Direct aid is given to the operations section to insure 
that project results are properly understood and ex­
ploited in the day-to-day operations. 

The operations section 

Here is the factory. The time orientation is immedi­
ate. There are five major tasks to be performed, each of 
which is self-evident. 

• Day-to-day production of the services, 
• Accounting, analysis and control of production 

costs, 
• Installation and acceptance of new facilities, 
• Maintenance of all facilities (this includes systems 

software and client services), 
• Recurring contact, training, and aid to the clients 

in use of the services. 

TWO EXAMPLES 

Perhaps the functioning of this organization can be 
demonstrated by an exampleJrom each of the two major 
areas of services and resources. 

The life cycle of a service may begin either in the 
planning section (as a result of market research) or in 
the head office (as a result of sales efforts). In any case, 
the definition of the service is directed by the head office 
and performed by the planning section. Once the con­
tract is signed, the responsibility passes to the projects 
section and the project team is buJlt for the development 
effort. On the project team there will be at least one 
member from the planning section who is familiar with 
the definition of the service. The operations section also 
contributes personnel to facilitate the turnover at the 
end of the project. Other personnel are gathered from 
the permanent nucleus and the sections as needed. Each 



104 Fall Joint Computer Conference, 1972 

project member is transferred to the project section for 
the life of the project. The service is implemented, 
turned over to the operations section, and the project 
team is disbanded. Daily production and maintenance 
are performed by the operations section as is the peri­
odic overhaul of the system. Each change of sections 
and all client contacts are under the control of the head 
office. 

For resource utilization a close parallel exists. The 
head office again controls the life cycle. As an example, 
take the life cycle of a computer system. The planning 
section would develop a strategy of computing which 
would be approved by the head office. When the time 
arrived for changing the computer system, the projects 
section would define a project and combine several 
temporary members and permanent nucleus personnel 
to form the project team. A computer system selection 
would be made in line with the strategy of computing, 
and the system would be ordered. The operations sec­
tion would be trained for the new system and accept it 
after satisfactory installation. Periodic tuning of the 

CLIENTS 

1 
HEAD 

OFFICE 

I 
servi ce functi ons I SERVIcE- -, 

rt - - - --------1 SALES 
I L ___ ...J 

I I r----, 
resource functions RESOURCE r' .... - ....... -- -'-' .... - ''':''i NEEDS I 

L ____ .-1 

PROJECTS 
SECTION 

r I, 1 
'- ____ . ____ L t- _______ 1 ~ - - - -- - _ ... 
I 1 I " I 

l : RESOURCE: : RESOURCE : : RESOURCE , 
I_~ STRATEGY I--~ SELAE~610N ;--.: UTILIZATION: 

1 ': OPT 1M t ZAT I ON : : , 1--------1 :---------j !---------j 
I '- ________ , ,- - - - - - - - - -l '- - - _ - - - - - - -! 
~. : SERVICE , : SERVICE L I SERVICE , 

-- ~, DEF IN IT ION'- -,., DEVELOPMENT 1 -~ PRODUCTION I 
1 ________ I 1_ _ _ _ _ _ _ _ •• 1_ _ _______ .! 

Figure 2 

computer system would be done by permanent person­
nel in the projects section with the cooperation of the 
operations section. The flow of responsibility for these 
two examples is represented by Figure 2. 

SUMMARY 

Excepting those cases where the product of a company 
contains a computer component, the in-house computer 
department is in the business of providing an external 
service to the integral functions of a non-computer 
business. For this reason, the computer department 
does not appear to mesh well on an organizational chart 
of the departments which do directly contribute to the 
product line of the corporation. However, a well­
founded in-house computer department which depends 
on its users for funds and on itself for the optimizing of 
the resources provided by these funds can peacefully 
serve within the organization. 

The computer department can respond to these two 
principles of funding and resource control by recog­
nizing that its funds depend on the satisfaction of the 
users and that the optimizing of the use of these funds 
can be aided by organizing around the life cycles of 
both the services provided and the resources used. 

One possible organization designed to fulfill these two 
goals is composed of a head office and three sections. 
The head office maintains continuing control over the 
client relationship and over the life cycle of both ser­
vices and resources. Each of the three sections spe­
cializes on a certain phase of the life cycle: definition, 
development, and operation. 

Such an organizational approach for the computer 
department should provide: 

• Computer services which are responsive to, and 
justified by, the needs of the users, 

• A controlled and uniform evolution of the life cy­
cle of both services and resources, 

• A computer department management oriented 
towards dealing with technical considerations on a 
business basis, 

• Technical personnel who are client-oriented spe­
cialists and who are constantly challenged and 
matured by dealing with different problems from 
different frames of reference, 

• An in-house computer department which is self­
supporting, self-evaluating, and justified solely by 
its indirect contributions to the total productivity 
of the corporate efforts. 



A computer center accounting system 

by F. T. GRAMPP 

Bell Telephone Laboratories, Incorporated 
Holmdel, New Jersey 

INTRODUCTION 

This paper describes a computer center accounting 
system presently in use at the Holmdel Laboratory and 
elsewhere within Bell Telephone Laboratories. It is not 
(as is IBM's SMF, for example), a tool which measures 
computer usage and produces "original" data from 
which cost-per-run and other such information can be 
derived. ltis, rather, a collector of such data: it takes as 
input original run statistics, storage and service 
measurements from a variety of sources, converts these 
to charges, and reports these charges by the organiza­
tions (departments) and projects (cases) which incur 
them. 

"DESIGN CRITERIA," below, outlines the overall 
functions of the system and describes the design criteria 
that must be imposed in order to assure that these 
functions can be easily and reliably performed. 

The remainder of this paper is devoted to a somewhat 
detailed description of the data base (as seen by a user 
of the system) and to the actual implementation of the 
data base. Of particular interest is a rather unusual 
means of protecting the accounting data in the event of 
machine malfunction or grossly erroneous updates. 

Finally, we describe backup procedures to be followed 
should such protection prove to be inadequate. 

A description of the system interface is given in the 
Appendix for reference by those who would implement a 
similar system. 

DESIGN CRITERIA 

Many factors were considered in designing the 
system described here. The following were of major 
importance: 

Cost reporting 

Reporting costs is the primary function of any 
accounting system. Here, we were interested in accurate 

105 

and timely reporting of charges by case (the term 
"case" is the accounting term we use for "project" or 
"account"), so that costs of computer usage to a project 
would be known, and by department, to ascertain the 
absolute and relative magnitude of computer expenses 
in each organization. 

These orders of reporting are not necessarily identical, 
or even similar. For example, the cost of developing a 
particular family of integrated circuits might be charged 
against a single case, and computer charges for this 
development might be shared by departments specializ­
ing in computer technology, optics, solid state physics, 
and the like. Similarly, a single department may 
contribute charges against several or many cases-a 
good example of this is a drafting department. 

Original charging information is associated with a job 
number, an arbitrary number assigned to a programmer 
or group of programmers, and associated with the 
department for which he works, and the project he is 
working on. 

This job number is charged to one case and one 
department at any given point in time; however, the 
case and/or department to which it is charged may 
occasionally change, as is shown later. 

Simplicity of modification 

One thing that can be said of any accounting system 
is that once operational, it will be subjected to constant 
changes until the day it finally falls into disuse. This 
system is no exception. lt is subj ected to changes in 
input and output data types and formats, and to 
changes in the relationships among various parts of its 
data base. Response to such changes must be quick and 
simple. 

Expansion capability 

One of the more obvious unknowns in planning a 
system of this type is the size to which its data base may 



106 Fall Joint Computer Conference, 1972 

eventually grow. On a short term basis, this presents no 
problem: one simply allocates somewhat more storage 
than is currently needed, and reallocates periodically as 
excess space begins to dwindle. Two aspects of such a 
procedure must, however, be borne in mind: First, the 
reallocation process must not be disruptive to the 
day-to-day operation of the system. Second, there must 
be no reasonably foreseeable upper limit beyond which 
reallocation eventually cannot take place. 

Protection 

Loss of, say, hundreds of thousands of dollars worth 
of accounting information would at the very least be 
most embarrassing. Thus steps must be taken in the 
design of the system to guarantee insofar as is possible 
the protection of the data base. Causes of destruction 
can be expected to range from deliberate malfeasance 
(with which, happily, we need not be overly concerned), 
to program errors, hardware crashes, partial updating, 
or operational errors such as running the same day's 
data twice. If such dangers cannot be prevented, then 
facilities which recover from their effects must be 
available. 

Continued maintenance 

The most important design criterion, from the de­
signer's point of view, is that the system be put together 
in such a way that its continued maintenance be simple 
and straightforward. The penalty for failure to observe 
this aspect is severe: the designer becomes the system's 
perpetual caretaker. On the other hand, such foresight is 
not altogether selfish when one considers the problems 
of a computer center whose sole accounting specialist 
has just been incapacitated. 

THE DATA BASE: LEVEL 1 

There are two ways in which to examine the data base 
associated with the accounting system. In the first case, 
there is its external appearance: the way it looks to the 
person who puts information into it or extracts informa­
tion from it. Here, we are concerned with a collection of 
data structures, the way in which associations among 
the structures are represented, and the routines by 
means of which they are accessed. In the second, we look 
at its internal appearance: Here, we are interested in 
implementation details-in particular, those which 
make the system easily expansible and maintainable, 
and less vulnerable to disaster. These two aspects of the 
data base are, in fact, quite independent; moreover, to 

look at both simultaneously would be confusing. For 
this reason, we shall consider the first here, and defer 
discussion of the second to a later part of this paper. We 
first examine the structures themselves. 

Tally records 

Accounting system data is kept on disk in structures 
called tally records. Since we are concerned with data 
pertaining to cases, departments and job numbers, we 
have specified a corresponding set of tally records: Case 
Tally Records, Department Tally Records and Job 
Tally Records, respectively. These will be abbreviated 
as CTRs, DTRs and JTRs. In each tally record is kept 
the information appropriate to the particular category 
being represented. Such data fall naturally into three 
classes: fiscal information-money spent from the 
beginning of the year until the beginning of the present 
(fiscal) month; linkage data-pointers to associated 
records; other data---;anything not falling into the other 
two categories. 

For example, a CTR contains fiscal and linkage 
information: charges (a) up to and (b) for the current 
fiscal period, and a pointer to a chain of JTRs repre­
senting job numbers charged to the CTR's case. 

A DTR's content is analogous to that of a CTR; the 
exception is the inclusion of some "other" data. When 
we. report charges by case, the entire report is simply 
sent to the comptroller. Department reports, however, 
are sent to the heads of individual departments. To do 
so, we require the names of the department heads, and 
their company mailing addresses; hence the "other" 
data. 

A JTR contains considerably more information: in 
addition to the usual fiscal and linkage information, a 
JTR contains pointers to associated case and depart­
ment, data identifying the responsible programmer, and 
a detailed breakdown of how charges for the current 
month are being accumulated. 

There is no way of determining a priori those things 
which will be charged for in order to recover computer 
center costs. In the olden days (say, 10 years ago) this 
was no problem: one simply paid for the amount of time 
he sat at the computer console. With today's computers, 
however, things just aren't that simple, since the 
computer center is called upon to provide all sorts of 
computing power, peripherals and services, and in turn, 
must recover the costs of said services from those who 
use them. Thus one might expect to find charges for 
CPU time, core usage, I/O, tape and disk storage 
rental, mounting of private volumes, telephone connect 
time, and so on. Add to this the fact that the charging 



algorithm changes from time to time, and it quickly 
becomes apparent that the number and kinds of 
charging categories simply defy advance specification. 

Further, it seems clear that a given resource need not 
always be charged at the same rate-that in fact the 
rate charged for a resource should be a function of the 
way in which the resource is being used. For example, 
consider a program which reads a few thousand records 
from a tape and prints them. If such a program were to 
be run in a batch environment, in which printed output 
is first spooled to a disk and later sent to a high speed 
printer, one would expect the tape drive to be in use for 
only a matter of seconds. If the same program were to be 
run in a time-shared environment, in which each record 
read was immediately shipped to a teletype console for 
printing, the drive might be in use for several hours. If 
the computer center's charging algorithm is designed to 
amortize the rental costs of equipment among the users 
of the equipment, the latter use of "tape" ought to be 
considerably more expensive than the former, even 
though the same amount of "work" was done in each 
case. 

For these reasons, we chose to make the process 
table-driven. In this way, new charging categories can 
be added, old ones deleted, and rates changed simply by 
editing the file on which a rate table resides. Such a 
scheme has the obvious drawback of requiring a table 
search for each transaction with the system, but the 
inefficiencies here are more than compensated by the 
ability to make sweeping changes in the charging 
information without having to reprogram the system. 

Our rate table is encoded in such a way that it may be 
thought of as a two dimensional matrix. One dimension 
of the matrix consists of the services offerred by the 
computer center: batch processing (in our case, an ASP 
system), time shared services, data handling (a catch-all 
category which includes such things as tape copying, 
disk pack initialization and the like) storage rental, and 
sundry others. The other dimension consists of the usual 
computer resources: CPU time, core, disk and tape 
usage, telephone connect time, etc. 

When a user incurs a charge, it is recorded in his JTR 
as a triple called a "chit." The chit consists of a service 
name, such as "ASP," a resource name, such as "CPU," 
and the dollar amount which he has been charged. In 
this implementation, each chit occupies twelve bytes: 

SERV RES COST 

BYTE: 0 4 8 

A Computer Center Accounting System 107 

These chits are placed in an area at. the end of the JTR. 
Initially, the area is empty. As time progresses and 
charges are accumulated, the number of chits in the 
JTR grows each time the job number is charged for a 
service-resource combination that it hasn't used before. 
The JTR itself is of variable length, and open-ended "to 
the right" to accommodate any number of chits that 
might be placed there. 

Linkages 

There are, in general, two ways in which one accesses 
information in the data base. Either one knows about 
a job number, and applies a charge against it and its 
associated case and department, or one knows about a 
case or department number and desires to look at the 
associated job numbers. This implies that there must be 
enough linkage information available for the following: 

(a) Given a job number, find the case and depart­
ment to which that number is charged. 

(b) Given a case or department number, find all of 
the job numbers associated with that case or 
department. 

The first case is trivial: one simply spells out, in a 
JTR, the case and department to which the job number 
is charged. 

The second case is somewhat more interesting in that 
there may be one, or a few, or even very many job 
numbers associated with a single case or department. At 
Holmdel, we have the worst of all possible situations in 
this regard, in that the large majority of our cases and 
departments have very few job numbers associated with 
them, whereas a certain few have on the order of a 
hundred job numbers. Viewed in this light, schemes such 
as keeping an array of pointers in a CTR or DTR are, 
to say the least, unattractive because of storage 
management considerations. 

What we have chosen to do, in keeping with our 
philosophy of open-endedness, is to treat the case-job 
and department-job structures as chains, and using the 
CTRs and DTRs as chain heads, operate on the chains 
using conventional list processing techniques. In our 
implementation, a case-job chain (more properly, the 
beginning of it) appears in a CTR as a character field 
containing a job number charged to that case. In the 
JTR associated with that job number, the chain is 
continued in a field which either contains another job 
number charged to the same case, or a string of zeros, 
which is used to indicate the end of a chain. Fields in the 
DTR and JTR function analogously to represent 
department job chains. 



108 Fall Joint Computer Conference, 1972 

Traversing such a chain (as one frequently does while 
producing reports) is quite simple: begin at the begin­
ning and get successive JTRs until you run out of 
pointers; then stop. 

Inserting a new job number into a case- or depart­
ment-job chain is also straightforward: copy the chain 
head into the chain field in the new JTR; then point the 
CTR or DTR to the new JTR. Deletion of JTRs from 
the system is accomplished by means of similar "pointer 
copying" techniques. 

Indices 

As was previously mentioned, the job numbers that 
are assigned to users are arbitrary. They happen, in 
point of fact, to be sequential for the most part, but this 
is simply a matter of clerical convenience. The only 
convention followed by case and department numbers is 
that (as of this writing) they are strictly numeric. This 
implies the necessity of a symbol table to associate 
names: case, department and job numbers, with their 
corresponding tally records on disk. 

Three types of symbol table organization were con­
sidered for use with this system: sequential, in which a 
search is performed by examining consecutive entries; 
binary, in which an ordered table is searched by suc­
cessively halving the table size; hash, in which a ran­
domizing transformation is applied to the key. Of these, 
the sequential search is simply too slow to be tolerated. 
While the hashing method has a speed advantage over 
the binary method, the binary method has a very strong 
advantage for our application, namely, that the table 
is ordered. 

One of the functions of the accounting system is that 
of producing reports, which are invariably ordered by 
case, department or job number. The ordering of the 
indices facilitates the work of many people who use 
the system. 

In this implementation, there are three indices: one 
for cases, one for departments, and one for job numbers. 
These will be abbreviated CDX, DDX and JDX, re­
spectively. Each index consists of some header informa­
tion followed by pairs of names and pointers to as­
sociated tally records. Header information consists of 
five items: 

RL: Record Length for the tally record. This 
is needed by the PL/I and 08/360 Input­
Output routines. 

TN: The number of entries currently in the 
index. 

TMAX: The maximum number of entries which 

will fit in the core storage currently al­
located the index. 

RO,MRT: are not relevant at this time, and will be 
discussed later. 

Entries are of the form (P1,P2,NAME), where PI 
and P2 are 31-bit binary numbers pointing to records 
in a direct access data set, and NAME is a character 
string of appropriate length containing a case, job or 
department number. 

A ccessing techniques 

Two types of access to the data base are required. 
The first is the programmer's access to the various 
structures and fields at the time he writes his program. 
The second is the program' 8 access to the same infor­
mation at the time the program is run. 

The choice of PL/I as the language in which to write 
the system was, oddly enough, an easy one, since of all 
of the commonly available and commonly used lan­
guages for System/360, only PL/I and the assembler 
have a macro facility. Using assembly language would 
make much of the code less easily maintainable, and 
thus PL/I won by default. 

The macro facility is used solely to describe various 
data base components to the routines that make up the 
accounting system by selectively including those com­
ponents in routines which use them. Further, all refer­
ences to these components are made via the macros. 
Adoption of this strategy has two somewhat related 
advantages: First,. it forces consistent naming of data 
items. Without the macros, one programmer would call 
a variable "X", another would call it "END-OF­
MONTH-TOTAL", and so on. This, at least, would 
happen, and worse can be imagined. Second, should 
there be a change in a structure, all of the programs 
that use the structure must be recompiled. If the 
macros are used, the change can be made in exactly 
one place (the compile-time library) before recompila­
tion. 

Run-time access to the data base is achieved by fol­
lowing simple conventions and by using routines that 
have been supplied specifically for this purpose. 

These conventions are simple because they are few 
and symmetric. The data base consists of six struc­
tures: the three indices, ~nd the three types of tally 
records. None of these structures are internal to a pro­
gram that interfaces with the data base. All of them 
are BASED, that is, located by PL/I POINTER 
VARIABLES which have been declared to be EXTER­
NAL so that they will be known to all routines in the 



system. Thus, for example, a program that accesses the 
JDX would contain the following declarations: 

DCL 1 JDX BASED(PJDX), 
/* The JDX is defined, and * / 

% INCLUDE JDX; 
/* its detailed description * / 

DCL PJDX POINTER EXTERNAL; 
/* called from the library. * / 

The same convention applies to all of the other struc­
tures: they are allocated dynamically and based on ex­
ternal pointers whose names are the structure names 
prefixed by "P". A more detailed description of the 
user interface is given in the Appendix. 

The foregoing implies that there is a certain amount 
of initialization work to be done by the system: setting 
pointers, filling indices and the like. This is, in fact, the 
case. Initialization is accomplished by calling a routine 
named INIT, usually at the start of the PL/I MAIN 
program. Among its other functions, INIT: 

(a) Opens the accounting files. These include the six 
files containing the indices and tally records. 
Also opened are the file which contains the rate 
table, and a file used for JTR overflow. 

(b) Allocates space for the indices and tally records, 
then sets pointers to the allocated areas. 

(c) Reads into core the indices and the rate table, 
then closes these files. Some unblocking is re­
quired here both because the designers of PL/I 
(and indeed, of OS/360) have decreed that rec­
ords shall not exceed 32,756 bytes in length, and 
because short records make the data base ac­
cessible to time shared programs running on our 
CPS system. 

Once INIT returns control, the operating environ­
ment for the accounting system has been established. 
Indices are in core, and can be accessed by conventional 
programming techniques or by using the SEARCH, 
ENTER and DELETE routines, provided. 

Reading and writing. of tally records is also done by 
system routines, these being: 

RDCTR 
RDDTR 
RDJTR 

WRCTR 
WRDTR 
WRJTR 

The read-write routines all require two arguments-a 
character string containing the name of the tally record 
to be read or written, and a logical variable which is set 
to signal success or failure to the caller. Actual data 

A Computer Center Accounting System 109 

transfer takes place between a direct access data set 
and a based "TR" area in core. A typical example of the 
use of these routines is: 

CALL RDJTR(MYJOB,OK); IF --, OK THEN STOP; 

Two higher level routines, FORMJTR and LOSE­
JTR, are available for purposes of expanding or con­
tracting the data base. FORMJTR examines the con­
tents of JTR. If the JTR seems reasonable, that is, if it 
contains a case and department number, and its chain 
pointers are explicitly empty (set to zero) it performs 
the following functions: 

(a) Checks to see if an appropriate CTR and DTR 
exist. If not, it creates them. 

(b) Writes the JTR. 
(c) Includes the JTR in the linkage chains extending 

from the CTR and DTR. 

LOSEJTR performs exactly the inverse function, in­
cluding deleting CTRs and DTRs whose chains have 
become empty as a result of the transaction. 

INTERFACING WITH THE SYSTEM 

Activities involving the system fall into four general 
categories: creating the data base, modifying the exist­
ing data base, inputting charges, and producing reports. 

Creating the data base 

No utility is provided in the system for the express 
purpose of creating the data base, because the form and 
format of previously extant accounting information 
varies widely from one Bell Laboratories installation to 
the next. A program has to be written for this purpose 
at each installation; however, the system routines pro­
vided are such that the writing of this program is a 
straightforward job requiring a few hours' work, at 
most. Briefly, creation of the data base proceeds as fol­
lows: 

(a) Estimates are made of data set space require­
ments. These estimates are based on the number 
of cases, departments and job numbers to be 
handled, and on the direct access storage device 
capacities as described in IBM's Data Manage­
ment! publication. Data sets of the proper size 
are allocated, and perhaps catalogued, using 
normal OS/360 procedures. 

(b) An accounting system utility named RESET is 



110 Fall Joint Computer Conference, 1972 

then run against the files. RESET initializes the 
indices so that they can communicate their core 
storage requirements to the system. No entries 
are made in the indices. 

(c) The aforementioned installation-written rou­
tine is run. This routine consists of a two step loop: 
read in the information pertinent to a job number 
and construct a JTR; then call FORMJTR. 

(d) At this point, the data base is installed. A pro­
gram called UNLOAD is run so that a copy of 
the data base in its pristine form is available for 
backup purposes. 

Modifying the data base 

Two types of data base modifications are possible: 
those which involve linkage information, and those 
which do not. The latter case is most easily handled­
an EDITOR is provided which accepts change requests 
in a format similar to PL/l's data directed input, then 
reads, modifies and rewrites a designated tally record. 
The former case is not so simple, however, and is broken 
down into several specific activities, each of which is 
handled by an accounting system utility supplied spe­
cifically for that purpose. 

Authorizing new job numbers and closing old ones is 
done by a program called AUTHOR. This program adds 
a new entry to the data base by calling FORMJTR, 
and closes a job number by setting a "closed" bit to 
"I" in its JTR. Note that closed job numbers are not 
immediately deleted from the system. 

Deleting closed job numbers is done once per year 
with an end-of-year program designed for that purpose. 
At this time, DTRs and CTRs which have no attached 
JTRs are also deleted from the system. 

Changing the case or department number to which a 
job number is charged may be done in either of two 
ways. It is best to illustrate these by example. 

In the first case, consider a department which has 
been renamed as a result of an internal reorganization. 
Its department number has been changed, say from 1234 
to 5678, yet its work and personnel remain the same. In 
this case, it is desirable to delete "1234" from the DDX, 
install "5678", and change all "1234" references in the 
department-job chain to "5678". 

As a second example, consider the case of a job num­
ber which was used by department 2345 but is now to 
be used by department 6789 due to a change in depart­
mental work assignments.· On the surface, this seems to 
be a matter of taking the job number out of 2345's 
chain and inserting it into 6789's. Unfortunately, it 
isn't that simple. 

The charge fields in a chain, if added, should be equal 
to the field in the DTR at the chain head. Simply mov­
ing a JTR from one chain to another will make the old 
chain's fields sum low, and the new chain's fields sum 
high. The obvious solution to this problem is to forbid 
the changing of charged departments-i.e., to require 
that in the event that such a change is desired, the old 
job number be closed, and a new one authorized. Such 
a solution is not a very popular one, since job numbers 
have a habit of becoming imbedded in all sorts of hard­
to-reach places--catalogued procedures, data set names 
and the like. Furthermore, it has been our experience 
that programmers develop a certain fondness for par­
ticular job numbers over a period of time and are some­
what reluctant to change them. 

Our solution, then, is as follows: Given a job number, 
say 1234, whose charged department is to be reassigned, 
open a new job number, say 1234X, whose name was 
not previously known to the system, and which is 
charged to the proper department. Then close the old 
job number, and proceed to exchange n~mes in the 
JTRs, and linkage pointers in the respective chains. A 
utility called SWAP is available which permits renam­
ing or reassignment of either departments or cases (or 
both). 

Inputting charges 

As might be expected from our previous discussion of 
charging categories, there are many inputs to the ac­
counting system. Moreover, the input formats are quite 
diverse, and subject to constant change. In order that 
the people charged with maintaining the accounting 
system might also be able to maintain their own sanity, 
it was necessary to design a simple way of incorporating 
new sources of charging information into the system. 

Our first thought was to design a "general purpose 
input processor" i.e., a program that would read a data 
description and then proceed to process the data fol­
lowing (in this case, charge records). This approach 
was quickly abandoned for two reasons. First, the data 
description language required to process our existing 
forms of charge records would be quite complicated 
and thus difficult to learn and use, if in fact it could be 
implemented at all. Second, for each class of input 
charges, there is a certain amount of validity checking 
that can be performed at the time the charge records 
are read. Such checking need not be limited to a single 
record-for example, if it is known that a certain type 
of input consists of sequentially numbered cards, then a 
check can be made to determine whether some cards 
have been left out. 



Our approach was as follows. For each type of charge 
record used by an installation, an input program must 
be written. This input program reads a charge record, 
does whatever checking is possible, constructs a stand­
ard structure consisting of a job number, service name, 
and one or more resource-quantity pairs, and passes 
this structure to aprogram called CHARGE. 

CHARGE does the rest. It brings in the appropriate 
JTR, converts the quantities in the resource-quantity 
pairs to dollar charges via factors contained in the rate 
table, charges the JTR, adding chits if necessary, and 
charges the associated CTR and DTR. The important 
point here is that the writer of an input program is al­
lowed complete freedom with respect to formats and 
checking procedures, while he is also allowed almost 
complete naivete with respect to the rest of the system. 

Reporting 

The system includes programs to produce three 
"standard" reports: one, (by cases) to be sent to the 
comptroller, one (by departments) to be sent to depart­
ment heads, and a third (by job number) to be sent to 
the person responsible for each active job number in 
the system. 

The comptroller's report is required of the computer 
center, and its format was specified in detail by the 
comptroller. The other two reports were designed to 
give the users of the computer center a clear and easily 
readable report of their computer usage in as concise 
a form as possible. 

The department report shows old and recent charges 
to the department, followed by a list of job numbers 
being charged to that department. Accompanying each 
job number are its charges, the case to which it is 
charged, and the name of the person responsible for it. 
A more detailed breakdown is certainly possible; the 
average department head, however, usually doesn't 
want to see a breakdown unless something looks un­
usual. In that case, the programmer responsible for the 
unusual charges is probably his best source of informa­
tion. 

The user's report shows old and new charges for a 
job number, together with a detailed breakdown of the 
new charges by service-resource pairs. Its use to the 
programmer is threefold: it satisfies his curiousity-it 
enables him, in some cases, to detect and correct un­
economical practices-and it enables him to supply more 
detailed information to his department head should the 
need arise. 

In order to produce the user's report, all of the chits 
in all of the JTRs in the system must be scanned. Dur-

A Computer Center Accounting System 111 

ing the scanning process, it is a trivial matter to main­
tain a set of "grand totals" showing the money re­
covered by the computer center in terms of all service­
resource categories. This valuable "by-product" is pub­
lished after the user reports have been generated. 

More specialized reporting is possible, but these pro­
grams, by their nature, are· best written by particular 
installations rather than distributed as a part of the ac­
counting system package. As was mentioned earlier, 
the ordering of the indices greatly facilitates the writing 
of such programs. 

THE DATA BASE: LEVEL II 

The foregoing discussion of the data base was aimed 
at the user of the system, and thus said nothing about 
its structure in terms of physical resources required, 
and the way in which these resources are used. We now 
expand on that discussion, concentrating on those fac­
tors influencing expansibility and protection. The main 
features of interest here are the implementation of tally 
record storage, the indices, and the provision to handle 
variable length JTRs. 

Free storage pools 

CTRs, DTRs and JTRs are stored on direct access 
data sets. When it is desired to access a tally record, a 
search of the appropriate index is made, and a relative 
record number on which the tally record is written is 
obtained from the index and used as the KEY in a PL/I 
read or write statement. The interesting feature of the 
system is that there is no permanent association between 
a particular tally record and a particular relative record 
number. 

Direct access records used to contain tally records 
are stored in linked pools. The RO entry in the appropri­
ate index head points to the first available link, that 
link points to the second, and so on. One can think of 
the initial condition of a pool (no space used) as follows: 
RO contains the number 1, record # 1 contains the num­
ber 2, etc. 

When a link is needed for tally record storage, a 
routine called GETLINK detaches the record pointed 
to by RO from the free pool by copying that record's 
pointer into RO. The record thus detached is no longer 
available, and its number can be included into an index 
entry. A second routine called PUTLINK performs 
exactly the inverse function. 

These activities are well hidden from the users of 
the system. The obvious advantage of the casual user 
not seeing the list processing operations is that he won't 



112 Fall Joint Computer Conference, 1972 

be confused by them. The disadvantage is that when he 
runs out of space and allocates a larger data set, he will 
forget to initialize the records by having the nth unused 
record point to the n + 1st, as above. On the assump­
tion (probably valid) that the data base will continue 
to grow over long periods of time, we have simplified 
the initialization procedure as follows: 

(a) Let RO point to the first available record (ini­
tially 1) and MRT point to the maximum record 
ever taken (initially 0). 

(b) When GETLINK calls for a record, compare 
RO and MRT. If RO>MRT then the data base 
is expanding into an area it never used before. 
In this case, set MRT=MRT+1. Otherwise, 
the record specified by RO has been used in the 
past and has since been returned by PUTLINK, 
in which case we proceed as before. 

With this procedure, initialization of the pools is 
done at the time that the data base is first created. 
Subsequent reallocation of data sets for purposes of en­
larging the storage area is done as per standard OS / 
360 practice. 

Indices and protection 

Recall that although an index entry can be thought 
of as consisting of a pair (P ,NAME) where P is a record 
number, and NAME is some character string, the entries 
are in fact represented as triples (Pl,P2,NAME). At 
the time that an index is read into core by INIT, all 
of the PIs contain record numbers, while all of the P2s 
contain O. Reading and writing of the tally records is 
done as follows. For reading: 

(a) If the P2 entry is non-zero, read record # P2. 
(b) Otherwise, read record # Pl. 

And for writing: 

(a) If the P2 entry is zero, call GETLINK for a 
free record number, and copy it into P2. 

(b) Write record # P2. 

At the conclusion of a run in which the data base is 
to be updated, the main program, which had caused the 
operating environment to be established by calling 
INIT, now calls a routine named FINI, which in turn: 

(a) Exchanges the P2 and PI index entries in all 
cases where P2 is non-zero. 

(b) Returns surplus links to the pool via PUTLINK. 
(c) Rewrites the indices in more than one place. 
(d) Closes all of the files. 

Such a strategy offers both protection and con­
venience. Clearly, the danger of partial updating of the 
files during a charging run is minimized. Indeed, our 
standard operating instructions for those who run the 
system state that a job which crashes prior to comple­
tion is to be run a second time, unchanged. Further, a 
program that doesn't call FINI will not update the 
accounting files. Included in this category, besides "read 
only" reporting programs, are debugging runs, and in­
put programs which contain algorithms to test the 
validity of incoming data, and which may not modify 
the files. 

Variable length records 

The JTRs, because of the fact that they can contain 
an unpredictable number of chits, are variable in length. 
Overflow records are obtained via GETLINK to extend 
the JTR as far as required. As read into storage by 
RDJTR, the overflow links are invisible to the user. 

Besides the obvious convenience, the overflow han­
dling in the JTR offers a different, if not devious type of 
protection. In the case of a system such as this, where 
the number of charging categories is, for practical 
purposes, unlimited, there is always the temptation to 
make the charging breakdown finer, and finer, and 
finer. 

Succumbing to this temptation gives rise to nasty 
consequences. Processing time and storage space in­
crease but the reports from the system become more 
voluminous, hence less readable, and in a sense contain 
less information because of the imprecision inherent in 
so many of the "computer usage measurement" tech­
niques. (In this latter case, we often tend to behave 
analogously to the freshman physics student who mea­
sures the edges of a cube with a meter stick and then 
reports its volume to the nearest cubic millimicron.) 

By happy coincidence, it turns out that in a system 
with "normal" charging categories, most JTRs have 
relatively few chits-too few to cause overflow-while 
occasional JTRs require one or more overflow records. 
Should the breakdown become fine enough that most 
of the JTRs cause overflow, the cost of running the ac­
counting system rises-not gradually, but almost as a 
step. Further, if the breakdown is subsequently made 
coarser, the excess chits, and hence the overflow rec­
ords, quietly disappear at the end of the next account-



ing period. Thus the system is, in a sense, forgiving, and 
tends to protect the user from himself. 

BACKUP 

As Mr. Peachum2 aptly remarked, it has never been 
very noticeable that what ought to happen is what 
happens. In addition to our efforts to make the system 
crash-proof, we have also provided several levels of 
backup procedures. 

Backup indices 

As noted previously, FINI rewrites the indices, but 
in more than one place. Since the "extra" copies are 
written first, these can be copied to the "real" index 
files in the event that a crash occurs while the latter are 
being rewritten by FIN!. 

Unload-reload copies 

Two utilities, UNLOAD and RELOAD, are supplied 
with the system .. UNLOAD copies the structured files 
onto tape in such a way that the structure is preserved 
if RELOAD copies them back. It is our present prac­
tice to take UNLOAD snapshots daily, cycling the 
tapes once per week, and, with a different set of tapes, 
monthly, cycling the tapes once per year. 

Since chits are deleted at the end of each month 
(for economy of storage) UNLOAD-style dumps are 
also useful if it becomes necessary to backtrack for any 
reason to a point in time prior to the beginning of the 
current month. Further, the tapes are in such a format 
that they are easily transmitted via data link to another 
installation for purposes of inspection or off-site pro­
cessing. 

08/360 dump-restore 

It is the practice, in our computer center, to periodic­
any dump all of our permanently mounted direct access 
storage devices using the OS/360 Dump-Restore utility. 
Since the accounting files are permanently mounted, 
this procedure provides an additional level of safety. 

Reformatting 

The worst possible mishap is one in which the chains 
in the system, for one cause or another, are destroyed 

A Computer Center Accounting System 113 

to the extent that one or more of them "points to the 
wrong place". Although this condition is most unusual, 
it is also most insidious, since there is a possibility that 
errors of this, type can remain hidden for, perhaps, as 
long as a few weeks. If enough input data has been 
added to the data base to make it undesirable to back­
track to the point prior to that at which the initial error 
is suspected to have occurred, symbolic information 
sufficient to regenerate the pointers is contained in the 
data base, and routines have been provided to copy the 
data base, sans structure, onto a sequential file, and 
then to rebuild it, using FORMJTR. 

ACKNOWLEDGMENT 

The design and implementation of the accounting 
system described here was completed with the help 
and cooperation of many people, and for this the author 
is truly grateful. In particular, the efforts, advice, in­
sight and inspiration provided throughout the project 
by Messers. R. E. Drummond and R. L. Wexelblat as­
sured its successful completion. 

REFERENCES 

1 IBM system/360 operating system data management services 
Order Form GC26-3746 

2 B BRECHT 
Die Dreigroschenoper 

APPENDIX 

The user-system interface 

The facilities provided to give the user convenient 
access to the data base and the routines which manipu­
late it can be divided into two categories: compile-time 
facilities and run-time facilities. 

Compile-time facilities 

These consist of PL/I macro definitions describing 
various structures. Since the storage class of a structure 
(e.g., BASED, STATIC, etc.) may be different in dif­
ferent routines, or, where there are multiple copies of a 
structure, even within the same routine, the initial 
"DCL 1 name class," must be provided by the user. 

Compile-time structures include the indices (CDX, 
DDX, JDX) the tally records (CTR, DTR, JTR) and 
the rate table. 



114 Fall Joint Computer Conference, 1972 

Example 1: 

DCL 1 CDX BASED(PCDX), 
% INCLUDE CDX; 

produces: 

DCL 1 CDX BASED (PCDX), 
2 RL FIXED(15) BINARY, /* Record Length * / 
2 TN FIXED(15) BINARY, /* # of Entries * / 
2 TMAX FIXED(31) BINARY, 

2 RO FIXED(31) BINARY, 
/* Max. Entries. * / 

/* Pool Head * / 
~2 MRT FIXED(31) BINARY, 

/* Max. Record Taken * / 
2 VAREA(O:N REFER(CDX.TN)), 

3 PI FIXED(31) BINARY, 
3 P2 FIXED(31) BINARY, 
3 NAME CHAR(9); 

Example 2: 

/* Index Proper * / 
/* Read Ptr. * / 
/* Write Ptr. * / 

/* Case Number * / 

DCL 1 CTR BASED (PCTR), 
% INCLUDE CTR; 

produces: 

DCL 1 CTR BASED (PCTR) , 
2 CLNK FIXED(31) BINARY, 

/* Used by GETLINK. */ 
2 CCAS CHAR(9) , /* Case charged. */ 
2 CUNUSED CHAR(3), /* For future use. * / 
2 COLD FIXED(31) BINARY, 

/ * $ to last fiscal. * / 
2 CNEW FIXED(3l) BINARY, 

/* Latest charges. * / 

2 CCUM FIXED(31) BINARY, 
/* Cumulative total. * / 

2 CJCH CHAR(8); /* Job chain for this case. * / 

Example 3: 

Since it is expected that the user will always use the 
system-supplied rate table (as opposed to a private copy 
of same): 

% INCLUDE RATES; 
produces: 

DCL 1 RATES BASED (PRTS) , /* Rate Data */ 
2 #SERVICES FIXED BIN(31), 
2 TOT_RES FIXED BIN(31), 

2 SERVICE(12) , 
/* Tot. # Resources */ 
/* Classes of Service * / 

3 NAME CHAR(4) , 
3 CODE CHAR(l), /* Comptroller's Code */ 
3 #RESOURCES FIXED BIN(31), 
3 OFFSET 

/* Into Res. Table */ FIXED BIN(3l), 
2 RES_TABLE (120) , /* Resources */ 

3 NAME CHAR (20) , 
3 ABBR CHAR( 4), 
3 UNIT CHAR(8) , 
3 RATE FLOAT DED(14); /* Per-unit * / 

Run-time facilities 

Routines are provided to establish and terminate the 
system's run-time environment, maintain the indices, 
fetch and replace tally records, expand and contract the 
data base, and handle allocation of disk storage. These 
are shown in Table I, below. 

TABLE I-User Interface Routines 

ROUTINE 

INIT 
FINI 
SEARCH 
ENTER 
DELETE 
RDCTR 
RDDTR 
RDJTR 
WRCTR 
WRDTR 
WRJTR 
FORMJTR 
LOSEJTR 
GETLINK 
PUTLINK 

FUNCTION ARGUMENTS REQUIRED 

Initialization & ter- None. 
mination. 
Index maintenance. Index name, key name, return pointer, 

success indicator. 

Read and write rou- Name (i.e. case, department or job num-
tines for tally records ber), success indicator. 

Installation & dele- Job number, success indicator. 
tion of job nos. 
Allocate & return disk Data set name, pointer to 1st avail. 
space. record, return pointer. 

CALL INIT; 
CALL FINI; 

EXAMPLE 

CALL SEARCH(DDX, '1234', RP, 
OK); 

IF , OK THEN STOP; 
CALL RDJTR('MYJOB', OK); 

IF ,OK THEN DO; 
PUT LIST(MYJOBII'MISSING'); 
STOP; 

END; 

CALL FORMJTR(NEWJOB,OK); 
IF ,OK THEN STOP; 

CALL GETLINK 
(FILE,RP,POOLHD) ; 



An approach to joh pricing in a 
multi-programming environment 

by CHARLES B. KREITZBERG and JESSE H. WEBB 

Educational Testing Service 
Princeton, New Jersey 

INTRODUCTION 

Computers are amazingly fast, amazingly accurate, and 
amazingly expensive. This last attribute, expense, is one 
which must be considered by those who would utilize 
the speed and accuracy of computers. In order to 
equitably distribute the expense of computing among 
the various users, it is essential that the computer 
installation management be able to accurately assess 
the costs of processing a specific job. Knowing job costs 
is also important for efficiency studies, hardware 
planning, and workload evaluation as well as for billing 
purposes. 

For a second generation computer installation, job 
billing was a relatively simple task; since in this en­
vironment, any job that was in execution in the machine 
had the total machine assigned to it for the entire 
period of execution. As a result, the billing algorithm 
could be based simply upon the elapsed time for the 
job and the cost of the machine being used. In most 
cases, the cost for a job was given simply as the product 
of the run time and the rate per unit time. While this 
algorithm was a very simple one, it nevertheless was an 
equitable one and in most cases a reproducible one. 

Because of the fact that in a second generation 
computer only one job could be resident and in execu­
tion at one time, the very fast CPU s were often under 
utilized. As the CPUs were designed to be even faster, 
the degree of under utilization of them increased 
dramatically. Consequently, a major goal of third 
generation operating systems was to optimize the 
utilization of the CPU by allowing multiple jobs to be 
resident concurrently so that when anyone job was in a 
wait state, the CPU could then be allocated to some 
other job that could make use of it. While multi­
programming enabled a higher utilization of the CPU, 
it also introduced new problems in job billing. No 
longer was the old simple algorithm sufficient to 

115 

equitably charge for the running of jobs. The two major 
reasons for this are: 

• The sharing of resources by the resident jobs, and 
• The variation in elapsed time from run to run of a 
. given job. 

Unlike the second generation computer a given job 
no longer has all of the resources that are available on 
the computer allocated to it. In a multi-programming 
computer, a job will be allocated only those resources 
that it requests in order to run. Additional resources, 
that are available on the computer, can be allocated to 
other jobs. Therefore, it is evident that the rate per 
unit time cannot be a constant for all jobs, as it was for 
second generation computer billing, but must in some 
sense be dependent upon the extent to which resources 
are allocated to the jobs. 

The second item, and perhaps the most well-known, 
that influences the design of a billing algorithm for a 
third generation computer is the variation that is often 
experienced in the elapsed time from run to run of a 
given job. The elapsed time for any given job is no 
longer a function only of that job, but is also a function 
of the job mix. In other words, the elapsed time for a 
job will vary depending upon the kinds and numbers of 
different jobs which are resident with it when it is run. 

In order to demonstrate the magnitude of variation 
that can be experienced with subsequent runs of a given 
job, one job was run five different times in various job 
mixes. The elapsed time varied from 288 seconds to 
1,022 seconds. This is not an unusual case, but repre­
sents exactly what can happen to the elapsed time when 
running jobs in a multi-programming environment. The 
effect, of course, is exaggerated as the degree of multi­
programming increases. 

Not only can this variation in run time cause a 
difference in the cost of a job from one run to another, 



116 Fall Joint Computer Conference, 1972 

but it also can cause an inequitability in the cost of 
different jobs; the variation in run time can effectively 
cause one job to be more expensive than another even 
though the amount of work being done is less. 

Objectives 

We have isolated several important criteria to be met 
by a multi-programming billing algorithm. Briefly, 
these criteria are as follows. 

• Reproducibility-As our previous discussion has 
indicated, the billing on elapsed time does not 
provide for reproducibility of charges. Any al­
gorithm that is designed to be used in a multi­
programming environment should have as a 
characteristic, the ability to produce reproducible 
charges for any given job regardless of when or 
how it is run, or what jobs it is sharing with the 
computer. 

• Equitability-Any billing algorithm designed for 
use in a multi-programming environment must 
produce equitable costs. The cost of a given job 
must be a function only of the work that the job 
does, and of the amount of resources that it uses. 
Jobs which use more resources or do more work 
must pay more money. The billing algorithm must 
accommodate this fact. 

• Cost Recovery-In many computer operations it is 
necessary to recover the cost of the operation from 
the users of the hardware. The billing algorithm 
developed for a multi-programming environment 
must enable the recovery of costs to be achieved. 

• A uditability-A multi-programming billing al­
gorithm must produce audit able costs. This is 
particularly true when billing outside users for the 
use of computer hardware. The charges to the 
client must be audit able. 

• Encourage Efficient Use of the H ardware-8ince one 
goal in a design of the third generation hardware 
was to optimize the use of that hardware, a billing 
algorithm that is designed for use in a multi­
jobbing environment should be such that it en­
courages the efficient use of the hardware. 

• Allow for Cost Estimating-The implementation of 
potential computer applications is often decided 
upon by making cost estimates of the expense of 
running the proposed application. Consequently, 
it is important that the billing algorithm used to 
charge customers for the use of the hardware also 
enables potential customers to estimate before­
hand, the expense that they will incur when 
running their application· on the computer hard­
ware. 

We distinguish between job cost and job price: job cost 
is the amount which it costs the installation to process a 
given job; job price is the amount that a user of the 
computer facility pays for having his job processed. 
Ideally, the job price will be based on the job cost but 
this may not always be the case. In many organizations, 
notably universities, the computer charges are absorbed 
by the institution as overhead; in these installations the 
job price is effectively zero-the job costs are not. In 
other organizations, such as service bureaus, the job 
price may be adjusted to attract clients and may not 
accurately reflect the job cost. In either case, however, 
it is important that the installation management know 
how much it costs to process a specific job.1 •2 

The development of the job billing algorithm (JBA) 
discussed in this paper will proceed as follows: first, we 
will discuss the "traditional" costing formula used in 
second generation computer systems: 

cost = (program run time) X (rate per unit time) 

and we shall demonstrate its inadequacy in a multi­
jobbing environment. Second, we shall develop a cost 
formula in which a job is considered to run on a dedi­
cated computer (which is, in fact, a subset of the 
multi-programming computer) in a time interval 
developed from the active time of the program. 

DEVELOP1VIENT OF THE JOB PRICING 
ALGORITHlVI 

In order to recover the cost of a sharable facility over 
a group of users, the price, P, of performing some 
operation requiring usage t is; 

P= (C) ( (tk) ) 
Lti 

where; C is the total cost of the facility 

L ti is the total usage experienced 

(1) 

tk is the amount of use required for the operation 

Consider the billing technique which was used by 
many computer installations running a single thread 
(one program at a time) system. Let $m be the cost 
per unit time of the computer configuration. Then, if a 
program began execution at time tl and terminated 
execution at time t2, the cost of running the program 
was computed by: 

(2) 

As the utilization of the computer increased the cost 
per unit time decreased. 

The cost figure produced by (2) is in many ways a 



Approach to Job Pricing in Multi-Programming Environment 117 

very satisfying one. It is simple to compute, it is 
reproducible since a program normally requires a fixed 
time for its execution, it is equitable since a "large" 
job will cost more than a "small" job (where size is 
measured by the amount of time that the computers 
resources are held by the job). Unfortunately for the 
user, however, the cost produced by (2) charges for all 
the resources of the computer system even if they are 
unused. 

This "inflated" charge is a result of the fact that, in 
a single thread environment, all resources of the com­
puter system are allocated to a program being processed 
even if that program has no need of them. The effect of 
this is that the most efficient program in a single thread 
environment is the program which executes in the least 
amount of time; that is, programmers attempt to 
minimize the quantity (l? - t1) ; this quantity, called the 
wall clock time (WeT) of the program, determines the 
program's cost. 

Since the rate of the computer is constant, the only 
way to minimize the cost for a given program is to 
reduce its WeT; in effect, make it run faster. Hence, 
many of the techniques which were utilized during the 
second generation were designed to minimize the time 
that a program remained resident in the computer. 

The purpose of running in a multi-thread environ­
ment, one in which more than the one program is 
resident concurrently, is to maximize the utilization of 
the computer's resources thus reducing the unit cost. 

In a multi-thread processing system, the cost formula 
given by (2) is no longer useful because: 

1. It is unreasonable to charge the user for the 
entire computer since the unused resources are 
available to other programs. 

2. The wall clock time of a program is no longer a 
constant quantity but becomes a function of the 
operating environment and job mix. 

For these reasons we must abandon (2) as a reason­
able costing formula. lVlany pricing algorithms are in 
use; however, none is as "nice" as (2). If possible, we 
should like to retain formula (2) for its simplicity and 
intuitive appeaJ.3 This may be done if we can find more 
consistent definitions to replace m (rate) and WeT 
(elapsed time). 

Computed elapsed time 

A computer program is a realization of some process 
on a particular hardware configuration. That is, a 
program uses some subset of the available resources and 
"tailors" them to perform a specific task. The program 
is loaded into the computer's memory at time t1 and 

compute ---r ,·",t I voluntary ~ 

110 + ____ _ 
T"tl------------------.. ~ time 

Figure I-States of a program in a single thread environment 

terminates at time t2• During the period of residency, 
the program may be in either one of two states: active 
or blocked. A program is active when it is executing or 
when it awaiting the completion of some external 
event. A program is blocked when it is waiting for some 
resource which is unavailable. These categories are 
exhaustive; if a program is not active and is not waiting 
for something to happen then it is not doing anything 
at all. The two categories are not, however, mutually 
exclusive since a program may be processing but also 
awaiting the completion of an event (for example an 
input/output operation) indeed, it is this condition 
which we attempt to maximize via channel overlap. 
Therefore, we define voluntary wait as that interval 
during which a program has ceased computing and is 
awaiting the completion of an external event. We 
define involuntary wait as the interval during which a 
program is blocked; a condition caused by contention. 

In general, voluntary wait results from initiation of 
an input/output operation and in a single thread 
system we have: 

(3) 
where: 

each tc is a compute interval 
and each tv is a voluntary wait interval. 

graphically, the situation is represented as in Figure 1. 
The solid line represents periods of compute and the 
broken line indicates in~ervals of input/output activity. 
Since '1;tc is based on the number of instructions executed 
which is constant and '1;tv is based on the speed of 
input/output which is also constant (except for a few 
special cases), WeT is itself constant for a given 
program and data in a single thread environment. The 
ideal case in this type of system is one in which the 
overlap is so good that the program obtains the i+ 1st 
record as soon as it has finished processing the ith 

awn .4 __________________ ~ll 

---1J----][---]---- 0/1 

-- - - - alndwo~ 

Figure 2-A program with maximum overlap 



118 Fall Joint Computer Conference, 1972 

i nvo 1 untary 
compute wait 

involuntary 
wait compute 

~~~p~te ~::::::::;:~, ----.r,.-------.... , ~, ::::::::~, 
J~~OI l _____ t

I JOB 2 j-I _______ ----!
: comoute:

time

Figure 3-States of a program in a multi-thread environment

record. Graphically, this situation is shown in Figure 2
and we can derive the lower bound on WCT as:

(4)
and, of course:

WCT~~tc as ~tv~O (5)

In a multi-thread environment, we know that:

WCT = 'J;tc + ~tv + ~ti (6)

where: ti is an interval of involuntary wait.
But, from the above discussion we know that ~tc+ ~tv

is a constant for a given program, hence, the incon­
sistency in the WCT must come from ti . This is pre­
cisely what our intuition tells us; that the residency
time of a job will increase with the workload on the
computer. Graphically, a program running in a multi­
thread environment might appear as in Figure 3.

During the interval that a program is in involuntary
wait, it is performing no actions (in fact, some pro­
grammers refer to a program in this state as "asleep").
As a consequence, we may "remove" the segments of
time that the program is asleep from the graph for time
does not exist to a program activity in involuntary
wait. This permits us to construct a series of time
sequences for the various programs resident in the
computer; counting clock ticks only when the program
is active. When we do this a graph such as Figure 4
becomes continuous with respect to the program
(Figure 5).

Of course the units on the x-axis in Figure 5 no longer , ,

represents real-time, they represent, instead, the active
time of the program. We shall call the computed time
interval computed elapsed time (CET) defined as:

CET=~tc+~tv=WCT-~ti (7)

and as ti~O, CET~WCT so that we have the relation­
ship:

compute

WCT~CET

voluntary
wait

involuntary
wait comoute

-----.", ----...,' , ----, " ----..
--- - ---/111//11//1/ 1.------

I
I
I

Figure 4-States of a program based on real time

(8)

time

compute voluntary wait compute

r'-----'"""',,.,,------"""'-\r'-----"""'-, --------------
____________________ .~ time

Figure 5-States of a program based on active time

The quantity WCT-CET represents the inter­
ference from other jobs in the system and may be used
as a measure of the degree of multi-programming.

Unfortunately, the CET suffers from the same
deficiency as the WCT-it is not reproducible. The
reason for this is that on a movable head direct access
storage device contention exists for the head and the
time for an access varies with the job mix. However,
the CET may be estimated from its parameters. Recall
that CET = ~tc+ ~tv. The quantity ~tc is computed
from the number of instructions executed by the
program and is an extremely stable parameter. The
quantity ~tv is based upon the number and type of
accesses and is estimated as:

(9)

where a (i) is a function which estimates the access time
to the ith file and ni is the number of access to that file.
The amount of time which a program waits for an
input or output operation depends upon a number of
factors. The time required to read a record is based
upon the transfer rate of the input/output device, the
number of bytes transferred, the latency time asso­
ciated with the device (such as disk rotation, tape
inter-record gap time, and disk arm movement). For
example, a tape access on a device with a transfer rate
of RT and a start-stop time of ST would require:

(10)

seconds to transfer a record of b bytes. Hence, for a file
of n records, we have a total input/output time of:

n

L (ST+RTbi) =nST+RT~bi (11)
i=l

where ~bi is the total, number of bytes transferred. In
practice ~bi ~ nB where n is the number of records and
B is the average blocksize. The term ST is, nominally,
the start-stop time of the device. However, this term
is also used to apply a correction to the theoretical
record time. The reason is that while the CET will never
be greater than the I/O time plus the CPU time,
overlap may cause it to be less. This problem is mitigated
by the fact that at most computer shops (certainly at
ETS) almost all programs are written in high-level
computer languages and, as a result, the job mix is
homogeneous. A measure of overlap may be obtained
by fitting various curves to historical data and choosing

Approach to Job Pricing in IVlulti-Programming Environment 119

the one which provides the best fit. In other words,
pick the constants which provide the best estimate of
the WCT.

It is important to remember that the CET function
produces a time as its result. We are using program
parameters such as accesses, CPU cycles, and tape
mounts only because they enable us to predict the CET
with a high degree of accuracy.

The original billing formula (2) which we wished to
adapt to a multi-thread environment utilized a time
multiplied by a dollar rate per unit time. The CET
estimating function has provided us with a pseudo run
time; we must now develop an appropriate dollar rate
function.

In order to develop a charging rate function we
consider the set of resources assigned to a program.
In a multi-programming environment, the computer's
resources are assigned to various programs at a given
time. The resources are partitioned into subset com­
puters each assigned to a program. The configuration of
the subset computers is dynamic; therefore, the cost
of a job is:

n

cost= L: CETiori (12)
i=l

where i is the allocation interval; that is, the interval
between changes in the job's resources held by the job.
CET i is the CET accumulated during the ith interval.
ri is the rate charged for the subset computer with the
configuration held by the program during interval i.

The allocation interval for OS/360 is a job step.

The rate function

Some of the attributes which the charging rate
function should have are:

• the rate for a subset computer should reflect the
"size" of the subset computer allocated; a "large"
computer should cost more than a "small" com­
puter.

• the rate for a subset computer should include a
correction factor based upon the probability that a
job will be available to utilize the remaining
resources.

• the sum of the charges over a given period must
equal the monies to be recovered, for that period.

With these points in mind, we may create a rate func­
tion.

The elements of the resource pool may be classified
as sharable resources and nonsharable resources. Tape
drives, core memory, and unit record equipment are

examples of nonsharable resources; disk units are an
example of a sharable resource. While these categories
are not always exact they are useful since we assume
that allocation of a nonsharable resource is more
significant than allocation of a sharable resource. At
Educational Testing Service, it was determined that
the most used nonsharable resources are core storage
and tape drives. Therefore, it was logical to partition
the computer into subset computers based upon the
program's requirement for core and tapes. Tapes are
allocated in increments of one; core is allocated in 2K
blocks. Hence, there are (# tapes * available core/2,000)
possible partitions.

For any given design partition, we would like to
develop a rate which is proportional to the load which
allocation places upon the resources pool. A single job
may sometimes disable the entire computer. If, for
example, a single program is using all of the available
core storage then the unused devices are not available
to any other program and should be charged for. On
the other hand, if a single job is using all available
tapes, other jobs may still be processed and the charge
should be proportionately less.

The design proportion is the mechanism by which the
total machine is effectively partitioned into sub­
machines based upon the resources allocated to the
sub machines. A design proportion can be then assigned
to any job based upon the resources it requires. The
design proportion should have at least the following
properties.

• The design proportion should range between the
limits 0 and 1.

• The design proportion should reflect the proportion
of the total resources that are allocated to the job.

• The design proportion should reflect, in some
fashion, the proportion of the total resources that
are not allocated to the job, but which the job
prevents other jobs from using.

The design proportion proposed for the billing
algorithm is based upon the probability that when the
job is resident, some other job can still be run. The
definition of this parameter is as stated below.

The design proportion of a job is equal to the
probability that when the job is resident, another
job will be encountered such that there are in­
sufficient resources remaining to run it.

Since OS/360 allocates core in 2K blocks, the number
of ways that programs can be written to occupy avail­
able core is equal to:

N=C/2 (13)
where,

120 Fall Joint Computer Conference, 1972

N = Number of ways that programs can be written
C = Core available in Kilo-bytes

In addition, if there are T tapes available on the
hardware configuration then there are T plus 1 different
ways that programs can be written to utilize tapes.
Therefore, the total number of ways that programs can
be written to utilize -core and tapes is given by the
following equation,

N = (C/2) (T+1)
where,

N = Total number of ways that programs can be
written

C = Core available in Kilo-bytes
T=Number of tape drives available

(14)

The design proportion for a given job can be alter­
nately defined as 1 minus "the probability that another
job can be written to fit in the remaining resources."
This is shown as follows.

D =1.0- [(CA -Cu)/2](TA -Tu+1)
p [(CA)/2](TA +1)

where,

Dp = Design proportion for the job
C A = Core available in Kilo-bytes
Cu = Core used by job
T A = Tape drives available on the computer
Tu=Tape drives used by the job

(15)

It is important to note that the sum of the design
proportions of all jobs resident at one time can be
greater than 1.0. For example, consider the following
two jobs resident in a 10K, four tape machine.

Job #1: 6K; 1 Tape Dp =17/25
Job #2: 4K; 3 Tapes Dp =19/25

The sum of their design proportion is 36/25. This
seems odd at first since the design proportion of a 10K;
four tape job is 1.0. However, this can be shown to be a
necessary and desirable property of the design propor­
tion. To show that this is the case, it is necessary to
consider the amount of work done and the total cost of
the work for two or more jobs that use the total machine
compared to the cost of the same amount of work done
by a single job that uses the total machine. This analysis
will not be covered here.

The design proportion function as defined herein is a
theoretical function. It is based solely upon the theo­
retical possibility of finding jobs to occupy available

resources. Clearly, the theoretical probability and the
actual probability may be somewhat different. Con­
sequently, a design proportion could be designed based
upon the actual probabilities experienced in a particular
installation. Such a probability function would change
as the nature of the program library changed. The
design proportion function described above would
change only as the configuration of the hardware
changed. Either technique is acceptable and the design
proportion has the desired properties. That is, the
design proportion increases as the resources used by the
various jobs increase. However, it also reflects the
resources that are denied to other jobs because of some
one jobs' residency. Consider the fact that when all of
core is used by a job, the tape drives are denied to
other jobs. The design proportion in this case is 1.0
reflecting the fact that the job in effect has tied up all
available resources even though they are not all used
by the job itself.

While the design proportion function is simple, it
has many desirable properties:

• It is continuous with respect to OS/360 allocation;
all allocation partitions are available.

• It always moves in the right direction, that is,
increasing the core requirement or tape require­
ment of the program, results in an increased
proportion.

• It results in a proportion which may be multiplied
by the rate for the total configuration to produce
a dollar cost for the subset computer.

• It is simple to compute.

If it were determined that the required recovery
could be obtained if the rate for the computer were set
at $35 per CET minute, the price of a step is determined
by the equation:

P step = (($35.)Dp(core, tapes)) (CET/60) (16)

and the price of a job (with n steps) is:

n

P job = L Pstep

1:=1

(17)

We have come full circle and returned to our "second
generation" billing formula:

cost = rate· time

The key points in the development were:

• A multi-tasking computer system may be con­
sidered to be a collection of parallel processors by
altering the time reference.

• The variation in time of a program run in a multi-

Approach to Job Pricing in Multi-Programming Environment· 121

programmed environment is due to involuntary
wait time.

• The computed elapsed time may be multiplied by
a rate assigned to the subset computer and an
equitable and reproducible cost developed.

IMPLEMENTATION OF THE JOB PRICING
ALGORITHl\1

The Job Pricing Algorithm (JPA) is implemented
under OS/360 Release 19.6. No changes to the operating
system were required; a relatively minor modification
was made to HASP in order to write accounting records
to disk for inclusion in the accounting system. The
basis of the JP A is the IBM machine accounting facility
known as Systems IVlanagement Facility (SMF).4

Billing under the JP A involves four steps:

1. Collect the job activity records at execution
time. The records are produced by SMF and
HASP and are written to a disk data set­
SYS1.MANX.

2. Daily, the SYSl.lVIANX records are consolidated
into job description records and converted to a
fixed format.

3. The output from step (2) is used as input to a
daily billing program which computes a cost for
the jobs and prep arBS a detailed report of the
day's activity by account number.

4. Monthly, the input to the daily program is con­
solidated and used as input to a monthly billing
program which interfaces with the ETS ac­
counting system.

The raw SMF data which is produced as a result of
job execution contains much valuable information
about system performance and computer workload
which is of interest to computer center management.

One useful characteristic of the· JP A is that costs are
predictable. This enables a programmer or systems
analyst to determine, in advance, the costs of running a
particular job and, more importantly, to design his
program in the most economical manner possible. In
order to facilitate this process, a terminal oriented,
interactive, cost estimating program has been de­
veloped. This program is written in BASIC and enables
the programmer to input various parameters of his
program (such as filesize, CPU requirements, blocking
factors, memory requirements) and the cost estimate
program produces the cost of the program being de­
veloped. Parameters may then be selectively altered
and the effects determined.

CONCLUSION

The approach to user billing described in this paper has
proved useful to management as well as users. Many
improvements are possible especially in the area of
more accurate CET estimation. Hopefully, designers of
operating systems will, in the future, include sophisti­
cated statistics gathering routines as part of their
product thus providing reliable, accurate data for
acco?nting.

APPENDIX

A method of deriving GET parameters

Let the wall clock time (W) be estimated as follows,

where,

X T = # of tape accesses
XD=# of disk accesses
X M = # of tape mounts

C=CPUtime
AT, AD, AM = Coefficients to be determined

We wish to determine the coefficients AT, AD, and AM
that will maximize the correlation between W', the
computed elapsed time, and W, the actual elapsed
time. Define the error e as,

e= (W - W') (2)

The correlation coefficient, r, can be written as,

(4)

Then, in order to maximize r2, it is sufficient to minimize
ue

2 since uw
2 is a constant over a given sample.

Since

we have,

ue
2= ~e2-n-l(~e)2

Finally, we have,

ue
2= ~[(Wi-Gi) -ATXT

-ADXD-AMXMJ2-n-l[~(Wi-Gi)

(6)

(7)

(8)

122 Fall Joint Computer Conference, 1972

(9)

(10)

(11)

(12)

Since all the partials must vanish, we have,

(13)

(14)

Solving the simultaneous equations (13), (14), and
(15) for AT, AD, and AM should give values for the
parameters that will maximize the correlation between
the computed elapsed time and the actual elapsed
time.

The technique was applied to a sample month of data
which was composed of 19401 job steps. The coefficients
determined were,

AT = 0.0251 seconds
AD = 0.0474 seconds
AM=81.2 seconds

When these coefficients were used in Equation (1) to
determine the computed elapsed time, the correlation
coefficient between the computed time and actual
time over the 19401 steps was 0.825. When other
coefficients were used, i.e. AT=0.015, AD =:,0.10, and
A M=60.0, the correlation was only 0.71.

Note: Card read, card punch, and print time constants
were not computed in this fashion simply because
there is insufficient data on job steps that use
these devices as dedicated devices. However, as
data become available in the future, the method
could be applied to obtain good access times.

REFERENCES

1 L L SELWIN
Computer resource accounting in a time sharing environment
Proceedings of the Fall Joint Computer Conference 1970

2 C R SYMONS
A cost accounting formula for multi-programming computers
The Computer Journal Vol 14 No 11971

3 J T HOOTMAN
The pricing dilemma
Datamation Vol 15 No 8 1969

4 IBM Corp
IBM System/360 operating system: System management
facilities
Manual GC28-6712 1971

Facilities management-A marriage of porcupines

by DAVID C. JUNG

Quantum Science Corporation
Palo Alto, California

Fl\1-DEFINED

F M definition often elusive

There are almost as many definitions for Facilities
Management (FM) as there are people trying to define
it. Because FM can offer different levels of service,
some variations in its definition are legitimate.

FM was initiated by the Federal Government in the
1950's when the Atomic Energy Commission, the Na­
tional Aeronautics and Space Administration (NASA),
and the Department of Defense offered several EDP
companies the opportunity to manage and operate some
of their EDP installations. Previously, these companies
had developed strong relationships with the various
agencies through systems development and software
contracts.

FM definition expanding

Nurtured by the Federal Government, FM has
emerged as a legitimate computer service in the com­
mercial EDP environment. Since FM has been offered
in the commercial market, its definition has expanded
to include additional services. In fact, customers are
now beginning to expect Fl\1 vendors to have expertise
that extends far beyond the day-to-day management of
the data processing department.

Electronic Data Systems (EDS), formed in the
early 1960's, pioneered the FM concept in the com­
mercial market. Shortly after its founding, EDS recog­
nized the massive EDP changes required in the hospital
and medical insurance industry as a result of Medicare
and other coverages changed by the Social Security Ad­
ministration. Accordingly, EDS secured several State
Blue Cross/Blue Shield organizations as customers.
While operating these installations, EDS developed
standard software packages that met the record­
keeping requirements of the Social Security Administra-

123

tion. Moreover, this software succeeded in improving
operator control and reducing operating costs. Conse­
quently, EDS marketed these software packages to
other Blue Cross/Blue Shield organizations.

Outside of the medical insurance field, EDS has suc­
cessfully pursued FM opportunities in life insurance,
banking, and brokerage.

The success of EDS, both in revenue/profit growth
and in the stock market did not go unnoticed by others
in the computer services industry. As a result, in the
late 1960's and early 1970's many software firms and
data service bureaus diversified into Fl\![-many, un­
fortunately, with no real capabilities. Since FM has
proven itself as a viable business in the commercial
market, over 50 independent FM firms have been
formed. Moreover, at least 50 U.S. corporations with
large, widespread computer facilities have spun off
profit centers or separate corporations from their EDP
operations. In many cases, these spinoffs offer customers
FM as one of their computer services.

A n ideal concept of F M

The ideal role for the FM vendor is to assist in all the
tasks related to business information and the EDP
operations in the firm. The Facilities Manager could as­
sume full responsibility for the EDP operations, from
acquiring the equipment and staffing the installation­
to distributing the information to the firm's operating
areas. FM also has a vital role in defining business in­
formation requirements for top management. More
specifically, the FM vendor should be able to define
what information is required to operate the business,
based on his industry experience. He should also be
able to help establish cost parameters, based on an
analysis of what other firms in the industry spend for
EDP. Moreover, FM vendors will assist top manage­
ment to cost optimize the array of business processing
methods which may include manual or semi-automated

124 Fall Joint Computer Conference, 1972

TOP MANAGEMENT DEFINES
BUSINESS INFORMATION REOUIREMENTS

• DEFINE INFORMATION REQUIRED TO OPERATE

• PERFORM SYSTEMS ANALYSIS ----.
I • SPECIFY OUTPUTSflNPUTS

• SET TIMING

only a single division or a major application may be
taken over by an FM vendor. Merely taking one of
many applications on a computer and performing this
function on a service bureau or time-sharing basis,

PER

REV however, is not included as an FM contract.
FOR

IODIC I
lEW • SET COST PARAMETERS

I • SELECT INFORMATION PROCESSING METHODS

EDP
I
I I NON-EDP I

PROCESSING I
METHODS

EDP OPERATIONS
FEEDBACK

• ACQUIRE EQUIPMENT AND PERSONNEL
• SCHEDULE AND BUDGET RESOURCES
• MANAGE DAILY OPERATIONS
• PERFORM AUDITS/SECURE OPERATIONS
• DISTRIBUTE INFORMATION

I COMPANY OPERATIONS I I. USE INFORMATION
• DEVELOP NEW/CHANGED INFORMATION REqUIREMENTS

Figure I-Business information and EDP in the ideal firm

approaches as well as EDP. The FM vendor must be
skilled at working with personnel in the customer's
operation centers to improve ways in which the infor­
mation is used and to effectively develop new methods
for handling information as a business grows. (See
Figure 1.)

FM-Today it's EDP takeover

The real world of FM is quite different from the ideal
version just described, and there will be a period of long
and difficult transition to reach that level. Actual take­
over of an existing EDP installation is now the prime
determinant of whether an FM relationship exists.

When the FM vector takes over the EDP installa­
tion, it also takes over such EDP dpeartment tasks as
(1) possession, maintenance, and operation of all EDP
equipment and the payment of all rental fees or ac­
quisition of equipment ownership, (2) hiring and
training all EDP personnel, and (3) development of
applications, performance of systems analysis, acquisi­
tion of new equipment and implementation of new ap­
plications.

Takeover lllay be partial

Many FM vendors are increasingly offering cafeteria­
style services so that the customer can retain control
over EDP activities that he can perform proficiently.
In some cases where equipment is owned, the customer
may retain title to the equipment. Salaries of EDP
personnel may continue to be paid by the customer,
but responsibility for management is assigned to the
vendor.

Also included as partial FM are takeovers of less
than the client's total EDP activities. EDP activity of

HOW EDP USERS BENEFIT

F M benefits: A study in contrast

SOllle FM users benefit • • •

Southwestern Life, a $5 billion life insurance com­
pany in Dallas and a customer of EDS, typifies the
satisfied FM user. Southwestern Life's vice president,
A. E. Wood, has stated, "We are very pleased with our
agreement and the further we get into it, the more
sure we are we did the right thing. We won't save an
appreciable amount of money on operations, but the
efficiency of operation will be improved in great meas­
sure. To do the same job internally would have taken
us two to three times as long and we still would not
have benefited from the continual upgrading we expect
to see with EDS."

••• and SOllle do uot

Disgruntled users exist too, but they are more diffi­
cult to find and in many cases are legally restricted
from discussing their experiences. One manufacturing
company told us, "We cannot talk to you; however,
let me say that our experience was unfortunate, very
unfortunate. They (the FM vendor) did not under­
stand our business, did not understand the urgency
of turnaround time on orders. We lost control of our
orders and finished goods inventory for six weeks. As
a result we lost many customers whom we are still
trying to woo back after more than a year."

Two medium-sized banks had similar comments
that indirectly revealed much about FM benefits.
"We're not in any great difficulty. In fact, the EDP
operations now are running well, but every time we
want to make a change it costs us. I wish I had my own
EDP manager back to give orders to."

FM benefits are far ranging

Large users benefit least frolll FM

There is no question in our mind that there are many
potential benefits for FM users. However, installation
size is the primary yardstick for measuring benefits

users can obtain from FM; large users have the least
to gain for several reasons. In most cases, large users
have already achieved economy-of-scale benefits which
FM and other computer services can bring to bear.
Large users typically have computers operating more
shifts during the day and do not allow the computers
to sit idle.

In addition to higher utilization, larger users can
more fully exploit the capabilities of applications and
systems programmers because they can spread these
skills over more CPU's than can smaller users.

For these and other reasons, it is much more difficult
to demonstrate to large users that an FM vendor can
operate his EDP department more efficiently and less
expensively. For these reasons, the bulk of FM revenue
will come from the small- or medium-sized EDP user.
This is defined as a user who has a 360/50 or smaller
computer and is spending less than $1.5 million per
year on EDP.

Improved EDP operations

The most tangible benefit FM can bring to an EDP
user is improved control over the EDP operations and
stabilization of the related operating costs. This con­
clusion is based on Quantum's field research which has
shown that installations in the small-to medium-sized
range are out of control despite the refusal by managers
to admit it.

Lack of EDP planning, budgeting, and scheduling
shows up in obvious ways, such as skyrocketing costs,
as well as in obscure ways that are difficult to detect,
yet contribute significantly to higher EDP costs. These
subtle inefficiencies include program reruns due to
operator or programming errors, equipment downtime
due to sloppy programming documentation, and idle
time due to poorly scheduled EDP workloads.

Because they are obscure and often hidden by EDP
departments, it is difficult for managements in small
and medium installations to detect and correct these
problems. On the other hand, an FM vendor can often
quickly identify these problems and offer corrective
remedies because his personnel are trained to uncover
these inefficiencies and his profits depend on their cor­
rection.

S:maller investments to upgradeEDP

FM can also benefit end users by reducing proposed
future increases in EDP costs. Small- and medium-sized
users that have a single computer must eventually face
the problem of increasing their equipment capacity to
meet requirements of revenue growth and expanded

Facilities Management-A]Vlarriage of Porcupines 125

360/40 360/50 360/65

-
HAVE OS NOW 10% 46% 69%

HAVE NO OS NOW, BUT
48 38 8 PLAN TO INSTALL IN 1971-72

HAVE NO OS NOW AND NO
PLANS 42 16 23

TOTAL 100% 100% 100%

TABLE A-User OS Plans 1971-72

applications. This often means a significant increment
in rental and other support costs. A 360/30 user, for
example, who is spending $13,000 a year on equipment
may have to jump to a 360/40 or a 370/135, costing
$18,000-$22,000 per year to achieve the required in­
crease in computing power.

Support costs will also increase, in many cases more
quickly. If a useris acquiring a 360/40, for example, he
probably will have to use an Operating System (OS)
to achieve efficient machine performance. Many users
today will upgrade their software as shown in Table A.
An OS installation requires a higher level of program­
ming talent than is currently required to run a DOS
360 system. Because the user does not need the full
time services of these system programmers, FM offers
an economical solution whereby system programmers
are shared among multiple users.

Elimination of EDP personnel problems

One of the most serious problems users encounter
in managing EDP operations is personnel management.
The computer has acquired an aura of mysticism that
has tended to insulate the EDP department from the
normal corporate rules and procedures. Many pro­
grammers often expect to receive special treatment,
maintain different dress and appearance and obtain
higher pay. High turnover among EDP personnel,
often two to three times the norm for other company
operations, further aggravates EDP personnel problems.

Through subcontracting, FM vendors can separate
EDP personnel from the corporation and thus alleviate
this situation for management.

Eased conversion to current generation
software

Over one-third of all users are locked into using
third generation computers in the emulation mode,

126 Fall Joint Computer Conference, 1972

ANNUAL EDP PERCENT OF EDP COSTS SPENT
EXPENOITURES ON PLANNING, ETC.

LARGE COMPANIES >'1.5 MILLION 1-5%

MEDIUM COMPANIES $3OOK-1.5 MILLION 0-2%

SMAll COMPANIES <$300K 0-1%

TABLE B-User Expenditures on EDP Planning

where second generation language programs are run
on third generation computers.

Although software conversion is a difficult and ex­
pensive task for users, the FM vendor who has an
industry-oriented approach usually has a standard
package already available that the customer can use.
In several installations, FM vendors have simplified
conversion, thus providing their users with the econo­
mies of third generation computers.

Improved selection of new equipment and
services

Users of all sizes continually need to evaluate new
equipment and new service offerings, including the
evaluation of whether to buy outside or do in-house
development.

Again, the large user holds an advantage because
his size permits him to invest in a technical staff dedi­
cated to evaluations. Installations spending more than
$1.5 million annually for EDP usually have one full
time person or more appointed to these functions.
In smaller installations there is no dedicated staff and
pro-tem evaluation committees are formed when re­
quired. Table B shows the relationship between the
size of EDP expenditures and the share of those ex­
penditures allocated to planning, auditing and tech­
nical evaluations.

In this area of EDP planning, FM can benefit users
in two ways. First, FM vendors can and do take over
this responsibility and, second, the effective cost to
any single user is less because it is spread over multiple
users.

Other operating benefits

One potential benefit from FM relates to new appli­
cation development. Typically, 60 percent or more of
a firm's EDP expenditures are tied to administrative
applications, such as payroll, general accounting, and
accounts payable. Because of the relatively high satura­
tion in the administrative area, firms are now extending

the use of EDP into operational areas such as produc­
tioncontrol and distribution management. However,
many of these firms lack the qualified EDP professionals
and line managers necessary to develop and implement
applications in non-administrative areas. Thus, they
have become receptive to considering alternatives,
including FM.

Major EDP cost savings

Earlier in this chapter, the stabilization of EDP
costs was discussed. Now we will focus on the major
savings that FM can provide through the actual re­
duction of EDP costs. This potential FM benefit is too
often the major theme of an FM vendor's sales pitch.
Consequently, its emotional appeal often clouds a
rational evaluation that should precede an FM con­
tract.

If the FM contract is well written and does not
restrict either party, the FM vendor can apply his
economies of scale and capabilities for improving
EDP operations and should be able to show a direct
cost savings for the customer. However, these "savings"
may be needed to offset costs of software conversion or
other contingencies and thus, may not really be
available to the customer in the early contract years.

Long range benefits-Better information

Improved operation control and profits through
better information-this is the major long-range
benefit from FM. While this contribution is not unique
to FM vendors, few EDP users today have been able
to develop a close relationship between company opera­
tions and EDP. Companies such as Weyerhauser and
American Airlines-generally recognized as leading
edge users-~re few in number, and many try to emu­
late their achievements in integrating EDP into the
company operations.

EDP expenditures, however, are seldom judged on
their contribution toward solving basic company
problems and increasing revenues and profits. Many
apparently well-run EDP departments would find it
difficult to justify their existence in these terms. The
situation is changing, however.

An indication of this new attitude is the increased
status of the top EDP executive in large firms. The
top EDP executive is now a corporate officer in over
300 of the Fortune 500 firms. While titles often mean
little, the change to Vice President or Director of Busi­
ness Information from Director of EDP Operations
suggests that top management in many companies
has considered and faced the problem.

In 'addition to new management titles, continuing
penetration of EDP functions into operating areas is
increasingly evident.

FM-A permanent answer for users

FM should not he treated as an interim first-aid
treatment for EDP. There are several good reasons
for continuing the FM relationship indefinitely.

• Individual users cannot duplicate the economies
of scale that FM vendors can achieve. Standard
softwar epackages, for example, require constant
updating and support and new equipment evalua­
tions are constantly required if lowest cost EDP
is to be maintained.

• Top management would have to become involved
in EDP management if operations were brought
back in-house. This involvement would take time
from selling and other revenue producing activities.
A rational top ,management trys to minimize the
share of its time spent on cost-management
activities.

• By disengaging from the FM contract, the cus­
tomer risks losing control over his EDP again while
receiving no obvious compensation for this ri~k.
Even if the customer believes he is being over­
charged by the FM vendor, there ~s no real guaran­
tee the excess profits can he converted to savings
to the customer.

For these reasons an F.M relationship should normally
be considered permanent rather than temporary.

MARKET STRUCTURE AND FORECAST

Current F M market

Total FM Illarket size and recent growth

The 1971 market for FM services totals $645 million
with 337 contracts. However, 45 percent or $291
million was captive and not available to independents.
Captive FM contracts are defined as being solidly in
the possession of the vendor because of other than
competitive considerations. Typically, captive con­
tracts are negotiated between a large firm and its EDP
spinoff subsidiary.

The remaining market is available to all competitors
and totals $354 or 55 percent. Available does not neces­
sarily mean the contract is available for competition
immediately, since most contracts are signed for a
term of two to five years. Captive and available 1971
FM revenues and contracts are shown in Figure 2.

Facilities Management-A Marriage of Porcupines 127

TOTAL
$645 MI LLiON FM REVENUES

TOTAL
337 FM CONTRACTS

Figure 2-1971 FM market

Industry analysis

Discrete and Process Manufacturing are the largest
industrial sectors using 'FM services and account for
over 44 percent of total FM revenues. However, most
EDP spinoffs have occurred in manufacturing and much
of these FM revenues are therefore captive and not
available to independent competitors. After deleting
the captive portion, the two manufacturing sectors
account for only 12 percent of the available 1971 FM
market of $354 million.

Manufacturing has failed to develop into a major
available FM market primarily because there is a
general absence of common business and accounting
procedures from company to company, thus, providing
no basis for leveraging standard software. This is true
even within manufacturing subsectors producing very
common products. In the medical insurance sector,
however, Federal Medicare regulations enforce a
common method for reporting claims and related in­
surance data, thus providing a good basis for leveraging
standard software.

The Medical Sector accounts for 25 percent of availa­
ble FM revenues. The Medical Sector includes medical
health insurance companies (Blue Cross/Blue Shield)

128 Fall Joint Computer Conference, 1972

SERVICE BUREAU

TOTAL FM MARKET
$645 MILLION

AVAILABLE FM MARKET
$354 MILLION

Figure 3-1971 FM market by type of performance

and hospitals. This sector was the first major com­
mercial FM market. FM continues to be attractive
in this sector because it permits rapid upgrading of
EDP to meet the new Medicare reporting procedures
and relieves the problem of low EDP salary scales.

The largest industry sector in the available FM
market, the Federal Government, accounts for over
34 percent of available revenues. All Federal Govern­
ment contracts are awarded on the basis of competi­
tive bids. Most Federal Government FM contracts
still tend to be purely subcontracting of EDP opera­
tions rather than total business information manage­
ment which is becoming more common in commercial
markets.

The Finance Sector currently accounts for 22 percent
of available FM revenues. Banks and insurance com­
panies are the major markets within the Finance
Sector which also includes brokerage firms, finance·
companies and credit unions.

Type of perfor:mance

FM vendors who initially take over on-site opera­
tion of a customer's computer strive for economies of
scale. This has created a trend whereby the FM vendor
has eliminated the need for the customer's computer
by processing data through NIS (timesharing) or
service bureaus.

NIS now accounts for 5 percent of total FM revenues.
Service bureau processing which requires the physical
transport of data from the client's location to the
vendor's computer installation accounts for 2 percent
of total FM revenues. In Figure 3, which depicts FM
market by type of performance, combination refers to
the use of two or more of the above services to carry
out the FM contract.

Types of vendors

Types of vendors that perform FM contracts are
described below:

• Independents who accounted for 67 percent of total
FM revenues in 1971 were startups in the computer
service industry or vendors who have graduated
from the ranks of spinoffs.

• Spinoffs are potentially strongest in their "home"
industries ; however , competitive pressures may
limit market penetration here. An oil company
spinoff, for example, would have a difficult time
selling its seismic services to another oil company
because of the high value placed on oil exploration
and related information.

• Computer manufacturers are increasingly offering
FM services. Honeywell has several FM contracts
and will be joined by Univac and CDC who have
announced intentions to marketFM services. The
RCA Services Division should find FM oppor­
tunities· among RCA· customers. IBM has several
ways in which it can enter FM, and will show an
expanding profile.

Contract Values

The average FM contract in 1971 is valued at slightly
less than $2 million. This is the equivalent of a user with
two or three computers, one at least a 360/50. However,
this is based on the total market analysis which distorts
the averages for captive and available FM markets. An
analysis of available and captive contracts shows that
the average value of an available contract drops to
$1.24 million, which would be equivalent to a user with

Facilities Management-A Marriage of Porcupines 129

TABLE C-Major Vendors

TOTAL

Rank Company
FM

Revenues·

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Electronic Data f3ystems Corp.
McDonnell Douglas Automation Co.
Boeing Computer Services Inc.
University Computing Company
Computer Sciences Corp.
Grumman Data Systems
Computing and Software, Inc.
System Development Corp.
Martin Marietta Data Systems
Westinghouse Tele-Computer Systems Corp.
MISCO
National Sharedata Corp.
A. O. Smith Corp.'s Data Systems Div.
Executive Computer Systems, Inc.
Unionamerica Computer Corp.
Cambridge Computer Corp.
Greyhound Computer Corp.
Tracor Computing Corp.
Mentor Corp.
Programming Methods, Inc. (PMI)

• Annual Rate in 1971 in millions of dollars

95.7
89.4
82.2
42.2
26.6
25.6
14.7
14.0
11.5
11.0
10.0
7.5
5.4
5.2
5.0
4.4
4.3
4.0
4.0
3.8

two 360/40's. Analysis of captive contracts, however,
shows that the average value is significantly higher at
$5.6 million per year. Most of these contracts are
spinoffs from ·large industrial firms who have cen­
tralized computer installations or multiple installations
spread throughout the country.

A more revealing analysis of contract values is
shown in Table D. Here total and available contracts
are distributed according to contract value. From this
analysis, it is clear that well over one-third of contracts
are valued at $300,000 or less per year. A typical
computer installation of this value would include a

CONTRACT VALUE ALL CONTRACTS AVAILABLE CONTRACTS
PER YEAR # % # %

0.1-0.3 129 38.3 122 42.8
0.31-0.5 40 11.9 30 10.5
0.51-0.8 39 11.6 34 11.9

> 0.8 129 38.2 99 34.8

TOTAL 337 100.0 285 100.0

AVERAGE CONTRACT VALUE: $1.91 MILLION
285 AVAILABLE CONTRACTS - AVERAGE VALUE: $1.24 MILLION

52 CAPTIVE CONTRACTS - AVERAGE VALUE: $5.61 MILLION

TABLE D-FM Contract Analysis by Value

1
I

I -

AVAILABLE

Company

Electronic Data Systems Corp.
Computer Sciences Corp.
Boeing Computer Services Inc.
Computing and Software, Inc.
System Development Corp.
University Computing Company
National Sharedata Corp.
McDonnell Douglas Automation Co.
Executive Computer Systems, Inc.
Cambridge Computer Corp.
Greyhound Computer Corp.
Tracor Computing Corp.
Programming Methods, Inc, (PMI)
MISCO
Allen Babock Computing Corp.
RAAM Information Services Corp.
Data Facilities Management Inc.
Bradford Computer and Systems, Inc.
Computer Usage Co., Inc.
Martin Marietta Data Systems

FM
Revenues·

95.7
26.6
22.2
14.7
12.8
10.1
7.5
7.1
5.2
4.4
4.3
4.0
3.8
3.0
2.9
2.5
2.3
2.0
2.0
1.5

360/30, 360/20, 360/25 or equivalent computers in
other manufacturers' lines. There are in total 18 con­
tracts, captive or available, valued at more than $5
million per year. These are all spinoff parent or Federal
Government contracts.

Projected 1977 F M market

FM market potential

The ultimate U.S. market potential for FM is the
sum of EDP expenditures for all users. By 1977 EDP
expenditures for equipment, salaries and services will
total $29.5 billion spread among 52.4 thousand users.
Since FM benefits are not available to all users, five
criteria were developed to help identify the industry
sectors which· could most benefit from FM and would
be most amenable to accepting FM as an alternative
approach for EDP. The five criteria are:

• Homogeneous Business Methods. Industries with
similar information requirements from company
to company are ideal situations for FM. These
might be the coding of business records, such as
the MICR codes used in banks, or price standards,
e.g., tariffs used in motor freight.

130 Fall Joint Computer Conference, 1972

TABLE E-High Growth Potential FM Markets

Selection Criteria Homogeneous
Business

Industry Sector Methods

Medical-Health Insurance X
Federal Government
Banking-Commercial X
Insurance X
State and Local Government
Motor Freight X
Brokerage X
Utilities-all except telephone X
Medical-Hospitals, Clinics
Regional/Interstate Airlines X
Mutual Fund Accounting X
Banking-Savings X
Small & Medium Aerospace Cos. X
Education-Elementary and Secondary
Education-College
Construction and Mining

• Similar Products or Services. The more similar the
products and services sold by companies within a
given industry sector, the more likely they will
have common business procedures and, therefore,
EDP systems. In the brokerage industry, for
example, there is little differentiation in the serivce
provided.

• Regulation by Government Agencies. Industries that
are regulated directly by State/Federal agencies
or indirectly through strong trade associations also
become good candidates for FM because of the
enforced standards for pricing, operating pro­
cedures, account books, or other factors that
impact ED P operations. Health insurance firms,
utilities of all types, and brokerage firms are
typical of these highly regulated industries.

• Prior Evidence of Subcontracting Services. Prior

Similar Regulation by Prior Evidence Special EDP
Products or Government of Subcontract- Operating

Services Agencies ing Services Problems

X
X
X
X
X
X
X
X
X
X
X
X

X
X
X

X X X
X X X
X X X
X X
X X X
X X
X X
X X
X X X
X X
X X
X
X X

X
X

X

company or industry practices which indicate that
subcontracting of vital services is an accepted
business procedure also help pinpoint industries
with high FM potential. Correspondent relation­
ships between smaller banks and larger city banks,
historically a part of the banking industry, is an
example .

• Special EDP Operating Problems. Several industries
have special EDP operating problems. These may
result from historically low pay scales for EDP
personnel which cannot easily be changed, such as
in state and local government or a pending major
conversion in basic accounting approaches im­
posed by an outside force, resulting in major
EDP conversions as was the case in health in­
surance when Medicare and state health programs
were implemented in the 1960's.

TABLE F-Total FM Revenue Growth 1971-1977

Compound
1971 1977 Annual Growth

Revenues Contracts Revenues Contracts Rate of FM
$ Millions # $ Millions # Revenues

Medical and Other 104 89 446 635 27
Finance 88 89 590 590 37
Discrete Manufacturing 146 42 389 255 18
Process Manufacturing 144 34 344 200 16
Government-State and Local 7 15 350 350 92
Government-Federal 122 36 236 185 12
Utilities and Transportation 20 13 318 400 58
Wholesale and Retail Trade 13 17 160 320 52
EDP Service Bureaus and NIS Operators 1 2 23 60 69
Total 645 337 2856 2995 28

Facilities Management-A Marriage of Porcupines 131

TABLE G-Available FM Revenue Growth 1971-1977

Government-State and Local
Finance
Medical and Other
Government-Federal
Wholesale and Retail Trade
Utilities and Transportation
Discrete Manufacturing
Process Manufacturing
EDP Service Bureaus and NIS Operators
Total

INDEPENDENTS

$1,396M

Revenues
$ Millions

7
77
88

122
12
3

17
27
1

354

AVAILABLE $1,968 MILLION

TOTAL $2.856 MILLION

Figure 4-1971 FM markets by type of vendor

1971
Compound

1977 Annual Growth
Contracts Revenues Contracts Rate of FM

$ Millions # Revenues

15 350 350 92
76 503 480-510 37
81 280 380-400 21
36 236 185 12
16 133 250-270 49
6 196 235-245 137

32 135 90-95 41
22 129 70-75 30
1 6 12-14 35

285 1968 2052-2144 33

The above criteria were applied against major
industry sectors. As a result, 16 sectors were identified
and ranked according to their suitability for FM. (See
Table E.)

On the basis of this analysis the industry sectors
most likely to benefit from FM include banking (mainly
commercial), insurance, state and local governments,
Federal Government, motor freight, brokerage, and
medical (hospitals, and health insurance firms). Of
these, the Federal Government and medical sectors
are already established FM markets and will grow
more slowly as a result.

ProjectedFM revenues, 1971-1977

Actual realized FM revenues will be $2.86 billion in
1977. This is a 28 percent annual growth from $645
billion in 1971. Total contracts will increase to
2,995 in 1977 from 337 in 1971, with an average con­
tract value of slightly less than $1 million.

The available portion of the 1977 FM market will
total $1.97 billion, up from $354 million in 1971, a
growth of over 500 percent. Related contracts will be
between 2,000 and 2,200 in 1977, up from 285 in 1971.
See Tables F and G.

Who are the vendors?

Independent vendors will retain the same share of
the total FM market in 1977, as in 1971. Computer
manufacturers will increase their penetration in the FM
business primarily to protect installations that are
threatened by competitive equipment. See Figure 4.

132 Fall Joint Computer Conference, 1972

HOW TO EVALUATE FM PROPOSALS

Know what benefits are desired

For the purposes of reading this segment, assume
you are an EDP user considering a proposed FM con­
tract. Assume further that by reading the previous
material, you have concluded that, indeed, FM can
benefit your company, both in terms of improved EDP
operations and in improved information flow to the
operating departments.

But now you must get specific about the vendor, his
proposal, and finally the detailed provisions of the
contract he wishes you to sign. In this chapter we will
provide the guidelines you can use to make these evalu­
ations.

Before digging into the evaluation guidelines, you
should first articulate just what you, the management,
and the current EDP department are expecting in the
way of benefits. By doing this, you can compare your
expectations as a customer with what the FM vendor
is willing and able to provide.

Have you had a poor experience with EDP? Is your
primary objective to get out of the operating problems
of an EDP department? If this is the case, then don't
expect immediate improvements in the information
you are receiving from EDP and the speed in which
it flows to your operating departments-even if you
have been told by the FM vendor this is to be the case.
On the other hand, if your real goal is speeding order
entry and decreasing finished goods inventory by a
factor of three without a major investment in new
applications software, then these are the points an
FM vendor should be addressing in his proposal and
you will want to evaluate him on this basis.

Assuming you and the vendor have agreed on a set
of expectations, let us look at the guidelines you can
use in evaluating the vendor, his proposal and the FM
contract:

Evaluating vendor and his proposal

Vendor

Three potential problem areas should be explored
to accurately appraise an FM vendor. These are:
financial stability, past FM record, and level of in­
dustry expertise.

• Financial Stability
Financial stability of the vendor is a critical

issue to pin down, for if he is in difficulty, such. as
being short of working capital, your information

flow from EDP could be stopped leaving you in an
extremely serious and vulnerable position.

• Previous FM Performance Record
N ext to the financial record, the vendor's

previous performance in FM as well as in other
data services can be a good guide to his future
performance on your contract. If the vendor has
done well in past contracts, he no doubt will use
his past work as a "showcase" and invite your
visit to current sites he has under contract. How­
ever, the absence of these referrals should not be
taken negatively due to the possible proprietary
nature of current FM work.

• Industry Expertise
Full knowledge of your industry and its detailed

operating problems should be demonstrated com­
pletely by the vendor. This should include full
appreciation for the operating parameters most
sensitive for profitability in your industry and
company. The vendor should be staffed with
personnel who have had top management ex­
perience in the specific industry and people who
have had experience in other specific industries.
Vendors become more credible if they can show
existing customers who are pleased with the
vendor's services and who will testify to his ability
to solve specific industry-oriented EDP problems.

• Proposal Responsiveness
The proposal should be addressed specifically

to the objectives that you and the vendor agreed
were the purpose of considering the FM contract.
The vendor should . detail exactly how he will
improve your EDP operation or provide faster
or improved information to serve your operating
areas. He should suggest where savings can be
made or what specific actions he can take that
are not now being taken to effect these savings.

• Work Schedule for Information Reports
While it is not desirable to pin the vendor down

to an operating schedule for theEDP depart­
ment-for it is exactly this flexibility that allows
him to achieve economies of scale-he should,
however, be very specific about the schedule for
delivery of required reports. If you have a data­
entry problem, for example, then the proposal
should indicate that the computer will be available
when you need to enter data. The work schedule
should fully reflect as closely as possible the cur­
rent way in which you do business and any change
should be fully justified in terms of how it can
improve the operation of the whole company, not
just the operation of the EDP department.

• Equipment Transfer
Details of equipment ownership and any trans-

fers to the vendor should be specified. Responsi­
bility for rental or lease payments should also be
detailed. Responsibility for maintenance not built
into equipment rentals or leases should also be
delineated.

• Cost Schedule
Contract pricing is the most critical cost item.

A fixed-fee contract is advantageous to both
parties if the customer's business volume is ex­
pected to continue at current levels or grow. If
business drops, a fixed fee could hurt the customer.
Thus, the fairest pricing formula is composed of
two components: a fixed fee to cover basic operating
costs and a variable fee based on revenue, number
of orders, or some easily identifiable variable
sensitive to business volume. Some contracts also
include a cost-of-living escalator.

The proposed cost schedule should also take into
account equipment payments, wages, salary sched­
ules, travel expenses, overhead to be paid to the
customer (if the vendor occupies space in the
customer's facilities) and all other expenses that
might occur during the course of the contract. If
special software programming or documentation
is to be performed for the customer, the hourly
rates to be charged should be identified in the
contract.

• Vendor Liaison
A good proposal recognizes the need for con­

tinuing contact between top management and the
FM vendor. Close liaison is especially required
in the early days of the contract, but also through­
out its life. The cost for this liaison person should
be borne by the customer, but the responsibilities
and the functions that will be expected of him
should be clearly stated in the proposal.

• Personnel Transfer
Since all or most of the personnel in ED P opera­

tions will be transferred to the FM vendor, you
must make sure that this will be an orderly transfer.
Several questions arise in almost every contract
situation and should be covered in the proposal:
Does the proposal anticipate the possible person­
nel management problems that might come about?
If all personnel are not being transferred and some
may be terminated, how will this be handled? Are
FM vendor personnel policies consistent with
yours? IIas the vendor taken into account the
possibility that large numbers of persons may not
wish to join the vendor and may leave?

• Failure to Perform
While it is most desirable to emphasize the

positive aspects of an FM relationship, the nega­
tive possibilities should be explored to the satis-

Facilities Management-A Marriage of Porcupines 133

faction of both parties. Most of these revolve
around failure to perform. If the vendor fails to
perform his part of the contract, you should be
able to terminate the contract. The proposal
should detail how this termination can be carried
out. Is the vendor, for example, obligated to permit
you to recover your original status and reinstall
your in-house computer? What are the penalties
the vendor will incur? What is the extent of his
liabilities to replace lost revenue, lost profits that
you may suffer as a result of his failure to perform?
IIow will these lost revenues and lost profits be
identified and measured?

That's the vendor's side, but you also have
obligations as a customer. If your input data is not
made available according to schedule, for example,
what is your possible exposure in terms of late
reports?

• Software
I t is important to pin down ownership of existing

software when an FM contract is signed and any
subsequent software that is developed. Proprietary
as well as non-proprietary software packages
should be identified and specified in the report
so that competitors may not benefit unfairly if
the FM vendor uses the packages with other clients
in your industry.

Software backup and full documentation pro­
cedures should also be identified. This is one area
in which FM may be a great help. If your in­
stallation is typical, your backup and documenta­
tion procedures are weak and an FM vendor,
using professional approaches, should be able to
improve your disaster recovery potential.

F M contract: Marriage of porcupines

The FM contract should incorporate all the above
issues, plus any others which are uniquely critical, in
an organized format for signing. The FM co~tract is
as legal a document as any other the company might
enter into; therefore, the customer's legal staff should
carefully review it in advance of any signing.

The body of a typical FM contract shows the general
issues which have been discussed above and which
apply in most FM contract situations. Attachments
are used to detail specific information about the cus­
tomer that is proprietary in an FM contract Attach­
ments discuss the service and time schedule, equipment
ownership and responsibility, cost schedule and any
special issues.

One. of the most striking features is the general
absence of detailed legal jargon. This is typical in most

134 Fall Joint Computer Conference, 1972

FM contracts and is a result of two factors. First, the
two parties have attempted to communicate with each
other in the language that both understand. Second,
the wording reflects an aura of trust between the two
parties. In a service subcontracting relationship the
customer must implicitly trust the vendor. Without
this mutual trust, it would be foolish for a vendor or
a customer to even consider a proposal.

BIBLIOGRAPHY

EDP productivity at 50%'1
Administrative Management June 1971 pp 67-67

EDP-What top management expects
Banking April 1972 pp 18-32

Facilities management users not sure they're using-If they
are
Datamation January 1 1971 p 54

KUTTNER et al
Is facilities management solution to EDP problems?
The National Underwriter January 23 1971

H CLUCAS JR
The user data processing interface

Working Paper #177 Graduate School of Business Stanford
University

P J McGOVERN
Interest in facilities management-Whatever it is-Blossoms
EDP Industry Report April 30 1971

D M PARNELL JR
A new concept: EDP facilities management
Administrative Management September 1970 pp 20-24

I POLISKI
Facilities management-Cure-all for DP headaches?
Business Automation March 1 1971 pp 27-34

A RICHMAN
Oklahoma bank opts for FM
Bank Systems and Equipment February 1970 pp 18-32

L W SMALL
Special report on bank automation
Banking April 1971

When EDP goes back to the experts
Business Week October 18 1969 pp 114-116

Quantum Science Corporation Reports
Dedicated information services July 1970
Facilities management-How much of a gamble?

November 1971
Federal information services October 1971
Network information services April 1971

Automated map reading and analysis by computer

by R. H. COFER and J. T. TOU

University of Florida
Gainesville, Florida

INTRODUCTION

A great deal of attention is presently being given to the
design of computer programs to recognize and describe
two-dimensional pictorial symbology. This symbology
may arise from natural sources such as scenery or from
more conventionalized sources such as text or mathe­
matical notation. The standardized graphics used in
specification of topographic maps also form a conven­
tionalized, two-dimensional class of symbology.

This paper will discuss the automated perception of
the pictorial symbology to be found within topographic
maps. Although conventionalized, this symbology is
used in description of natural terrain, and therefore has
many of the characteristics of more complex scenery
such as is found within aerial photography. Thus it is
anticipated that the techniques involved may be ap­
plied to a broader class of symbology with equal ef­
fectiveness.

The overall hardware system is illustrated by Figure
1. A map region is scanned optically and a digitized
version of the region is fed into the memory of a com­
puter. The computer perceives in this digitized data the
pictorial symbology portrayed and produces a struc­
tured output description. This description may then be
used as direct input to cartographic information re­
trieval, editing, land-use or analysis programs.

THE PROGRAM

Many results of an extensive research into the percep­
tion of pictorial symbology have been incorporated into
a computer program which recognizes a variety of map
symbology under normal conditions of overlap and
breakage. The program is called MAPPS since it per­
forms Machine Automated Perception of Pictorial
Symbology. MAPPS is written in the PL/l program­
ming language heavily utilizing the language's list and
recursive facilities. It is operated on the University of

135

Florida's IBM 360/65 computer utilizing less than lOOK
words of direct storage.

Although the set of possible map symbols is quite
large, those used in modern topographic maps form the
three classes shown in Figure 2. Point symbology is
used to represent those map features characterized by
specific spatial point locations. This class of symbology
is normally utilized to represent cultural artifacts such
as buildings, markers, buoys, etc. Lineal symbology is
used to mark those features possessing freedom of
curvature. This class is normally utilized to represent
divisional boundaries, or routes of transportation.
Typical examples of lineal symbology include roads,
railways, and terrain contours as well as various
boundary lines. Area symbology is used to represent
those features possessing homogeneity over some
spatial region. It is normally composed of repeated
instances of point symbology or uniform shading of the
region. Examples include swamps, orchards, and rivers.

As its extension to the recognition of area symbology
is rather straightforward, MAPPS has been designed to
recognize the point and lineal forms of symbology only.
Further it has been designed to recognize only that sub­
set of point and lineal symbology which possess topo­
graphically fixed line structures. This restriction is of a
minor nature since essentiall all map symbology is, or
may be easily converted to be, of this form. Even given
these restrictions, MAPPS has immediate practical
utility since many applications of map reading require
only partial recognition of the symbology of a given
map. As an example, the survey of cultural artifacts can
be largely limited to the recognition of quite restricted
forms of point and lineal symbology.

Color information provides strong perceptual clues
in maps. On standard topographic maps for instance
blue represents hydrographic features, brown represents
terrain features, and black represents cultural features.
Even so, utilization of color clues is not incorporated
into MAPPS. This has been done to provide a more
stringent test of other more fundamental techniques of

136 Fall Joint Computer Conference, 1972

Computer

System

Figure I-The overall hardware system

recognition. It is obvious however, that utilization of
color descriptors can be easily incorporated, and will re­
sult in increased speed of execution and improved ac­
curacy of recognition.

MAPPS is divided into three systems: picture ac­
quisition, line extraction, and perception. In brief, the
picture acquisition system inputs regions of the map
into the computer, the line extraction system constructs
data entities for each elementary line and node present
in the input, and the perception system conducts the
recognition of selected symbology. A flow-chart of
MAPPS is shown in Figure 3.

PICTURE ACQUISITION

The picture acquisition system PIDAC is a hardware
system developed by the authors to perform precision

D X .d.

Point Symbology

~ \ \ I
\
\
J

Lineal SymboloGY

"II, t 00000
=~ 00000

":' 00000 ~I~
":' 0000

Area Symbology

Figure 2-Classes of map symbology

scanning of 35 mm transparencies within a research en­
vironment. I It consists of a flying-spot scanner, mini­
computer, disk memory, storage display, and incre­
mental tape unit. In operation, PIDAC scans a trans­
parency, measures the optical density of the trans­
parency at each point, stores the results in digital form,
performs limited preprocessing actions, and generates
a digital magnetic record of the acquired data for use
by the IBM 360/65 computer.

For each transparency, PIDAC scans a raster of 800
rows by 1024 columns, a square inch in the film plane

Picture
Acquilition

Slltem

8tnary
Ptctur.

Arroy

Gray-tovet
Picture
Arroy

Lin.
Eatractlon

Sl,tem

ea.ed LI.t
Structure 0'
Llno. a Nod ..

Procel .. d lilt of
1111 •• olld lIod ••

51mboiou
Perc.ptlon

Sl't.m

po .. lbility
0' laolottoll

looloto"

Symbology

Recoonized
Map Symbolooy

Ullr DOIcrlptlon
QUlry of •• irod

.ymboloOJ

Figure 3-MAPPS flow chart

thus corresponds to approximately 106 points. At each
raster point PIDAC constructs a 3-bitnumber cor­
responding to the optical density at that point. As the
original map may be considered to be black and white,
a preprocessing routine, operating locally, dynamically
reduces the 3-bit code to a 1-bit code in a near optimal
fashion. This action is accomplished by a routine called
COMPACT since it compacts storage requirements as
well. The result is an array whose elements correspond
to the digitized points of the map region. This com­
pacted array is then input to the line extraction system.

I
CLEAN

I

I
MEDIAL
AXIS

DETERMINATION

I
I.

&r , :,
~ ~

I
4-POINT

LOOP
REMOVAL

Automated Map Reading and Analysis by Computer 137

FINAL
CLEAN

UP

I

I
LIST

GENrATION

Name - 1
1st fbie NaIre - 1
1st Ncxle Position - (38.44)
2nd Ncxle Name - 2
2m Ncxle Position - (57.45)
Line Ier¢h - 49
Grid-Intersect Coding - 24424
54444544546464465
7656606007777000000000
60000

Ncxle Eht%y

Name - 2
Positicn - (57.45)
Ibnber Adjacent Lines - 3
1st Adjacent Line
Erxi 1st Line - 2
2nd Adjacent Line - 2
End 2nd Line - 1
3td Adjacent Line - 3
Erxi 3rd Line - 2

LINE EXTRACTION

As shown by Figure 3, the compacted array is input
to the line extraction system. The function of this sys­
tem is the extraction of each of the elementary line seg­
ments represented in the map, so that the program can
conduct perception in terms of line segments and nodes
rather than having to deal with the more numerous set
of digitized points.

The system of line extraction, as developed, does not
destroy or significantly distort the· basic information
contained within the map. This is necessary since sig­
nificant degradation makes later perception more diffi­
cult or impossible. The action of the line extraction sys­
tem is illustrated in Figure 4. First the map is cleared
of all small holes and specks likely to have resulted from
noise. Then a connected medial axis network of points
is obtained for each black region of the map. This
first approximation to a desired line network is con­
verted to a true line network by an algorithm called
4-point loop removal. Operating on a more global basis,
later algorithms remove spurious lines and nodes, locate
possible corner nodes, and convert to a more suitable
list processing form of data base. For each line and node,
a PL/I based structure is produced. Each structure
contains attributes and pointers to adjacent and nearby
data entities. The structure for a line entity contains
the attributes of width, length, grid interest coding, as
well as pointers to adjacent nodes. The structure for
each node entity contains the attribute of position and
pointers to adjacent lines and nearby nodes.

The line extraction system, being somewhat intricate,
has been discussed in detail in a prior paper. 2 Abstractly,
each state S of the system can be viewed as responding
to distortions occurring within the map. These distor­
tions may be characterized by a set of context sensitive
productions of the form

Rr(i,j)Rzn(i,j)~Rr(i,j)Rlnf(i,j) z= 1, 2, ... , Ns

RIm (i, j) represent some region about the point (i, j)
having a fixed size and gray-level distribution. Rzn(i, j)
and· Rlnf (i, j) represent regions of the point (i, j)
having the same fixed size but differing gray-levels.
By inversion of the production sets, each stage can be
described as the repetitive application of the rules

Rr(i,j)Rznf (i,j)~Rr(i,j)Rln(i,j) l= 1,2, ... ,Ns

in forward raster sequence to the points (i, j) of the
map until no further response is obtainable. As an ex­
ample, one such rule

Figure 4-Action of line extraction system

{M(i+l,j) =0, M(i-l,j) =O} {M(i,j) =1}

~{M(i+l,j) =0, M(i-l,j) =O} {M(i, j) =2}

138 Fall Joint Computer Conference, 1972

is used in the medial axis determination to mark object
regions of width 1 as possible line points for further
investigation.

It is important to observe the degree of data reduc­
tion and organization which is accomplished through
the extraction of line data. As previously mentioned,
even a small map region contains a huge number of
nearly 106 picture points. The extracted list structure
typically contains no more than 300 lines and node
points thereby resulting in a very significant data reduc­
tion. Equally significant, the data format of the list
structure permits efficient access of all information to
be required in the perception of symbology. The digi­
tized map array therefore may be erased to free valuable
storage for other purposes.

PERCEPTION OF SYMBOLOGY

It is interesting to observe that certain familiar pat­
tern recognition procedures cannot be directly used in
the recognition of map symbology. This results from
the fact that in cartography, symbology cannot be
well isolated as there are often requirements for overlap
or overlay of symbology in order to meet spatial posi­
tioning constraints. Many of the techniques used for
recognition of isolated symbology, such as correlation or
template matching of characters, cannot be used to
recognize such non-isolated symbology and are thus not
very powerful in map reading. In MAPPS, alternative
techniques have been employed to accomplish isolation
of symbology in addition to its recognition.

THE CONCEPT OF ISOLATION PROCESSING

Conceptually, isolation of symbology from within a
map cannot be accomplished in vacuo. Isolation re­
quires some partial recognition, while recognition gen­
erally requires some partial isolation. This necessitates
the use of a procedure in which isolation is accompanied
by partial recognition. In order to guide this procedure,
there must exist some a priori knowledge about the
structure of the symbology being sought. The underly­
ing structure of pictorial symbology, such as is present
in maps and elsewhere, is found to be that of planar
graphs upon the removal of all metric constraints.
Using this structure the isolation process functions by
sifting through the data of the map proposing possible
instances of pattern symbology on a graph-theoretic
equivalency basis; thereby suppressing extraneous
background detail.

is isomorp hie to

is h omao mo rphie to

Figure 5-Graph equivalencies

Two types of graph equivalency are used in isolation.
These are

• isomorphism
• homomorphism

One graph is isomorphic to another if there exists a
one-to-one correspondence between their nodes which
preserves adjacency of edges. A graph is homomorphic
to another if it can be obtained from the other by sub­
division of edges. Figure 5 yields an instance of iso­
morphic and of homomorphic equivalence of graphs.

Using the above definitions of graph equivalency, the
process of isolation can be achieved by means dependent
upon and able to cope with the types of structural
degradation, Figure 6, found within actual maps. For
instance, should a map contain no structural degrada­
tion, then on the basis of graph structures only, it is
necessary and sufficient to propose as possible symbol­
ogy isolations those components of the map which are
isomorphic to the sy~bology being sought. If the map

Crossing of lines

Breakage of lines

Overlay of nodes Overloy of lines

Uncertain location
of corner nodes

Figure 6-Structural degradations occurring in MAPPS

Automated Map Reading and Analysis by Computer 139

contains no crossing, overlay, or breakage of lines then
on the basis of graph structures only, it is necessary and
sufficient to propose as possible symbology isolations
those partial subgraphs of the map which are isomorphic
to the symbology. If the map contains no breakage or
overlay of lines, then it is necessary and sufficient to
propose those partial subgraphs which are homomorphic
to the symbology sought. Finally, if a map contains as
the only forms of structural degradation: line cross­
overs, line breakage, node overlay, and uncertain loca­
tion of corner nodes, first complete the map by filling in
all possible instances of line breakage. Then it is neces­
sary and essentially sufficient to propose as possible
pattern isolations those partial subgraphs of the com­
pleted map which have no two adjacent broken edges
and which are homomorphic to the symbology sought.

Although the process of isomorphic matching of
graphs can be conducted rather efficiently,4 the more
realistic process of homomorphic matching requires the
investigation of large numbers of partial subgraphs of
the map for possible equivalency to pattern symbology.

(a) a feature space

./

'/

(c) region forme d by

bounds te.ting of

feotures

L
/'

V

(b) Region containing instances

of pattern symbology

(d) best con.native region

formed by bound testing

of f eatur IS

Figure 7-Partitioning of feature space by metric tests
(a) A feature space
(b) Region containing instances of pattern symbology
(c) Region formed by bounds testing of features
(d) Best conservative region formed by bound testing

of features

8
H ."

/::;. G
F

Cl E a
B •

A 0

y a • /::;.." 8

.~
B •

c

fj
C

y

A pattern Symbol S Its spanning tree T.

4

I~'
13

~ 8 I~ 12 16 18

T '. "~.
19

The element. T. Ii) of T. AppHcotion to a mop

Figure 8-The structure of a pattern symbol

In order to limit the number of partial subgraphs
which need be checked for homomorphic match, metric
equivalency tests have been integrated into the graph
theoretic isolation process. These tests include bounds
checking of the lengths, curvatures, thicknesses, and
angles between lines, and may be easily extended as
required.

If the metric tests are well chosen then they will be
conservative, i.e., will not reject any true instance of
pattern symbology. This may be seen by viewing the
various screening quantities as features in the feature
space of Figure 7. The ensemble of all true instances of
pattern symbology will form some region A in the space,
Figure 7. Any set of metric tests may also be viewed as
partitioning the feature space, passing only those
instances of symbology which lie in some region B of
the space formed by the partition. If region B contains
region A, then the set of tests is conservative. If region
B exactly contains region A, then the set of tests also
form a perfect recognizer. It is more important how­
ever, that the tests result in a high processing efficiency.
This may be achieved by immediate testing of each
feature as it is first calculated. This form of testing
generates a partition which boxes in some region of
feature space as shown in Figure 7 c. While this parti­
tion is not necessarily perfect, it is usually possible to
adjust the bounds of the tests so as to achieve a near
optimal, as well as conservative, performance on the
basis of limited sampling of pattern symbology within a
map, Figure 7 d. Thus the isolation process may also
often serve well as the final stage· of recognition. When
desired, however, it is always possible to concatenate
other more conventional recognition processes in order
to achieve yet higher accuracies of recognition.

140 Fall Joint Computer Conference, 1972

To Calling
Routines

__ --------------__ A~ ________________ _

(final Temporary Err~
Success Success Return

End
~Of-

Pattern

,\

Final
\(uccess

\

Get Next M atc h

Possibility

For This Match Level ~

,

Temporary
Success

y
Recursive Invocation

Of Match

Figure 9-Structure of MATCH

Error
Return)

The routine MATCH

Application of the search for graphical and metric
equivalencies is conducted via a recursive routine called
MATCH. On the graph-theoretic level, MATCH func­
tions through utilization of tree programming. In this
approach, a spanning tree Ts is pre-specified for each
pattern symbol S. The elements of Ts are named
T s (i),i=l, 2, ... , N s, where Ts(i) is constrained to be
connected to Ts(1) through the set {T8 (j), j = 1, 2,
... , i}. These structural conventions, illustrated by
Figure 9, are developed to permit utilization of a recur­
sive search policy in matching Ts and the partial sub­
graphs of a map Gm•

The recursive structure of MATCH is shown in
Figure 9. It has one entry from and two exits back to
the calling program. Being recursive, it can call itself.
At the ith level of recursion, MATCH investigates the
possibilities of homomorphic equivalence of elements
Gm to Ts(i). As each possibility is proposed MATCH
checks to insure that all implied graph-theoretic
equivalencies between Ta(j) ,j = 1, 2, ... , i, and Gm
are acceptable, and that basic metric equivalences are
met.

More explicitly, at the recursive level i, MATCH
takes the following action. If Ts has been fully matched

then MATCH takes a FINAL SUCCESS exit which
carries it back up the recursive string with the isolated
symbology from Gm• If all matching possibilities for
T 8 (i) , i>l, have been exhausted then MATCH takes
an ERROR RETURN exit back to the i-lth level of
recursion in order to try to find other matching possi­
bilities for T8(i-l). Alternatively if all matching pos­
sibilities for Ts (i), i = 1, have been exhausted then
MATCH fails to isolate the symbology sought and exits
along the ERROR RETURN exit to the calling pro­
gram. On the other hand, if it finds an acceptable
match for Ts(i) then it exits via the TEMPORARY
SUCCESS exit to continue the matching search for
T8(i+l).

At each recursive level, MATCH performs one of
three specific actions: matching to nodes of T8 , match­
ing to lines of T 8 , and initial matching to new pattern
components of Ts.

Matching of nodes

The fundamental operation performed by MATCH
is the matching of the immediate neighborhood of a
node of Gm to that of Ts. This matching must satisfy
several constraints. It must be feasible, must satisfy

a····
CJ

(a) node neighborhoods before matching

.. :

~ ..

~-~><.

. .. g':" . .

~
Gm '. 'l~' •• '

... 5
6 ...

(b) node neighborhoods after matching

Figure lo-Matching of node neighborhoods
(a) N ode neighborhoods before matching
(b) Node neighborhoods after matching

Automated Map Reading and Analysis by Computer 141

... ~ ...

(a) line regions before matching

.. ~ .;y ... Gm

... ~ ...

(b) line regions after matching

Figure ll-Matching of line regions
(a) Line regions before matching
(b) Line regions after matching

certain angular conditions, and must not violate any
prior matching assumptions. A matching is feasible if
the degree of the node of Gm is greater than or equal to
that of the node of Ts. This requirement, for example
results in termination of the matching of the map seg~
ment of Figure 8 at recursive stage 16 because the de­
greeof node Ts(16) was greater than the degree of the
corresponding node of G m.

A matching satisfies necessary angular constraints if
all internal angles of the planar graphs of Gm and Ts
are sufficiently similar. It satisfies prior matching as­
sumptions if the present matching attempt is not in
conflict with previous matching attempts or involves
lines of Gm which are matched to other pattern symbol­
ogy.

The neighborhood of a node of Ts is considered to be
fully matched when the node and its adjacent lines are
matched to a node of Gm and some subset of its adjacent
lines. For instance, if the conditions represented in
Figure lOa hold upon a call of MATCH, then Figure
lOb shows a suitable match of the neighborhoods.

Matching of lines

In matching a line of T8 to elements of Gm, MATCH
finds a path in Gm which corresponds to the line of T s,

This path may contain one or more elementary lines
and may even contain breaks. The path must, however
satisfy minimal constraints. It must not cross over it~
self, no portion of the path other than endpoints may
have been previously matched, no breaks may be ad­
jacent, the implied endpoint matchings must be con­
sistent with prior matchings, and finally certain metric
equivalencies must be observed. Typically these metric
equivalencies need be no more complex than a rough
correspondence of length and curvature between line of
T8 and the path within Gm•

As an example of the matching of lines consider
Figure 11. If the conditions of Figure 11a hoid upon a
call of MATCH then Figure lIb shows a suitable match­
ing between the line of Ts and a path within Om .

Initial m.atching of com.ponents

. Matching of nodes and lines of connected symbology
IS conducted by the tracking of connectivity via T B•

This technique may be extended to the matching of
symbology S composed of disjoint components through
inclusion of lines within Ts which link nodes of the
various components of S. These lines may, for matching
purposes, be treated as straight lines of T s, thereby
simplifying the matching process.

FINAL CLASSIFICATION

MAPPS has the capability for inclusion of a final
classification routine (CLASS). When used this routine
serves to provide a final decision as to whether an iso­
lated piece of symbology is a true instance of the sym­
bology being sought. If the isolation is determined to be
erroneous, then MATCH continues its search toward
an alternative isolation ..

CLASS may be implemented by a variety of ap­
p,roaches, the best known and most appropriate of
which is through use of discriminant functions. The
power of its application can be dramatically enhanced
through proper use of results from MATCH. For ex­
ample, quite complex features can be devised for input
to CLASS from the very detailed description of the
isolated symbology produced by MATCH. As further
example MATCH may be used to isolate new symbology
and tentative classification from a map to form a train­
ing set for CLASS. Then with or without a teacher the ,
discriminant function underlying CLASS can be per­
turbed toward a more optimal setting by any of several
well-known algorithms.3

142 Fall Joint Computer Conference, 1972

Figure 12-Test results
Figure 12a-The input map

OUTPUT

The Output Routine (OUTPUT) takes the isolated
symbology recognized by earlier routines (MATCH,
CLASS, ...) and produces the final MAPPS output in

··-···l···-···-······ .. -.. --.. ---~- -----
I ------_--..,-.. _. ____ _

... _._ _-.. _-

.'~'

Figure 12b-The input map after line extraction

/}

I
: !

} i

Figure 12c-Isolated highways

accordance with a specific user query. This is accom­
plished by establishing a data structure in which data
can be retrieved through use of relational pointers.
Retrieval is effected by specification of the desired
symbology class and by calling various relations. The
relation "contains" may be used, for instance, to find

Figure 12d-Isolated railways

Automated Map Reading and Analysis by Computer 143

....... ~> ...
l /

.... I.:::~: ... I.·.
... -.=~=:::.-

...... --.. :~

. Figure 12e-Isolated roads

the various isolated symbols belonging to a specified
symbology class. Another call of "contains" will then
result in presentation of all lines and nodes present in
the specified symbology. Yet another call of "contains"
will return the specific picture points involved. Alterna-

EF'
.-.t.

e
E

Figure 12f-Isolated 'E's

tively a call of "position" will return the nominal
location of the center of each isolated symbology.

RESULTS OF TEST RUNS

MAPPS has been tested on several map regions. In
each case CLASS was set to accept all isolations in
order to most stringently test the operation of MATCH.
Throughout all testing the results were highly satis­
factory. Figure 12 presents the results for a representa­
tive run. The map region of Figure 12a was fed to the
early stages of MAPPS producing the preprocessed
map of Figure 12b. This preprocessed map was then
subjected to several searches for specified symbology
resulting in Figures 12c through 12k. In all but one case
the recognition was conservative. Only in the case of
Figure 12f was a false isolation made. An M was there
recognized as an E. Had CLASS been implemented using
character recognition techniques, this misrecognition
could have been avoided. In those cases where recogni­
tion was incomplete, as for the highway of Figure 12c,
isolation was terminated by MATCH due to mismatch
of structure between the map and symbology sought.

Some overall statistics on the test run: MAPPS cor­
rectly found instances of 18 types of lineal and point
symbologies. These instances were formed from 5382
elementary lines. In addition 7 incorrect instances were

Figure 12g-Buildings

144 Fall Joint 'Computer Conference, 1972

Figure 12h-Benchmark symbols

isolated although in each case this could have been
avoided by use of a proper classification structure within
CLASS. Since minimization of run-time was of minor
importance, the average test-run for each symbology

"·"+-r::,
.~--!:

Figure 12i-Churches

I
I I

... e\ \/,
"", '".r

Figure 12j-Swamp symbols

search of a map region took approximately 10 minutes
from input film to output description. It is estimated
that this could have been improved very significantly
by various means; however this was not a maj or goal
at this stage of research.

Figure 12k-Spring symbols

Automated Map Reading and Analysis by Computer 145

CONCLUSION

This work has been an investigation into a broad class
of conventionalized, two-dimensional, pictorial pat­
terns: the symbology of maps. Important aspects of the
problem involve line extraction, isolation under condi­
tions of qualitatively-defined degradation, use of graph
structures and matching techniques in isolation, and
interactive recognition of geometrically variable sym­
bology.

A sophisticated approach to line extraction yielded a
useful data base upon which to conduct symbology
isolation and recognition. The use of graph structure
and matching in symbology isolation proved very ef­
fective. Unexpectedly, it was found to be seldom
necessary to resort to formal classification techniques in
recognition of the isolated symbology. Such techniques
could be incorporated as desired resulting in a continued
search for symbology in case of any misisolation. The
program as a whole is able to be expanded to the recog­
nition of a wide variety of graphical symbology. In
addition, the concepts involved can quite possibly be
applied to the automated perception of gray-level scen­
eries such as blood cells, aerial photographs, chromo­
somes, and target detection.

ACKNOWLEDGMENT

The authors would like to acknowledge the interest
displayed by other members of the Center for Infor­
matics Research in this and related research. This re­
search has been sponsored in part by the Office of Naval
Research under Contract No. N00014-68-A-0173-0001,
NR 049-172.

REFERENCES

1 R H COFER
Picture acquisition and graphical preprocessing system
Proceedings of the Ninth Annual IEEE Region III
Convention Charlottesville Virginia 1971

2 R H COFER J T TOU
Preprocessing for pictorial pattern recognition
Proceedings of the NATO Symposium on Artificial
Intelligence Rome Italy 1971

3 J T TOU
Engineering principles of pattern recognition
Advances in Information Systems Science Vol 1 Plenum
Press New York New York 1968

4 G SALTON
Information organization and retrieval
McGraw-Hill Book Company N ew York 1968

Computer generated optical sound tracks

by E. K. TUCKER, L. H. BAKER and D. C. BUCKNER

University of California
Los Alamos, New Mexico

INTRODUCTION

For several years various groups at the Los Alamos
Scientific Laboratory have been using computer gen­
erated motion pictures as an output medium for large
simulation and analysis codes.1 ,2,3 Typically, the nu­
merical output from one simulation run is so large that
conventional output media are ineffective. The time­
variable medium of motion picture film is required to
organize the results into a form that can be readily
interpreted. But even this medium cannot always con­
vey all of the information needed. Only a limited num­
ber of variables can be distinctly represented before
the various representations begin to obscure or
obliterate each other. Furthermore, the data presented
usually must include a significant amount of explana­
tory material such as scaling factors, representation
keys, and other interpretive aids. If a film is to have
long-term usefulness to a number of people, this infor­
mation must either be included on the film or in a
separate writeup that accompanies the film.

In an effort to increase the effective information
density of these films, a study was undertaken to de­
termine the feasibility of producing optical sound tracks
as well as pictorial images with a microfilm plotter.
Some exploratory work done at the Sandia Labora­
tories, Albuquerque, New Mexico, suggested that this
might provide a good solution to the problem.4 It has
been demonstrated many times that a sound track
facilitates the interpretation of visual presentations. 5

However, from our standpoint, the addition of another
channel for data presentation was as important as
facilitating interpretation. Not only could a sound track
present explanatory and narrative material efficiently
and appealingly, it could also be used to represent addi­
tional data that might otherwise be lost. For example,
it is always difficult to clearly represent the movement
of many particles within a bounded three-dimensional
space. If, however, the collisions of particles-either
with each other or with the boundaries of the space-

147

were represented by sounds, interpretation of results
would be greatly facilitated. This is feasible only if the
sound track is computer produced, not "dubbed in"
after the fact. It should be made clear at this point that
it was not an objective of this project to have the com­
puter create all of the waveforms represented on the
sound track. What was required was that the computer
be able to reproduce on an optical sound track any re­
corded audible sound, including voices or music. The
waveforms that the computer would actually have to
create could be limited to some of the sounds we wanted
to use as data representations.

OPTICAL SOUND TRACKS

Sound is generated by a vibrating body which pro­
duces a series of alternating compressions and rare­
factions of some medium, i.e., a wave. As this series is
propagated through the medium, particles of the me­
dium are temporarily displaced by varying amounts.
We shall speak of the magnitude and direction of this
displacement as the instantaneous amplitude of the
wave. If the variation of this amplitude can be de­
scribed as a function of time, a complete description or
encoding of the wave is obtained. Thus, a sound wave
can be "stored" in various representations, as long as
the representation fully describes the variation of ampli­
tude with respect to time.

An optical sound track is one way of representing a
sound. It consists of a photographic image which de­
termines the amount of light that can pass through the
track area of the film at a given point. As the film is
pulled past the reader head, varying amounts of light
pass through the film to strike a photocell, producing
a proportionally varying electrical signal. A given
change in signal amplitude can be produced at the
photocell by varying either the area or the intensity of
exposure of the sound track image.

Conventional sound tracks are produced by either of
two methods. The variable area type of track is pro-

148 Fall Joint Computer Conference, 1972

Figure 1-A computer generated optical sound track

duced by having a beam of light of constant intensity
pass through a slit of variable length to expose the film.
In the. variable intensity recording method, either the
light's intensity or the slit width can be varied with the
slit length held constant. Commercial sound tracks are·
produced by both methods. In both cases, the sound
track image is produced on a special film that is moved
past the stationary light source. Separate films of sound
track and pictures are then reprinted onto a single film.

Sixteen-millimeter movies with sound have sprocket
holes on only one edge. The sound track is located along
the other edge of the film (see Figure 1). Such sound
tracks are normally limited to reproducing sound with
an upper frequency of 5000-6000 Hz. This limitation
is imposed by the resolution that can be obtained with
relatively inexpensive lens systems, film and processing
and by the sound reproduction system of most 16 mm
projectors. 6

INPUT SIGNALS

In order not to be limited to the use of computer
created sounds alone, it was necessary to be able to store

TIME

SAMPLING THE ORIGINAL SIGNAL

y

............. . .

...

~------------------~~------------.-x

APPROXIMATING THE ORIGINAL SIGNAL
FROM THE SAMPLES

Figure 2~Discrete sampling

other complex audio signals, such as voices, in a form
that could be manipulated by a digital computer. As
discussed above, any audio signal can be completely
described by noting the variation of the signal's am­
plitude as a function of time. Therefore, the data for a
digital approximation of an audio signal can be obtained
by periodically sampling the signal's amplitude (see
Figure 2). The primary restriction associated with this
approach requires that the sampling rate be at least
twice the highest frequency contained in the signal,7
In effect, samples obtained at a relatively low sampling
rate S from a wave containing relatively high frequen­
cies f will create a spurious "foldover" wave of frequen­
cy 8-f.

The input for our experimental film was recorded on
standard 7.4' -inch magnetic tape at a speed of 7,72 IPS.
Frequencies greater than 8000 Hz were filtered out, and
the resulting signal was digitized at a sampling rate of
25,000 samples/second. The digitizing was performed
on an Astrodata 3906 analog-to-digital converter by the
Data Engineering and Processing Division of Sandia
Laboratories, Albuquerque. The digital output of this
process was on standard ,72-inch 7 -track digital mag­
netic tape in a format compatible with a CDC 6600
computer. This digital information served as the audio
input for the sound track plotting routine.

PLOTTING THE SOUND TRACK

The sound track plotting routine accepts as input a
series of discrete amplitudes which are then appro­
priately scaled and treated as lengths. These lengths
are plotted as successive constant intensity transverse
lines in the sound track area of the film. When these
lines are plotted close enough together, the result is an
evenly exposed image whose width at any point is
directly proportional to an instantaneous amplitude of
the original audio signal (see Figure 1). Consequently,
as this film is pulled past the reader head, the electrical
signal produced at the photocell of the projector will
approximate the wave form of the original audio signal.
The routine is written to produce one frame's sound
track at a time. During this plotting, the film is sta­
tionary while the sound track image is produced line by
line on the cathode ray tube of the microfilm plotter.

The sound reproduction system of a motion picture
projector is very sensitive to any gaps or irregularities
in the sound track image. Plotting a sound track, there­
fore, requires very accurate film registration. Further­
more, the sound track image must be aligned in a per­
fectly vertical orientation. If either the registration or
the vertical alignment is off, the track images for
successive frames will not butt smoothly together and
noise will be produced.

Computer Generat.ed Optical Sound Tracks 149

PLOTTER MODIFICATIONS

All of our early experimental films were produced on
an SD 4020 microfilm printer/plotter. Three modi­
fications had to be made to the 16 mm camera of this
machine in order to make these films. These modifica­
tions do not affect any of the camera's normal functions.

In the first modification, the Vought 16 mm camera
had to be altered to accommodate single sprocketed 16
mm movie film. For this it was necessary to provide a
single sprocketed pull-down assembly. This was accom­
plished by removing the sprocket teeth on one side of
the existing double sprocket pull-down assembly. Next,
it was necessary to replace the existing lens with a lens
of the proper focal length to enable the camera to plot
the sound track at the unsprocketed edge of the film.
The lens used was a spare 50 mm lens which had pre­
viously been used on the 35 mm camera. With the exist­
ing physical mountings in the 4020, this 50 mm lens
presents, at the film plane, an image size of approx­
imately 17.5 X 17.5 mm. Thus, with proper raster
addressing, a suitable 16 mm image and sound track
may be plotted on film. (Increasing the image size in
this fashion produces a loss of some effective resolution
in the pictorial portion of the frame while the 50 mm
lens is in use. This loss of resolution in the picture por­
tion is not particularly penalizing in most applications.)
Finally, it was necessary to expand the aperture both
horizontally and vertically to allow proper positioning
and abutment of the sound track on the film.

By interchanging the new lens with the original lens,
normal production can be resumed with no degradation
caused by the enlarged aperture and single sprocketed
pull-down. No other modifications were required on
the SD 4020 in order to implement the sound track
option.

The primary difficulty we encountered using the SD
4020 was that we could not get consistently accurate
butting of consecutive frames. Therefore, the later films
were plotted on an III FR-80, which has pin registered
film movement. In order to use this machine, the film
transport had to be altered to accommodate single
sprocketed film, and the aperture had to be enlarged.
A software system tape was produced to allow the
sound track image to be plotted at the unsprocketed
edge of the film, with the pictorial images still plotted
in the normal image space. The FR-80 also provides
higher resolution capabilities, so that no loss of effective
resolution is incurred when pictorial images and the
sound track are plotted in one pass through the machine.

As was discussed earlier, optical sound tracks are
usually limited to reproducing sound with an upper
frequency of 5000-6000 Hz. Since motion picture film is
projected at a rate of 24 frames/second, a minimum of

150 Fall Joint Computer Conference, 1972

410 lines per frame are needed to represent such fre­
quencies in the sound track. While we have made no
quantitative tests to demonstrate the production of
such frequencies, we would expect efficient resolution
to produce frequencies in or near this range with either
of the plotters. Our applications so far have not needed
the reproduction of sounds in this frequency range.

THE TRACK PLOTTING ROUTINE

The present sound track plotting routine was written
with three primary objectives in mind. First, it was felt
that it would be advantageous to be able to produce
both pictorial imagery and the sound track in one pass
through the plotter, with the synchronization of pic­
tures and sound completely under software control.
Second, the routine was written to allow the user maxi­
mum flexibility and control over his sound track "data
files". Finally, the routine was designed to produce film
that could be projected with any standard 16 mm pro­
jector.

One-pass synchronization

The sound track plotting routine is written to pro­
duce one frame's sound track at a time, under the con­
trol of any calling program. However, in a projector,
the reader head for the sound track is not at the film
gate; it is farther along the threading path. The film
gate and the reader head are separated by 25 frames of
film. Therefore, to synchronize picture and sound, a
frame of sound track must lead its corresponding pic­
ture frame by this amount so that as a given frame of
sound track arrives at the reader head, its corresponding
pictorial frame is just reaching the film gate. In order
to be able to generate both picture and sound in one
pass through the plotter, it was necessary to build a
buffer into the sound track plotting routine. This buffer
contains the plotting commands for 26 consecutive
frames offilm. In this way, a program plotting a pic­
torial frame still has access to the frame that should
contain the sound track for the corresponding picture.

The simultaneous treatment of pictorial plot com­
mands puts the synchronization of pictures and sound
completely under software control. Furthermore, this
can be either the synchronization of sound with picture
or the synchronization of picture with sound. This is
an important distinction in some applications; the cur­
rent picture being drawn can determine which sound is
to be produced, or a given picture can be produced in
response to the behavior of a given sound track wave.

Flexibility

The present routine will read from any number of
different digital input files and can handle several files
simultaneously. Thus, for example, if one wishes to have
a background sound, such as music, from one file behind
a narrative taken from another file, the routine will
combine the two files into a single sound track. The call­
ing routine can also control the relative amplitudes of
the sounds. In this way, one input signal can be made
louder or softer than another, or one signal can be faded
out as another one fades in. Any input file can be start­
ed, stopped, restarted or rewound under the control of
the calling program.

DEMONSTRATION FILMS

Several films with sound have been produced using
the sound track plotting routine. Most of the visual
portions were created with very simple animation tech­
niques in order to emphasize the information content
added by the sound track. The films review the tech­
niques employed for the generation of a sound track. No
attempts have been made to rigorously quantify the
quality of the sounds produced since no particular cri­
terion of fidelity was set as an objective of the project.
Furthermore, the sound systems of portable 16 mm
projectors are not designed to produce high fidelity
sound reproduction, since the audio portion will always
be overlaid by the noise of the projector itself. For our
purposes it was enough to make purely subjective judg­
ments on the general quality of the sounds produced.

SUMMARY

The ability to produce optical sound tracks, as well
as pictorial imagery, on a microfilm plotter can add a
tremendous potential to computer generated movies.
The sound medium can serve to enhance the visual pre­
sentation and can give another dimension of informa­
tion content to the film. This potential cannot be fully
exploited unless the sound track and the pictures can be
plotted by the computer simultaneously. Under this
condition, the input for the sound track can be treated
by the computer as simply one more type of data in the
plotting process.

The input for the sound track plotting routine dis­
cussed in this report is obtained by digitizing any audio
signal at a suitable sampling rate. This digital informa­
tion can then be plotted on the film like any other data.

Very few hardware modifications were made to the

plotter in order to produce sound tracks. The modifica­
tions that were made did not affect the plotter's other
functions.

The routine is written to give the user as much flexi­
bility and control as possible in handling his sound track
data files. Multiple files can be combined, and syn­
chronization is under the control of the user's program.

It now appears that the production of computer gener­
ated optical sound tracks will prove to be cost effective
as well as feasible. If so, this process could conveniently
be used to add sound to any computer generated film.

ACKNOWLEDGMENTS

While many individuals have made significant contri­
butions to this project, the authors would like to give
particular thanks to Jerry Melendez of Group C-4 for
many hours of help in program structuring and
debugging.

The work on this project was performed under the
auspices of the U. S. Atomic Energy Commission.

Computer Generated Optical Sound Tracks 151

REFERENCES

1 L H BAKER J N SAVAGE E K TUCKER
Managing unmanageable data
Proceedings of the Tenth Meeting of UAIDE Los
Angeles California pp 4-122 through 4-127 October 1971

2 L H BAKER B J DONHAM W S GREGORY
E K TUCKER
Computer movies for simulation of mechanical tests
Proceedings of the Third International Symposium on
Packaging and Transportation of Radioactive Materials
Richland Washington Vol 2 pp 1028-1041 August 1971

3 Computer fluid dynamics
24-minute film prepared by the Los Alamos
Scientific Laboratory No Y-204 1969

4 D ROBBINS
Visual sound
Proceedings of the Seventh Meeting of UAIDE San
Francisco California pp 91-96 October 1968

5 W A WITTICH C F SCHULLER
A udio visual materials
Harper & Row Publishers, Inc. New York 1967

6 The Focal encyclopedia of film and television techniques
Focal Press New York 1969

7 J R RAGAZZINI G F FRANKLIN
Sampled-data control systems
McGraw-Hill Book Company New York 1958

Simulating the visual environment in real-time via software

by RAYMOND S. BURNS

University of North Carolina
Chapel Hill, North Carolina

INTRODUCTION

Computer graphics has been seen since its inception! as
a means of simulating the visual environment. I van
Sutherland's binocular CRTs was the first apparatus
designed to place a viewing subject in a world generated
by a computer. When the subject in Sutherland's appa­
ratus turned his head, the computer generated new
images in response, simulating what the subject would
see if he really . were in the 3-space which existed only
in the computer's memory. This paper describes a sys­
tem which is a practical extension of Sutherland's con­
cept.

The problem of simulating the visual environment
of the automobile driver has attracted a variety of par­
tial solutions. Probably the most used technique is sim­
ple film projection. This technique requires only that a
movie camera be trained on the highway from a moving
vehicle as it maneuvers in a traffic situation. The result­
ing film is shown to subjects seated in detailed mock­
ups of automobile interiors, who are directed to work
the mock-up controls to "drive" the projected road.
The illusion of reality breaks down, however, when the
subject turns the steering wheel in an unexpected direc­
tion and the projected image continues on its prede­
fined course. Mechanical linkages from the mock-up to
the projector, which eause the projector to swing when
the steering wheel is turned, have also been tried. But
that technique still breaks down when the subject
chooses a path basically different from the path taken
by the vehicle with the movie camera.

Such film simulators are termed "programmed" .
That is, what the subject sees is a function, not of his
dynamic actions, but of the actions taken at the time
the film was recorded. An "unprogrammed" simulator
reverses this situation in that the image that the subject
sees is determined only by his behavior in the mock-up.

Unprogrammed visual environment simulators have
been built for studying driving behavior. The U. S.
Public Health Service at the Injury Control Research

153

Laboratory, Providence, Rhode Island, has construct­
ed several examples of unprogrammed simulators. One
of these features a model terrain board with miniature
roads and buildings over which a television camera
is moved through mechanical linkages to the steering
wheel of an automobile mock-up. The television camera
is oriented so that the subject is presented with a wind­
shield view. This arrangement earns the "unpro­
grammed" label within the physical limits of the ter­
rain board. In practice, however, its value as a research
tool is limited to studying driver behavior at dusk, as
the image presented to the subject is dim. Natural day­
light illumination, even under cloudy conditions, is
much brighter than the usual indoor illumination. Dup­
licating the natural daylight illumination over the sur­
face of the whole terrain board was found to be imprac­
tical in terms of the heat produced and the current re,..
quired by the necessary flood lamps.

Because of the difficulties and disadvantages of film­
and terrain board-type simulators, some efforts in re­
cent years have been directed toward constructing
visual simulators based on computer-generated images.
General Electric has developed a visual simulator for
NASA, used for space rendezvous, docking and landing
simulation, which embodies few compromises.2 The
G. E. simulator output is generated in real time and
displayed in color. However, from a cost standpoint,
such a simulator is impractical for use as a highway
visual.simulator because the G. E. simulator was im­
plemented to a large extent in hardware.

Consequently, the search for a visual-environment
simulator which could be implemented in software was
initiated. A study, investigating the feasibility of such
a simulator was undertaken by the Highway Safety
Research Center, Chapel Hill, North Carolina, an
agency of the State of North Carolina. This study led
to the development of the VES, for Visual Environment
Simulator, a black-and-white approximation of the
GE-NASA spaceflight simulator, adapted for highway
environment simulation and implemented in software.

154' Fall Joint Computer Conference, 1972

Figure I-Mock-up of an automobile interior

VES DESIGN REQUIREMENTS

The requirements laid down by the Highway Safety
Research Center were for a visual simulator that could
be incorporated in a research device to totally simulate
the driving experience to the subject. Not only was the
visual environment to be simulated, but the auditory
and kinesthetic environment as well.

The subject was to be seated in a mock-up of an auto­
mobile interior; complete with steering wheel, brake
and accelerator (see Figure1). The kinesthetic environ­
mentwas to be simulated by mounting the mock-up on
a moveable platform equipped with hydraulic rams.
Under computer control, the mock-up could be sub­
jected to acceleration and deceleration forces, as well as
pitch, yaw and Toll. Similarly, a prerecorded sound
track would be synchronized with the visual simulation
to provide auditory feedback. To as great a degree as
possible, the subject was to be isolated from the real
environment and presented only with a carefully con­
trolled simulated environment.

From the researcher's point of view, this simulation
device should allow him to place a subject in the mock­
up, present him with a realistic simulated environment
and then study the subject's reactions. Further, the
choice of reactions available to the subject should not
be limited in·any way. So, if the subject were to "drive"
off the simulated road and through the side of a simu-

lated building, the visual, kinetic and ,auditory feed­
back should realistically reflect his actions.

A visual simulator to provide the feedback described
above must meet several requirements. To support the
subject's unlimited alternatives, each image generated
by the visual simulator must be determined only by
the subject's inputs via the steering wheel, accelerator
and brake, together with the subject's position in the
simulated terrain. Therefore, the entire image repre­
senting the visual environment must be calculated in
the time span separating subsequent images.

REALISM

The high premium placed on realism in the visual sim­
ulator implied that the time span between subsequent
images would be short, comparable to the time span be­
tween movie or television frames. The realism require­
ment also made hidden surface removal mandatory.
Transparent hills, cars and road signs were unaccepta­
ble if the illusion of reality were to be maintained.

Further, television-type images were preferable to
wire-frame drawings. If the images were to be of the
wire-frame type, then objects would be represented by
bright lines on the otherwise dark face of the CRT.
For objects at close range, this representation presents
few problems. But for objects at long range, the concen­
tration of bright lines near the horizon would resemble
a sunrise.

SYSTEM DESCRIPTION

The visual simulator software runs on a stand-alone
IDIIOM-2 interactive graphics terminal consisting of
a display processor, a VARIAN 620f mini-computer
and a program function keyboard3 (see Figure 2). The
display processor is itself a computer, reading and exe-'
cuting its program (called a display file) from the core
of the mini-computer on a cycle-stealing basis. The dis­
play processor's instruction set is extensive, but the
visual simulator uses only a few instructions. Those
used are instructions to draw horizontal vectors at
varying intensities at varying vertical positions on the
screen. The display processor is very fast, drawing a
full screen (12") vector in about 20 microseconds. This
speed allows a display file of seven thousand instruc­
tions to be executed in about ~~oth of a second, effec­
tively preventing image flicker at low light levels.

The VARIAN 620f mini-computer is also fast. Its Core
has a 750 nanosecond cycle time and most instructions
require two cycles. Word size is 16 bits and core size is
16,384.

Simulating Visual Environment in Real-Time Via Software 155

In its present configuration, the simulator receives
its steering, braking and acceleration inputs from an
arrangement of push buttons on the program function
keyboard. The design configuration calls for the in­
stallation of an analog-to-digital converter and a driv­
ing station mock-up to replace the PFK. At the same
time that the analog-to-digital converter is installed,
a VARIAN fixed-head disk with a capacity of 128K
words will be installed, giving the simulator nearly un­
limited source data set storage.

The visual simulator (VES)· accepts a pre-defined
data set which describes a plan view of the terrain
through which travel is being simulated. The terrain
data set consists of (x, y, z) triples which describe the
vertices of polygons.

At present, the YES input data set resides in the
computer memory at all times. The main function of
the VARIAN fixed-head disk mentioned above will
be to store the YES input data set.

In operation, the YES system accesses a portion of
the input data set corresponding to the terrain which
is "visible" to the subject as a function of his position

NO Last
Plan on

Disk

Display

File

Figure 2-YES system block diagram

,.. J\

F
c

1~
•

E

•
1

A

Figure 3-Diagram depicting subject's position (light triangle)
moving through terrain data set versus data set

moving past subject's position

in the simulated landscape. Then, the steering, brake
and accelerator inputs from the mock-up are analyzed
and used to compute a wire-frame type view of the
terrain which would be visible through a car's wind­
shield as a result of such steering, braking or accelerat­
ing.N ext, the hidden surface removal routine (HSR)
processes each polygon to determine which polygons
"obscure" others and to remove the parts of each that
are obscured. The output of HSR is then converted into
a program (display file) to be executed by the display
processor. The display processor executed this program
to draw the horizontal vectors at up to 8 different in­
tensities which make up the television-like final image.

The subject's position (see figure 3) in the terrain
plan view is represented by the light triangle. The dark
triangle represents a fixed object in the terrain. If the
terrain is established as the frame of reference, the sub­
ject'sposition moves across the terrain. But from the
point of view of the subject, who is stationary, the ter­
rain must move toward him. The current angular posi­
tion of the mock-up steering wheel in radians, relative
to a fixed heading, is found in variable ALPHA. AL-

156 Fall Joint Computer Conference, 1972

N

<I

DIST x
COS (ALPHA)

SIN(ALPHA}

Figure 4-Detail of translation calculations

PHA is used to rotate the plan view represented in the
input data set to give the effect of turning.

The current value of the forward speed of the sub­
ject's position is stored in variable DIST. DIST is the
value resulting from combining the accelerator and
brake inputs from the mock-up and is expressed in abso­
lute distance units per frame.

To simulate the subject's motion through the terrain,
ALPHA and DIST are used to rotate and translate the
terrain data set relative to the subject's position. Figures
3, a, b, and c, depict the situation using the terrain data
set as the frame of reference. Figures 3, d, e, and f reflect
the same situation, interpreted in the subject's frame of
reference. When the subject turns the steering wheel
by (Xl radians clockwise, the terrain data set must be
rotated by (Xl radians counter clockwise. And when the
subject presses the accelerator or brake, the terrain
data set is translated toward the subject by the value
in DIST.

Because each image is computed relative to the ini­
tial terrain data set and not relative to the previous
image, the translation step is more complicated than
the rotation step. The amount that the terrain data set
must be translated (DIST) must be decomposed into
horizontal (X-coordinate) changes and depth (Z-coor­
dinate) changes. Further, as the terrain data set must
be translated from the original data set each time a new
image is generated, the amount to be translated in either
direction is a function of the "past history" of the sub­
ject's position (see Figure 4). For example, the correct
amount to translate the terrain data set (hereinafter

referred to by its name, PLAN) for position 5 depends
upon previous position 4. That is, to translate PLAN
to correspond to position 5 requires that the X values
of each polygon in PLAN be reduced by AX and the Z
values be reduced by AZ. AZ is computed by summing
DIST X COS (ALPHA) for each value of DIST and
ALPHA. Similarly, AX is the sum of DIST X SIN
ALPHA.

After each polygon in PLAN has been translated and
rotated, it is then operated upon by a perspective trans­
formation to alter the plan view of the terrain to a per­
spective view with the view point placed at the sub­
ject's position.

PERFORMANCE

The image resulting from the YES is displayed on the
face of the display processor, drawn on a raster of 512
horizontal lines having a resolution of 1,024 points per
line. The display processor has a P4 type CRT phos­
phor, which is the same as used for black-and-white
television. The image is as sharp as any television frame
and comparable to a photograph (see Figure 5).

Because of the simplicity of the terrain data sets used
to date, the images are more cartoon-like than life-like.

One minor distraction is the rendering of slanted
lines. When slanted lines are nearly vertical, they are
represented on the screen by many horizontal rasters
and appear quite smooth. When a line is nearly horizon­
tal, however, it is represented by only a few rasters.
Consequently, the length of the vectors used to repre­
sent the slanted line vary widely from raster to raster.
These large changes in vector length are easily detected
by the observer as jagged slanted lines.

Image flicker, caused by the CRT phosphor darken­
ing significantly between passes of the electron beam,
is only a small problem. This happy situation is partly
because of the low ambient light levels used when the
YES is operating and partly because the display pro­
cessor is very fast. A display of 12 polygons involves
about 3,100 display commands which are executed
easily in ~oth of a second, allowing each point in the
picture to be intensified 30 times per second.

However, pictures of twice the present complexity
will require roughly twice as long a display file. Under
those conditions, the picture could not be intensified
30 times per second and image flicker would likely be­
come a serious problem.

In a recent test run, involving a simple terrain data
set, the YES took 30 seconds to produce 300 frames.
This yields an average time per frame of about 710th
of a second which is slower than the frame rate of home
movies. The illusion of continuous motion is main-

Simulating Visual Environment in Real-Time Via Software 157

Figure 5-Sequence of still photographs from the YES in operation

II
1

158 Fall Joint Computer Conference, 1972

tained, however, for all but the highest rates of angular
velocity encountered in a typical highway environment.
For example, a road sign in the distance appears to
move smoothly. But as the subject's "car" draws
abreast of the sign, the angular velocity becomes very
high, reaching a maximum as the sign is "passed." In
the frames just preceding the sign's disappearance at
the edge of the screen, its motion becomes jerky. The
situation is aggravated in that the generated images
are sharp from edge to edge whereas the corresponding
television image tends to be blurred when the angular
velocity is large.

Despite these disadvantages, the YES simulates sim­
ple highway scenes sufficiently well for use as a practi­
cal research tool. Most driving situations can be ab­
stracted so that only a few vehicles and road side ob­
jects are necessary to the representation. In fact, con­
trolled experiments normally require a high degree of
abstraction to spot light the particular aspect under
study. Consequently, the YES is well adapted for the
study of a wide range of driving behavior.

But simple scenes are not necessarily realistic scenes.
And realism was the main point of the original simula­
tor concept. In this light, the current YES is a rough
approximation to the device described in the design
specifications. To produce a visual environment simu­
lator which does live to the original concept requires
development of the present YES.

FUTURE DEVELOPMENT AND
IlVIPROVEMENT

As was mentioned earlier, the design configuration
includes a fixed-head disk, an analog-to-digital con­
verter and a driving station mock-up. The first stage of
improvement and development will involve integrat­
ing these devices into the system when they are in­
stalled.

By designating some polygons as "independent"
and assigning speed and direction parameters to these
polygons different from those input by the subject,
vehicles can be made to maneuver on the screen in­
dependently of the subject. The researcher conducting
the experiment can steer these vehicles along the same
"highway" the subject sees and present him with a
wide range of driving situations in which the subject
must interact with other vehicles. This "independently
moving vehicle" feature (IMV) is partially implement­
ed. What remains is to devise a steering means for the
researcher, along the lines of a miniature mock-up, to
allow him to control his vehicle on the screen.

An interactive program to allow the automated gen­
eration of the input terrain data set is also being devel-

oped. This program (GIPC) . will permit the researcher
to design and preview a driving course before it is pre­
sented to the subject. To design an input terrain data
set, the researcher loads GIPC from the disk. When
GIPC is running, the screen is roughly divided into
thirds (see Figure 6). The upper left third initially pre­
sents a menu of objects such as roads, trees, signs, etc.
The bottom left third is a slide rule-like seale. A small
box, just above the scale, contains the number selected
from the scale by a light pen hit. The upper right third
of the screen is a plan view of the terrain being designed
while the box in the lower right corner contains program
control commands which are activated by light pen hits.

In use, the researcher selects an item (say trees) from
the menu via a light pen hit. That portion ·of the screen
then changes to display the available selection of trees.
On selecting the desired form of tree, the screen indi­
cates GIPC is waiting for the size parameter for the
selected tree. This parameter is input by sliding the
light pen down the scale and observing the number
displayed in the box above the scale. When that num­
ber is the one desired, it is selected by flicking the light
pen away from the scale. When that is done, the object
chosen is displayed in the plan view in the upper right
box. The menu~ returns to the box in upper left to
await the next selection. When the desired complex­
ity has been built into the terrain data set, it is stored
onto disk via a light pen hit in the program control box.

Another feature desirable for practical use of the
YES is data reduction facilities. Various parameters
describing the subject's behavior are available to be
measured and recorded during an operational run. In
future development, these will be retained on the disk

~ ~ Jl
4tQ ~ ~ z

:%: ()~
I ~

~
I
I
I

~ BACK STOW

a 100

I I SKIP STOP

Figure 6-GIPC screen layout

Simulating Visual Environment in Real-Time Via Software 159

and analyzed statistically after the run has ended, leav­
ing only the results of the statistical programs to be
printed out for each subject.

APPENDIX

The hidden surface removal algorithm (HSR) is a
development and specialization of an alogrithm due to
W. Jack Bouknight. An outline of that alogrithm fol­
lows. Readers are referred to the reference for a detailed
discussion of LINESCAN. 4

The image resulting from LINESCAN is made up of
512 horizontal rasters or scan lines. Picture shading is
accomplished by varying the intensity of the CRT beam
at appropriate points along the length of the raster.

Bouknight's approach to removing hidden surfaces
is straightforward. His algorithm accepts a data set of
projected polygons and decomposes the polygons into
a chain of points ordered on increasing Y values of the
points. Each point is tagged with its polygon number
and the addresses of its neighboring points. The data
set containing this chain of points is accessed once for
each scan line to select all the points which correspond
to a single raster position. These are simply the points
with Y values equal to the current raster position.

To process a single scan, the set of points with Y
values common to the Y value of the current raster are

, formed into a table referred to as the active line table
or ALT. Logically, the ALT contains the intersection
points of each polygon in the input data set with the
current scan line. For example, in Figure 7, the points
of intersection with scan line "a" make up the current

0'11\03 a' 04 2 c

/\ t , sy

J, l.J

a I l\ /01
O2 \

04 1
Y1

1
Figure 7-Detail of LINESCAN operation

elements in the ALT. These elements are examined se­
quentially from left to right in the following manner.
Each polygon has an associated flag which is kept in a
table and altered to signal the presence of the scan. On
encountering point "a", the flag for the triangle is set to
"in" to indicate that the scan has "entered" the tri­
angle. A search is made of the table of flags and as no
other flags are found set to "in," LINESCAN outputs
the ordered triple (Xl, Y 1, PN t) where Xl is the X value
of point aI, YI is the Y value of the scan line and. PNt ,

the polygon number of the triangle. On encountermg a2,
LINES CAN sets the flag for the rectangle indicating
that the scan is "in" the rectangle. Now two flags are
set to "in" and a "depth sort" is required to determine
which polygon is behind the other. That is, the Z-de:r:>th
of the rectangle and the triangle are compared. As indi­
cated by the dashed lines, the rectangle is "behind" the
triangle. In this case, no ordered triple is output. On
encountering a3, the triangle's flag is set "out". As
there is now only one polygon with flag set to "in", the
ordered triple (X3, Y3,PN r) is output. Similarly, as
a4 is encountered, the rectangle's flag is set to "out"
and the triple (X4' Y 4, PN r) is output. This concludes
LINESCAN's processing of a single scan line.

To obtain the set of intersections corresponding to
. hALT f 1'" " scan line "b," each element In t e or scan me a

must be modified by an amount determined by the
space between raster elements, oY, and the slope of the
polygon's face. Because polygons are composed of
straight line segments, the change necessary is constant
for each given line segment. To obtain the AL T entries
for scan line "b," this constant value is added to 'the
previous entries in the ALT. .

But before processing scan line "b" can begm, the new
AL T is re-sorted on increasing X values. This step is
required because when the new AL T is constructed from
the old by the addition of the slope constants mentioned
above the order of some points may be disturbed. Note
that this situation occurs when the AL T for scan line
"c" is generated. Because of the differing slopes of the
triangle and rectangle sides, a3 now precedes a2 in the
left-to-right scanning order.

Once the ALT is sorted, LINES CAN continues to
process the ALT points as described above.

DEVELOPMENT AND SPECIALIZATION
OF THE HSR ALGORITHM

In writing the HSR program, the basic logic of LINE­
SCAN was implemented. Unlike LINESCAN, which
was not expressly designed for real-time applications,
HSR was written in assembly language. Some features
implemented in LINES CAN were judged unnecessary

160 Fall Joint Computer Conference, 1972

for the visual simulator application. Chief among these
was the "implicitly defined line" feature of LINE­
SCAN. This feature allows polygons to intersect and
project through one another. Without this feature,
polygons projecting through one another subvert the
scanning logic, producing incorrect and distracting
images. In a driving simulator, intersecting polygonal
objects usually represent car crashes; hence, these are
events which should be distracting.

Some major changes to the basic logic of LINESCAN
were implemented with the object of saving time. Re­
call that, when LINESCAN processes the ALT, as
each point is encountered, a flag associated with that
polygon is set to signify that the scan has "entered"
that polygon. Then as each successive point is encoun­
tered, a search of the flags is used to determine which
and how many flags are set. Performing even a short
search at each point encountered on each scanline would
consume a large fraction of the time allowed between
frames in a real-time system. In the HSR algorithm, a
table of polygon numbers is kept and updated as each
new polygon is "entered" by the scan. The number of
elements in the table is kept in a variable. Unless this
variable indicates that the scan is "in" more than one
polygon at a time, "no "depth sort" is required and no
search need be made for polygons flagged as "in." When
a "depth sort" is required, the polygons which must be
depth sorted are readily accessible by table reference.

Another change to the basic LINESCAN logic also
involved sorting. LINESCAN sorts the ALT once for
each scan. Recall that this step is required because the
ALT is disordered when lines of different slopes inter­
sect. Rather than sort the ALT for each scan, a simple
test for ALT order was devised and performed at each
point of the ALT. When disorder is found, the ALT
is sorted. In simple scenes, this disorder occurs for
about 8-10 of the possible 512 lines in a frame. Even
very complex scenes require fewer than 20 ALT sorts.
Hence, the savings in time are substantial.

REFERENCES

1 I E SUTHERLAND
A head-mounted three dimensional display
Proceedings of the Fall Joint Computer Conference Vol 33
Part I pp 757-764 1968

2 BELSON
Color TV generated by computer to evaluate spaceborne systems
Aviation Week and Space Technology October 1967

3 IDIOM-2-Interactive graphic display terminal
The Computer Display Review Vol 5 pp 201-214 1972
G ML Corporation Lexington Massachusetts

4 J BOUKNIGHT
An improved procedure for generation of half-tone computer
graphics presentations
Communications of the ACM Vol 13 Number 9 pp 527-536
September 1970

Computer animation of a bicycle simulation

by JAMES P. LYNCH and R. DOUGLAS ROLAND

Cornell Aeronautical Laboratory, Inc.
Buffalo, New York

INTRODUCTION

For years, printed output was the only means of com­
munication between the computer and man. This
limitation dictated that only the technically skilled
could interpret the reams of computer printout with
its lists of numbers and specialized codes.

For certain types of computer usage, such as ac­
counting, numbers may be the most meaningful form
of output which can be presented to the user. Solutions
to other problems, however, may represent functional
relationships of intangible variables. In this case plots
of output data provide a much faster means of com­
munication between the computer and the human.
There is a class of problems for which neither numerical
nor plotted output provide sufficient reality for rapid
user comprehension. One such area is the simulation of
the dynamics of tangible physical systems· such as
airplanes, automobiles and bicycles. Fortunately, a
means of communication is becoming practical which
provides immediate visual interpretation of simulation
results; not only for the analyst but for the layman as
well. This mediumi s the computer animated graphics
display.

The early development of computer animated graphics
displays was spurred by several investigators. Bill
Fetter of the Boeing Company created an animated
human figure in 1960 and a carrier landing film in
1961.1 Ed Zajac of Bell Telephone Laboratories pro­
duced a computer generated movie of a tumbling com­
munications satellite in 1963.2 Frank Sinden, also of
Bell Laboratories, generated an educational computer
animated film about gravitational forces acting on two
bodies.3 Two other investigators deserve mention, Ken
Knowlton of Bell Labs for his computer animation
language (BEFLIX)4 and Ivan Sutherland for his
interactive computer animation work. 5 Interested
readers will find an excellent bibliography on the
subject in Donald Weiner's survey paper on computer
animation.6

161

In early 1971, Cornell Aeronautical Laboratory,
Inc., (CAL), began a research program, sponsored by
Schwinn Bicycle Company, devoted to the development
of a comprehensive digital computer simulation of a
bicycle and rider. This simulation would be used to
study the effects of certain design parameters on
bicycle stability and control. Phase II of this research
effort included the development of a computer graphics
display program which generates animated movies of
the bicycle and rider maneuvers being simulated. It is
this graphics display capability that is described herein.

Figure I-Computer graphics rendition of a bicycle and rider

162 Fall Joint Computer Conference, 1972

Figure 2-Blcycle slalom maneuver

Computer Animation of a Bicycle Simulation 163

1 .. 1 SEC

Figure 2 (Cont'd)

164 Fall Joint Computer Conference, 1972

Computer Graphics activities at the Cornell Aero­
nautical Laboratory range from everyday use of general
purpose plotting facilities by many programmers to
highly complex computer-generated radar displays.
One of the more fascinating computer graphics applica­
tions has been the Single Vehicle Accident Display
Program, developed at CAL for the Bureau of Public
Roads by C. M. Theiss.9 This program converts auto­
mobile dynamics simulation data into a sequence of
computer animated pictures used to generate motion
picture film of the event. The demonstrated usefulness
of this capability spurred the development of a graphics
program for the Schwinn Bicycle Simulation.

BICYCLE GRAPHICS PROGRAM FEATURES

The Schwinn Bicycle Graphics Program provides a
complete and flexible perspective graphics package
capable of pictorially documenting the results of the
bicycle simulation. The salient features of the graphics
program are;

1. The program can plot a perspective picture of a
bicycle and rider, positioned and oriented as per
the simulation data.

2. The line drawing of the bicycle and rider can be
easily changed to fit simulation or esthetic
requirements.

3. The program can produce single pictures or
animated movies.

4. Background objects, such aB roadways, houses,
obstacles, etc., can be plotted in the scene.

5. The "frame rate" for animated films can be
adjusted for "slow motion" or normally timed
action.

6. The program is written to simulate a 16 mm
movie camera, so that "photographing" a sce:lie
is accomplished by specifying a set of standard
camera parameters.

7. The program's "camera" can be set to auto­
matically pan, zoom, remain fixed, or operate as
on a moving base.

8. Any of the above characteristics may be changed
during a run.

Figure 1 shows a typical frame from a bicycle simulation
movie.

SIMULATION AND GRAPHICS SOFTWARE

Digital computer simulation of bicycle and rider

The computer simulation consists of a comprehensive
analytical formulation of the dynamics of a bicycle-rider

system stabilized and guided by a closed-loop rider
control model. This computer simulation program will
be used for bicycle design and development with par­
ticular consideration being given to the effects of
various design parameters and rider ability on bicycle
stability and maneuverability.

The bicycle-rider model is a system of three rigid
masses with eight degrees of freedom; six rigid body
degrees of freedom, a steer degree of freedom of the
front wheel, and a rider lean degree of freedom. I~­

cluded in the analysis are tire radial stiffness, tire side
forces due to slip angle and inclination angle, the
gyroscopic effects of the rotating wheels, as well as all
inertial coupling terms between the rider, the front
wheel and steering fork, and the rear wheel and frame.

Forty-four parameters of input data are required by
the simulation program. These data include dimensions,
weights, moments of inertia, tire side force coefficient,
initial conditions, etc. The development of the simula­
tion program has been supported by the measurement
of the above physical characteristics of bicycles, the
measurement of the side force characteristics of several
types of bicycle tires and full scale experimental tests
using an instrumented bicycle.

Solutions are obtained by the application of a modified
Runge-Kutta step-by-step procedure to integrate
equations of motion. Output is obtained from a separate
output processor program which can produce time
histories of as many as 36 variables (bicycle transla­
tional and angular positions, velocities, accelerations,
and tire force components, etc.) in both printed and
plotted format.

The simulation program, consisting of seven sub­
routines, uses approximately 170K bytes of core storage
and requires about 4 seconds of CPU time per second of
problem time when run on an IBM 370/165 computer.
The output processor program uses approximately
200K bytes of core storage and requires about 5 seconds
of CPU time per run. The total cost of both the simula­
tion and output processor programs is approximately
seven dollars per problem.

The mechanics of making a bicycle graphics movie

In addition to the printed and plotted output gener­
ated by the Schwinn Bicycle Simulation Program, a
pecial "dynamics tape" is created for input to the
bicycle graphics program. This dynamics tape contains,
for each simulation solution interval, the bicycle's c.g.
position (X, Y, Z coordinates), angular orientation
(Euler angles), front wheel steer angle, and rider lean
angle. All other pertinent information, such as the
steering head caster angle, rider "hunch forward" angle,
are fed to the graphics program via data cards, along

with the stored three-dimensional line drawings of the
bicycle and rider, and any desired backgrounds.

The bicycle graphics program searches the tape and
finds the simulation time corresponding to the desired
"frame time." Information is then extracted to draw
the desired picture. The program mathematically
combines the chassis, front fork and pedals to draw the
bicycle, and mathematically combines the torso, left
and right upper arms and forearms, and left and right
thighs, calves and feet to draw the rider. Everything is
so combined to yield a picture of a rider astride a bicycle
assuming normal pedaling, leaning and handlebar grip.
The correctly positioned three dimensional line draw­
ings are transformed into a two dimensional picture
plane, as specified by the program's camera parameters
(location, orientation, focal length, etc.).

COMPUTER
PLOTS OF PRINTOUT

SIMULATION OF

RESULTS {J.

BICYCLE ~-----tol
GRAPHICS STORED PICTURE
PROGRAM

Figure 3-8teps in making Schwinn bicycle movie

An interface program converts the final line drawings
into a set of commands to the CAL Flying Spot Scanner.
The cathode ray tube beam of the Flying Spot Scanner
traces out one frame of the movie while a 16 mm. movie
camera records the image. Upon completion of the
picture, the movie camera automatically advances one
frame and the graphics program reads the next data
(positions, angles, etc., of bicycle and rider) from the
dynamics tape. The completed film will show animated
motion, exactly as simulated by the computer, Figure 2.
A block diagram of the movie making procedure is
shown in Figure 3.

Bicycle motions displayed

For maximum realism and esthetic quality, seven
distinct bicycle/rider motions were generated:

1. Bicycle chassis translation and rotation (6
degrees-of -freedom)

Computer Animation of a Bicycle Simulation 165

x~

Figure 4-Joints used for rider display

.j!

.j!

t ::J,.4-,
c!)- t

PEDALS

.x
CHASSIS

·x __

\
"-.

BICYCLE SYSTEM

FRONT·FORK

Figure 5-Sections used for bicycle display

166 Fall Joint Computer Conference, 1972

2. Front wheel and handlebar steering
3. Bicycle crank and pedal rotation
4. Rider left-right leaning
5. Rider arm steering
6. Rider leg pedaling
7. Rider ankle flexing

Figure 4 shows the various body members and joints
included in the rider. The separate parts of the bicycle
are shown in Figure 5.

Modification of the basic graphics package

The Bureau of Public Roads graphics display pro­
gram provided an excellent base from which to build
the Schwinn Bicycle Graphics Program. A pre-stored
line drawing, defined in its own coordinate system, is
Euler transformed into fixed space and camera trans­
formed into two dimensional picture space. Edge tests
are performed to delete lines out of the field of view.
Plotting any object (a line drawing) involves a call to
the OBJECT subroutine

CALL OBJECT (TITLE, X, Y, Z, PHI, THETA, PSI)

Title refers to a particular stored line drawing, while
X, Y, Z and PHI, THETA, PSI refer to the desired
fixed space position and Euler angles at which the
object is to be plotted. Subroutine OBJECT then does
all the necessary transformations to plot the object.
Plotting the chassis is straightforward, the chassis
position and Euler angles are read directly from the
dynamics tape.

Displaying the bicycle and rider

All segments of the bicycle and rider are displayed
with the same mathematical approach. Parts are
referenced by position and orientation to the chassis
axis system, and this information is used to calculate the
fixed space Euler angles and position. For example, the
matrix equation relating points in the front fork axis
system to corresponding points in fixed space is:

[
::] = [AJ 1 [B J [:::::] + [:::]1 + [:]
ZF ZSTEER ZZF J Z

where:

A is the standard Euler transformation matrix
(chassis to fixed space)

B is the front-fork system to chassis axis trans­
formation matrix

(XSTEER, Y STEER, ZSTEER) are points in the front
fork space

(XXF, Y YF, ZZF) is the front fork system con­
nection point in the chassis system

(X, Y, Z) is the current fixed space position of
the bicycle chassis

(XF, Y F, ZF) is the front fork points specified in
the fixed space set

The B matrix, of course, is a two rotational trans­
formation, being a function of the caster angle and the
steer angle. The Euler angles required by subroutine
OBJECT can be determined by equating like terms of
the standard Euler transformation with the overall
transformation, [ABJ= [AJ*[BJ
For instance:

PHI = TAN-l AB(3, 2)
AB(3, 3)

PSI = TAN-l AB(2, 1)
AB(l,l)

THETA=TA -1 -AB(3, l)*SIN(PSI)
N AB(2, 1)

This procedure can be easily automated by a general
subroutine which accepts the coefficients of the two
transformation matrices and outputs the Euler angles.

Displaying the pedaling action

The pedal rotation angle is easily determined by
tabulating the distance traveled by the chassis and
relating it to the wheel size and gear ratio. The toe
angle can be approximated by a cosine function of the
pedal rotation angle.

w = gear ratio*distance/wheelsize

Toe angle = - .25*cos (w)

An important simplifying assumption in the display
of the leg pedaling motion is that the legs move up and
down in a single plane. This makes trigonometric cal­
culation of the joint locations straightforward and the
object-to-chassis transformations simple one-rotation
matrices. Once this information is determined, pro­
cedures similar to the front-fork manipulations are
used. Three objects are required for each leg: the thigh,
the calf, and the foot.

Displaying the torso

The torso must hunch forward (so that the arms may
reach the handlebars) and lean to the left and right

(real-world rider control action). The transformation
between the torso axis system and the chassis system is
determined by two rotations. This transformation is
also used for determination of arm location in the
chassis system.

Displaying the arm.s

Determination of the fixed space Euler angles of the
arms is complicated by the fact that the elbow joint
lies on a circular locus around the shoulder-to-handlebar
line. Since the upper arm and forearm are assumed equal
in length, the perpendicular distance from the elbow to
thehandlebar-to-shoulder line is known. A trans­
formation matrix can be developed to convert points
in the elbow circle plane to the torso system. A constant
angle from the elbow circle plane's Y-axis defines a
unique elbow point which can be transformed back
into the chassis system. Once the elbow point is known,
determination of the Euler angles of the arm is straight­
forward.

MOVIE PRODUCTION

Both the bicycle simulation program and the bicycle
graphics program are run on CAL's IBM 370/165
computer. The flying spot scanner is interfaced with
the central digital computer through an IBM 2909
asynchronous data channel. The flying spot scanner is a
high resolution CRT display system used for plotting
and scanning. The interface software provides all the
controls required by the display to move the beam,
advance the film, etc.

The Schwinn Bicycle Graphics program requires
250K bytes of core, and generally runs from 50¢ to 90¢
per frame in computing costs, depending on image
complexity. No attempt at hidden line removal was
planned for this phase.

FUTURE APPLICATIONS

The Schwinn Bicycle Graphics Program was designed
as a research tool to demonstrate the capability of the
bicycle simulation. Several computer animated movies
have been produced of simulated bicycle maneuvers
which compare well with full scale experimental
maneuvers. At current production cost levels, only the
most interesting runs are documented with the bicycle
graphics program. The authors feel, however, that the
advent of high speed intelligent computer terminals will

Computer Animation of a Bicycle Simulation 167

allow the economical production of computer graphics.
In the future the investigator will be able to view
animated summaries of simulation results first, before
referring to more detailed printed and plotted output
data. The most gratifying result of this bicycle graphics
capability is that the technically unskilled can share in
the understanding that computer simulation is an
emulation of reality, and has visible meaning in the
everyday world.

ACKNOWLEDGMENT

The authors wish to express their gratitude to the
Schwinn Bicycle Company for permission to present
this work and also to Ronald B. Colgrove, CAL chief
artist, for his excellent rendering. of the bicycle rider
used in the movie sequences.

REFERENCES

1 W A FETTER
Computer graphics in communication
McGraw-Hill New York 1965

2 E ZAJAC
Film animation by computer
New Scientist Vol 29 Feb 10, 1966 pp 346-349

3 F SINDEN
Synthetic cinematography
Perspective Vol 7 No 4 1965 pp 279-289

4 K KNOWLTON
A computer technique for producing animated movies
Joint Computer Conference AFIPS Conference Proceedings
Vol 25 Baltimore Md Spartan 1964 pp 67-87

5 I SUTHERLAND
Perspective views that change in real time
Proceedings of 8th UAIDE Annual Meeting 1969
pp 299-310

6 D D ·WEINER
Computer animation-an exciting new tool for educators
IEEE Transactions on Education Vol E-14 No 4 Nov 1971

7 R D ROLAND JR D E MASSING
A digital computer simulation of bicycle dynamics
Cornell Aeronautical Laboratory Inc Technical Report No
YA-3063-K-1 June 1971

8 R D ROLAND JR J P LYNCH
Bicycle dynamics, tire characteristics and rider modeling
Cornell Aeronautical Laboratory Inc Technical Report
No YA-3063-K-2 March 1972

9 C M THEISS
Perspective picture output for automobile dynamics simulation
Prepared for Bureau of Public Roads by Cornell
Aeronautical Laboratory Inc Technical Report No
CPR-1l-3988 January 1969

10 C M THEISS
Computer graphics displays of simulated automobile dynamics
Proceedings AFIPS Conference Spring 1969

An inverse computer graphics problem

by W. D. BERNHART

Wichita State University
Wichita, Kansas

The goal of a conventional computer perspective
algorithm is to assist in the establishment of a scaled
perspective view of a real or conceptual geometric ob­
ject. The purpose of this paper is to present the re­
quired conditions for the inverse transformation; that
is, given the perspective of an object, establish the re­
quired parameters used in generating the perspective
and to a more restrictive extent, establish the original
geometric definition of the object. Because this inverse
mapping is from a two to three dimensional space, the
method is approximate and is accomplished by the
method of least squares based on certain a priori infor­
mation regarding the geometrical object. The method
does require a considerable amount of numerical compu­
tation, but is particularly well suited to a digital com­
puter solution.

The need for this required transformation arose in
the course of a problem associated with the determina­
tion of the coordinates of certain desired points which
appeared in photographs of an event which occurred
several years ago, wherein the desired points had been
completely obliterated by recent construction activities.
Thus, the first task was to establish the generating
parameters for the photographs. The generating param­
eters are defined as six independent coordinates from
which a photograph may be geometrically reproduced
by considering a large number of points in the three­
dimensional object space, and transforming these to
the two-dimensional space of the photograph. These
parameters consist of the coordinates of the point where
the camera is located, the symmetric equations of the
line along the optical axis of the camera, and a linear
scale factor associated with the photograph, enlarged to
any magnification. The treatment of a photograph as a
true perspective is consistent with the paraxial ray
tracing approximation of geometrical optics.

For the purpose of this analysis, all points will be de­
fined in a rectangular Cartesian coordinate system as
shown in Figure 1. The point where the camera is
located is denoted by three independent coordinates,

169

(Xe, Y e, Ze). In the context of traditional perspective
terminology, this point is commonly described as the
location of the eye or observer, and the point (Xo, Yo, Zo)
is referred to as the center of interest of the object
space or perspective center. A line through these two
points is regarded as the optical axis of the camera and
the plane perpendicular to this axis represents the pic­
ture plane, projection plane, or two-space photograph.
The location of this plane in relation to the eye point
requires the identification of a linear-scale factor which
is associated with each photograph~ The coordinates of

z

Figure 1-Projection plane and control points

170 Fall Joint Computer Conference, 1972

the center of interest, (Xo, Yo, Zo), are not a unique
set, as any point on the line passing through points
'e' and '0' will require a particular value of the linear­
scale factor to perspectively generate the object space
into the projection plane space. For this analysis, the
scale factor will be regarded as a constant and the six
independent parameters, (Xe, Y e, Ze) and (Xo, Yo, Zo)
will be determined such that the photograph may be
geometrically reproduced in the perspective sense.

Before analyzing this particular problem, it will be
necessary to present the required coordinate transforma­
tion that maps an arbitrary point 'i' in the object space
to the projection-plane space. This perspective trans­
formation has received considerable attention in com­
puter graphics applications in the last decade. 1 ,2,3 A form
which is particularly suited to the parameter identifica­
tion problem is

ni=Ro(1-A) (1)

hi = A (Ro2/PoDi) {- (Xi-Xo) (Ye- Yo)

+ (Yi - Yo) (Xe- Xo) } (2)

Vi = A(Ro/PoDi) {- [(Xi-Xo) (Xe-Xo) (3)

+ (Yi- Yo) (Ye- Yo)](Ze-Zo) + (Zi-Zo)Po2}

in which

Po= [(Xe-Xo)2+ (Ye- Y o)2J/2

Ro= [(Xe-Xo)2+ (Ye- Yo)2+ (Ze-Zo)2J/2 (5)

Di=R2-[(Xe-Xo) (Xi-Xo)

+ (Ye- Yo) (Yi - Yo) + (Ze-Zo) (Zi-Zo)] (6)

and A = the linear scale factor; A> O.
The coordinate normal to the picture plane is a

constant and is of no particular interest other than as
an aid in the estimation of a suitable photographic
scale factor. For the case of a photograph, this normal
coordinate is proportional to the focal length of a simple
convergent camera lens. This particular form of the
perspective mapping transformation is based on two­
successive rotational transformations such that the
plane defined by a line parallel to the Z-axis and the.
point 'e' also contains the V-axis of the projection plane.
These two-successive rotations are defined as follows

8=tan-1 [(Ye+Yo)/(Xe-Xo)] (7a)

,8 = sin-l [(Ze-Zo)/Ro] (7b)

A third rotation may be easily introduced by rotating
the H, V-axes in the projection plane. It is important
to note that distances measured in the projection plane
would remain invariant with respect to this third rota­
tion.

Returning to the original problem, the six desired
parameters are determined by the method of least
squares by considering four or more points in the object
space whose rectangular coordinates are known or may
be estimated with a high degree of accuracy. Next let
(Sij)m denote the measured value of the distance be­
tween points i and j in the photograph. Thus, for en'
such points, there are m = n (n -1) /2 corresponding
measured distances. The calculated value of this as­
sociated distance in the projection plane is given by

and the six desired generating parameters are then ob­
tained by expanding this calculated value in a multiple
Taylor series, expressed as

(9)

+ higher-order terms

The subscript 'a' in Equation 9 denotes the evaluation
for some assumed value of the six parameters. Thus,
by neglecting the higher-order terms and minimizing
the sum of the squares of the residuals between the
calculated and measured values for the en' points

and

m

G= L: [(Sij)c- (Sij)m]% (lOa)
k=l

aG
-=0
aXe '

aG
-=0
axo '

aG
-=0
aYe '

aG
-=0
aYo '

aG
-=0
aZe '

aG
-=0 azo

(lOb)

The six equations lOb, in general yield the six desired
parameters after two to five iterations, depending on
the initial assumed· values of the parameters and the
desired accuracy. Again, the scale factor is held con­
stant throughout this iterative process. A different
choice of A will simply slide the coordinates of point '0'
along the line o-e without disturbing the iterated co­
ordinates of point 'e'.

The writer has employed this procedure on several

different controlled photographs with encouraging
success.4 These laboratory experiments yielded param­
eters estimates within 4 percent of their exact values.
This error is largely attributed to the various unknowns
associated with the optics of both the camera and en­
larger, as both instruments were of commercial rather
than laboratory quality. Recent experiments, 5 dealing
with photogrammetric resectioning yielded considerably
smaller errors. These experiments utilized a photo­
theodolite, spectroscopic flat quality glass plates and a
mono comparator.

As mentioned earlier, the original need involved the
determination of the coordinates of certain desired
points which appeared in photographs of an event which
occurred several years ago, wherein the desired points
had been completely obliterated by construction ac­
tivities. However, a sufficient number of points in the
object space still existed such that the tn' required ob­
ject-space coordinates described previously could still
be easily obtained by field measurements. The desired
points were located such that they appeared in two
different photographs of the event. Thus, by iteratively
determining the generating parameters for each photo-

Inverse Computer Graphics Problem 171

graph, the coordinates of the desired point were re­
determined by solving for the intersection of the two
lines associated with the point in each photograph.

REFERENCES

1 H R. PUCKETT
Computer methods for perspective drawing
ARS-IAS Structures and Materials Conference Engineering
Paper No 135 Palm Springs California April 1-3 1963

2 T E JOHNSON
Sketchpad III-A computer program for drawing in three
dimensions
Proceedings Spring Joint Computer Conference 1963

3 W D BERNHART W A FETTER
Planar illustration method and apparatus
United States Patent Office No 3519997 July 7 1970

4 W D BERNHART
Determination of perspective generating parameters
ASCE Journal of the Surveying and Mapping Division
Vol 94 No SU2 September 1968

5 L J FESSER
Computer-generated perspective plots for highway design
evaluation
Federal Highway Administration Report No
FHW A-RD-72-3 September 1971

Module connection analysis-A tool for
scheduling software debugging activities

by FREDERICK M. HANEY

X erox Corporation
El Segundo, California

INTRODUCTION

The largest challenge facing software engineers today is
to find ways to deliver large systems on schedule. Past
experience obviously indicates that this is not a well­
understood problem. The development costs and
schedules for many large systems have exceeded the
most conservative, contingency-laden estimates that
anyone dared to make. Why has this happened? There
must be a plethora of explanations and excuses, but I
think H. R. J. Grosch identified the common de­
nominator in his article, "Why MAC, MIS and ABM
will never fly."l Grosch's observation is essentially that
for some large systems the problem to be solved and the
system designed to solve it are in such constant flux that
stability is never achieved. Even for some systems that
are flying today, it is obvious that they came pre­
cariously close to this unstable, "critical mass" state.

It is my feeling that our most significant problem has
been gross underestimation of the effort required to
change (either for purposes of debugging or adding
function) a large, complex system. l\10st existing
systems spent several years in a state of gradual,
painfully slow transition toward a releasable product.
This transition was only partially anticipated and
almost entirely unstructured; it was a time for putting
out fires with little expectation about where the next
one would occur.

The difficulties of stabilizing large systems are
universal enough that our experience has resulted in
several improved methods for estimating projects.
Rules-of-thumb like "10 lines of code per man day"
once sounded like extremely conservative allowance for
the complexities of system integration and testing.
J. D. Aron2 has described a relatively elaborate tech­
nique for estimating total effort for large projects.
Aron's technique is based· on the estimated amount of
code for a project and empirically observed distributions

173

of various kinds of effort such as design, coding, module
testing, etc. More recently Belady and Lehman de­
scribed a mathematical model for the "meta-dynamics
of systems in growth. "3 These schemes provide useful
insights into the difficulties of designing and imple­
menting large systems.

Even with these improved estimation techniques,
however, we still face the threat of long periods of
unstructured post-integration putting out of fires. We
may know better how long this "final" debugging will
take, but we are still at a loss to predict what resources
will be required or what specific activities will take
place. If we predict an 18 month period for "final
testing," will management buy it? How can we peer
into this hazy contingency portion of a schedule and
predict in greater detail where bugs will occur, who will
be needed to fix them, elapsed time between internal
releases, etc.? Belady and Lehman suggest the need for
a "micro-model" for system activities; i.e., a model
based on internal, structural aspects of a system. This
is essentially the objective of this paper. In the following
sections, we will develop a very simple, but useful,
technique for modeling the "stabilization" of a large
system as a function of its internal structure.

The concrete result described in this paper is a simple
matrix formula which serves as a useful model for the
"rippling" effect of changes in a system. The real
emphasis is on the use of the formula as a model; i.e.,
as an aid to understanding. The formula can certainly
be used to obtain numeric estimates for specific systems,
but its greater value is that it helps to explain, in terms
of system structure and complexity, why the process of
changing a system is generally more involved than our
intuition leads us to believe.

The technique described here, called Module Con­
nection A nalysis, is based on the idea that every module
pair (may be replaced by subsystem, component, or any
other classification) of a system has a finite (possibly 0)

174 Fall Joint Computer Conference, 1972

probability that a change in one module will necessitate
a change in any other module. By interpreting these
probabilities and applying elementary matrix algebra,
we can derive formulae for estimating the total number
of "changes" required to stabilize a system and the
staging of internal releases. The total number of
changes, by module, is given by

where A is a row vector representing the initial changes
per module, P is a matrix such that Pij is the proba­
bility that a change in module i necessitates a change in
modulej, and 1 is the nXn identity matrix. The number
of changes required for each "internal release" is given
by APk, K=O, 1, ... , or by

AX (1 -P)-lX Uk, k=1,2, ... n,
Uk= (0, ... , 1, ... 0)

i
k th element

depending upon the release strategy. The derivations
of these formulae are presented in the following section.

Module connection analysis is useful primarily as a
tool for augmenting a designer's quantitative under­
standing of his problem. It produces quantitative
estimates of the effects of module interconnections, an
area in which intuitive judgment is generally in­
adequate.

THEORY OF lVIODULE CONNECTIONS

As a basis for our analysis, we postulate several
characteristics of a system:

• A system is hierarchical in structure. It may consist
of subsystems, which contain components, which
contain modules· or it may be completely general
having n different levels of composition where an
object at any level is composed of objects at the
next lower level.

• At any level of the hierarchy, there may be some
interdependence between any two parts of the
system.

• If we view a system as a collection of modules (or,
whatever object resides at the lowest hierarchical
level), then the various interdependencies are
manifested in terms of dependencies between all
pairs of modules.

By dependence here, we mean that a change in one
module may necessitate a change in the other. The

fundamental axiom of module connection analysis is
that intermodule connections are the essential culprit in
elongated schedules. That a change in one module
creates the necessity for changes in other modules, and
these changes create others, and so on. Later, we will
see that perfectly harmless-looking assumptions lead
easily to sums like hundreds of changes required as a
result of a single initial change. (The notions of hier­
archy, interconnection, etc., used here are described at
length in Reference 4.)

If we assume that a system consists of n "modules,"
then there are n2 pairwise relationships of the form-

Pij = Probability that a change in module i
necessitates a change in module j.

In the following, the letter "P" denotes the n X n
matrix with elements pij. Furthermore, with each
module i, there is associated a number Ai of changes
that must be made in module i upon integration with
the system. (Ai is approximately the number of bugs
that show up in module i when it is integrated with the
system.) If we let A denote a row vector with elements
Ai, then we have the following:

A = total changes, by module, required at integra­
tion time, or at internal release 0.

AP = total changes required, by module, as a result
of changes made in release 0, or total changes
for internal release 1.

(Internal release n+ 1 is, roughly, a version of the
system containing fixes for all first-order problems in
internal release n.)

N ow we observe that the i, jth element of p2 is

n

L: Pik Pkj,
k=l

which represents the sum of probabilities that a change
in module i is propagated to module k and then to
module j. Hence, the i, jth element of p2 is the "two­
step" probability that a change in module i propagates
to module j. Or, AP2 is the number of changes required
in internal release 2.

The generalization is now obvious. The number of
changes required in internal release k is given by APk
and the total number· of changes, T, is given by

Now we are interested to know whether or not the
matrix power series in P converges; clearly, if it does
not our system will never stabilize. To establish con-

vergence of the power series, we appeal to matrix
algebra (see Reference 5, for example) which tells us
that the above series converges whenever the eigen­
values of P are less than 1 in absolute value. If this is
the case, then the series converges and

T=A (I _P)-l, where I is the nXn identity matrix.

We now have an extremely simple way to estimate the
total number of changes required to stabilize a system
as a linear function of a set of initial changes, A. More­
over, the number of changes at each release is given by
the elements of AI, AP, AP2, etc.

ESTIMATING TOTAL DEBUGGING EFFORT
FOR A SYSTEM

The above theory suggests a simple procedure for
estimating the total number of changes required to
stabilize a system. The procedure is as follows:

(1) For each module pair, i,j, estimate the probability
that a change in module i will force a change in
module j. These estimates constitute the proba­
bility matrix P ..

(2) From the vector A by estimating for each
module i the number of "zero-order" changes, or
changes required at integration time.

(3) Compute the total number of changes, by
module:

T=A (I _P)-l.

(4) Sum the elements of the column vector T to
obtain the total number of changes, N.

(5) Make a simple extrapolation to "total time"
based on past experience and knowledge of the
environment. If past experience suggests a
"fix" rate of d per week, then the total number
of weeks required is N / d.

Hence if we have some estimate for the initial correct­
ness (or "bugginess) of a system and for the inter­
module connectivity (the probabilities), then we can
easily obtain an estimate for the total number of changes
that will be required to debug the system. The formula
is a simple one in matrix notation, but the fact that we
are dealing with matrices probably explains the failure
of our intuition in understanding debugging problems.

In the following sections, we will show how the above
formula can be used to aid our understanding of other
aspects of t~e debugging process.

Module Connection Analysis 175

·STAGING. INTERNAL RELEASES

There are various strategies for tracking down bugs
in a complex system. The most obvious are: (1) fix all
bugs in one selected module and chase down all side
effects, or, (2) fix all "first-order" bugs in each module,
then fix all "second-order" bugs, and so on. The module
cbnnection model can aid in predicting release intervals
for either approach.

For strategy (1) (one module at a time), the number
of changes required to stabilize module i, given Ai
initial changes, is given by

(p, ... , Ai, ... , 0) (I _P)-l

The product is a row vector with elements corresponding
to the number of changes that must be made in each
module as a result of the original changes. The total
number of changes required to stabilize this one release
is given by

n

Ai LXik,
k=l

where the Xik are elements of (I _P)-l. This strategy,
then results in n internal releases where· the time for
release i is

Ai (max X ik) X (time required per change)
k

and the total debug time after integration is

L (Ai max Xik) X (tIme required per change)
i k

With the second debugging strategy (make all "first­
order" changes, then all "second-order" changes, etc.),
the number of changes in the kth release is given by
APk. That is, APk is a row vector with elements corre­
sponding to the number of changes in each module for
release k. The time required for release k is approxi­
mately

max (APk) Xtime required per change.

To determine the total number of releases for this
strategy, we must examine A, AP, AP2, until the
number of changes AP8 in release 8 is small enough that
the system is releasable. The total time for this strategy,
then, is

8

L max APkXtime required per change.
k=O

I t is worth noting that both of the debug strategies
described above evidence a "critical path" effect. The
total time in each case is a sum of maximum times for
each release. This effect corresponds to the well-known
fact that debugging is generally a highly sequential

176 Fall Joint Computer Conference, 1972

process with only minor possibilities for making many
fixes in parallel. This fact, coupled with the "amplifica­
tion" of changes caused by rippling effects, certainly
accounts for a large portion of many schedule slips.

REFINING THE INITIAL ESTIMATES

Module connection analysis is proposed as a tool for
aiding designers and implementors. l\1ore than anything
else, it is a rationale for making detailed quantitative
estimates for what is generally called "contingency."
Now, we must ask, "As a project progresses, how can
we take advantage of actual experience to refine the
initial estimates?" The module connection model is
based on two objects: A, the vector of initial changes;
and P, the matrix of connection probabilities between
the modules. Both A and P can be revised simply as
live data become available.

As each module i is integrated into the system, the
number Ai of initial changes becomes apparent.

Using updated values for the vector A, we can re­
compute the expected total number of changes and the
revised release strategy.

The elements, Pij, of the matrix P can be revised
periodically if sufficient data is kept on changes, their
causes, and their after-effects. One simple way to do
this is to keep a record for each module as follows:

Module i

description of caused by which other modules
change module? affected

After a relatively large sample of data is available, the
above forms can be used to revise P as follows:

. . number of changes in j caused by i
P1,J = ------=------"-.-----'--

total changes made to i

The revised matrix P can be used to revise earlier
estimates for total effort and release strategies.

AN EXAMPLE OF MODULE CONNECTION
ANALYSIS

The following example is hased on the Xerox Uni­
versal Timesharing System. Eighteen actual subsystems

.2 .1 0 0 o .1 o .1 o .1 .1 .1 0 0 o .1 0 0
o .2 0 o .1 .1 .1 0 0 0 0 o .1 .1 .1 o .1 0
0 o .1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o .1 o .2 o .1 .1 .1 0 0 0 0 0 o .1 o .1 0

.1 0 0 o .4 .1 .1 .1 0 0 0 0 0 0 0 o .1 0

.1 0 0 0 o .3 .1 0 o .1 0 0 o .1 0 o .1 0

.1 0 o .1 .2 .1 .3 .1 o .1 0 0 o .1 o .1 .1 0

.1 .1 o .1 .2 o .1 .4 o .1 0 0 o .1 0 0 o .1
0 0 0 0 0 0 0 o .1 0 0 0 0 0 0 0 0 0

.1 0 0 0 o .1 .1 .1 o .4 .2 .1 .2 .1 .1 .1 .1 .1

.1 0 o .1 0 0 0 0 o .2 .3 .1 0 0 0 0 0 0

.2 0 0 0 o .1 0 0 0 o .2 .3 0 o .1 .1 0 0

.1 .1 0 0 o .1 .1 .1 o .2 .1 o .3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 o .2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 o .2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 o .2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o .2 0
0 0 0 o .1 o .1 0 o .1 0 0 0 0 0 0 o .3

Figure I-Probability connection matrix, P

are used as "modules." Estimates for connection
probabilities and initial changes are made in the same
way that they would be made for a new system, except
that some experience and "feel" for the system were
used to obtain realistic numbers. (Thanks to G. E.
Bryan, Xerox Corporation, for helping to construct
this example.)

The 18 X 18 probability connection matrix for this
example is given in Figure 1. The matrix is relatively
sparse; moreover, most of the nonzero elements have a
value of .1. Most the larger elements lie on the diagonal

INITIAL AND FINAL CHANGES

Total Required
Module Initial Changes Changes

1 2 241.817
2 8 100.716
3 4 4.44444
4 6 98.1284
5 28 248.835
6 12 230.976
7 8 228.951
8 28 257.467
9 4 4.44444

10 8 318.754
11 40 238.609
12 12 131.311
13 16 128.318
14 12 ·157.108
15 12 96.1138
16 28 150.104
17 28 188.295
18 40 139.460

TOTALS 296 2963.85

Figure 2

corresponding to the fact that the subsystems are
relatively large so that the probability of ripple within a
subsystem is relatively large.

The total number of changes required in each module
are given in Figure 2. It is interesting to note which
modules require the most changes and to observe that
six modules account for 50 percent of the changes.

Figure 3 illustrates the one-release-per-module debug
strategy. That is, we repair one module and all side
effects, then another module, and so on.

This strategy is rather erratic since the time between
releases, which is determined by the maximum number of
fixes in one module, ranges from 4 to 95 indiscriminately.
If we adopt this strategy, we may want to select the

ONE RELEASE PER MODULE

Release

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

"CRITICAL PATH" TOTAL

Figure 3

Maximum Changes in
One Module

4.41764
11. 8619
4.44444
8.84029
67.8994
24.7185
20.3720
85.8099
4.44444
35.2976
95.2147
22.5608
39.7013
15.0000
15.0000
35.0000
35.0000
66.5554

592.138

worst module first and continue using the worst module
at each step. We will see, however, that this strategy is
far from optimal because it does not take maximum
advantage of opportunities to make fixes in parallel.

A more effective release strategy is illustrated in
Figure 4. This strategy assumes all first-order changes in
release 1, all second order changes in release 2, etc.
Figure 4 shows, for each release, the maximum number
of changes in one module and the total number of
changes. The reader who has worked on a large system
will, no doubt, recognize the painfully slo~ convergence
pattern. In this case, the system is assumed to be ready
for external release when the "maximum changes per
module" becomes less than one.

If we assume the "critical path" changes are made at

:>
o
~ 30

~

o
~~
'~ 20

!
~
::!;

Module Connection Analysis 177

MAXIMUM CHANGES PER MODULE PER RElEASE
AND TOTAL CHANGES PER RElEASE

Y~296' 230 (.92)-X

,/ (TOTAL PER RElEASE)

300

275

250

225

- 150

-125

- 100

75

50

- 25

·---------·-------'-----+I-----"----�~I
10 15 20 25 30 35 X

"'NTERNAl" RELEASE

Figure 4-"Internal" release

an average rate of about 1 per day, then Figure 4 is
fairly representative of experience with the first release
of UTS. The total number of changes on the "critical
path" is 338, so that approximately 15 months would

4000

3000 _

2000

1000

900 -

800

700

I
I

I

- -f

/
/

600/-/
500 -- .

400

300 -

200

100

AVERAGE MODULE CONNECTION PROBABILITY

I I
.01 .02 .03 -21-.04 .05

Figure 5-Total changes as a function of
"average connection probability"

178 Fall Joint Computer Conference, 1972

be required to stabilize the system for the first external
release.

To conclude this example, let us take a brief look at
the relationship between "total changes" and the
probability of intermodule connection. The proba­
bilities in the connection matrix above have an average
value of approximately .04. What is the result if we
assume the same relative distribution of probabilities
in the matrix, but reduce the average by dividing each
element by a constant?

Figure 5 shows the total number of changes as a
function of "average probability of module connection"
under the above assumption. This curve shows that our
example is precariously close to "critical mass" and
that any small improvement in the connection proba­
bilities results in significant payoff.

OTHER APPLICATIONS OF IVIODULE
CONNECTION ANALYSIS

The value of module connection analysis is its
simplicity. The computations can be performed easily
by a small (less than 50 lines) program written in APL,
BASIC, or whatever language is available. Used on-line,
the technique is useful for experimenting with various
design approaches, implementation· strategies, etc.
Three examples of this use of the model are described
below:

Estimating new work

If the designers, or managers, of a system have kept
detailed records of the .module-module changes in the
system (as described above), then the matrix P is a
reliable estimator of the "ripple factor" for the system.
It can be used to predict, and stage, the effort to stabilize
the system after any set of changes. If we postulate a
major improvement release of the system, then we can
assume, for example, that the new program code falls
into two categories: (1) independent code particular to a
new function and, (2) code that necessitates changes in
an existing module. By estimating the number of
changes, bi, to each module i, we can estimate the total
number of changes to restabilize the system:

The previously described computations can be used to
estimate release intervals and total time for the im­
provement release.

To be more realistic, it may be useful in the above
computation to use bi+ei as the estimated changes in

the module, where ei represents the number of changes
required in module i by previous activity.

Evaluating design approaches

The best time to guarantee success of a· system
development effort is in the early design stages when
architecture of the system is still variable. There is
much to be gained by selecting an appropriate "decom­
position" (see Reference 4). of the system into sub­
systems, components, etc. During this stage of a project,
module connection analysis is a useful tool for evaluating
various decompositions, interfacing techniques, etc. It
is a simple, quantitative way of estimating the modularity
of a system, the ever-present objective that no one
knows exactly how to achieve. By fixing some of his
assumptions about intermodule connections, a designer
can experiment with various system organizations to
determine which are the least likely to achieve "critical
mass."

Evaluating implementation approaches

The reader who performs some simple experiments
with the formulas described here is likely to be very
surprised at the results. Even an extremely sparse
connection matrix with very low probabilities can
result [examine (/ - P)-l] in very large "ripple factors."
It is also interesting to experiment with small per­
turbations in the connection matrix and observe the
profound effect they can have on the "ripple factor."
One becomes convinced more than ever before that it is
necessary to minimize connections between modules,
localize changes, and simplify the process of making
changes.

The most impressive gains come from minimizing the
probabilities of intermodule propagation of changes.
A reduction of the average probability by as little as
5 or 10 percent can cause a significant reduction in the
"ripple factor." Additional improvement can result
from improvements in techniques for making changes.
The total debug time is essentially linear with respect
to the time required to make a change, but the multiplier
(total number of changes) can be so large that any
reduction in the time-per-change results in enormous
savings.

lVlodule connection techniques are extremely useful
in estimating the value of various implementation
techniques and strategies. How are the module connec­
tion probabilities changed if we use a high-level imple­
mentation language? How much easier will it be to

make changes? How much will we save, if any, by doing
elaborate environment simulation and testing of each
module before it is integrated with the system? l\1odule
connection analysis is a valuable augmentation of
intuition in these areas and can be useful for generating
cost justifications for approaches that result in signifi­
cant savings.

CONCLUSION

The objective of this paper has been to describe a
simple model for the effect of "rippling changes" in a
large system. The model can be used to estimate the
number of changes and a release strategy for stabilizing
a system given any set of initial changes. The model
can be criticized for being simplistic, yet it seems to
describe the essence of the problem of stabilizing a
system. It is clear, to the author at least, that experi­
mentation with the module connection model could have

Module Connection Analysis 179

prevented a significant portion of the schedule delay
that occurred for many large systems.

REFERENCES

1 H R J GROSCH
Why MAC, MIS, and ABM won't fly
Datamation 17 Nov 1 1971 pp 71-72

2 J D ARON
Estimating resources for large programming systems
Software Engineering Techniques J N Buxton and
B Randell (eds) April 1970

3 L A BELADY M M LEHMAN
Programming system dynamics or the meta-dynamics of
systems in maintenance and growth
Research Report IBM Thomas J Watson Research Center
Yorktown Heights New York July 1971

4 C ALEXANDER
Notes on the synthesis of form
Cambridge Mass Harvard University Press 1964

5 M MARCUS
Basic theorems in matrix theory
National Bureau of Standards Applied Mathematics
Series #57 US Government Printing Office January 1960

Evaluating the effectiveness of software verification­
Pratical experience with an automated tool

by J. R. BROWN and R. H. HOFFMAN

TRW Systems Group
Redondo Beach, California

INTRODUCTION

From the point of view of the user, a reliable computer
program is one which performs satisfactorily according
to the computer program's specifications. The ability
to determine if a computer program does indeed satisfy
its specifications is most often based upon accumulated
experience in using the software. This is due in part to
general agreement that the quality of computer soft­
ware increases as the software is extensively used and
failures are discovered and corrected. In keeping with
this philosphy, increasing emphasis has been placed on
exhaustive testing of computer programs as the princi­
pal means of assuring sufficient quality.

Nevertheless, a significant problem which pervades
all software development is a lack of knowledge as to
how much testing of a software system or component
constitutes sufficient verification. The major impact
of this problem (if not adequately addressed) is evi­
denced by high cost of testing (as much as 50 percent
of total project cost) and insufficient visibility of test
effectiveness. As a result, we often lack sufficient con­
fidence that the software will continue to operate suc­
cessfully for unanticipated combinations of data in a
real-world environment.

In recognition of the high cost and uncertainty of
software verification, TRW Systems' Product Assur­
ance Office initiated a company-funded effort to im­
prove upon current testing methodology. Much of the
effort has been directed toward development of some
general purpose automated software "tools" which
would provide significant aid in performance of a soft­
ware quality assurance activity. The desirable extent
to which the "general purpose'; and "automated" char­
acteristics should be pursued has received considerable
study, as did a precise definition of "significant aid."
The result of the study, experimentation, design and
development thus far conducted comprises the TRW
Product Assurance Confidence Evaluator (PACE) sys-

181

tem an evolving collection of automated tools which , .
provide support in various phases of software testmg.

Examination of a typical software testing process
results in identification of four fundamental activities:
test planning, production, execution and evaluation.
Examination of the overall cost and schedule impact
resulting from manual performance of these activities
reveals the reasons for many testing efforts being less
complete and successful than expected. With emphsais
upon those tasks which are often neglected due to the
menial aspect of their performance, PACE development
was planned to complement manual testing efforts
with automated utilities. Early planning and study
efforts indicated a need to give emphasis to the ability
of the system to meet diverse (and probably changing)
user needs. To adequately cope with this requirement
a number of events (instances) were identified at which
operation~l releases of interim PACE capability would
be most beneficial. Practical applications of the capa­
bilities produced by each P ACE instance would then
provide meaningful direction for subsequent releases.

The initial PACE instance was the FLOW program
to support test evaluation activities. FLOW monitors
statement usage during test execution, thus providing
a basic evaluation of test effectiveness. The results
produced by FLOW, in particular the statement usage
frequencies, are similar to the program profiles discussed
by Knuth in Reference 1. In addition, FLOW supports
the test planning activity by indicating the unexercised
code and, consequently, the additional tests required
for more comprehensive testing.

FLOW PROGRAM DESCRIPTION

Purpose

During the software development process, a question
frequently asked (and seldom if ever answered satis-

182 Fall Joint Computer Conference, 1972

PSN

0
0
0
0
1
2
3

0
0
0
1
2

15
16
17
18
19

0
0
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15,16
17
18,19
20
21
22
23
24
25
26
27
0

STATEMENT

ELEMENT SPEAR
PROGRAM SPEAR(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
DIMENSION A(10),B(10),R(20)
N AMELIST /TESTIN /N ,NR,A,B

100 READ(5,TESTIN)
CALL SRANK(A,B,R,N,RS,T,NDF,NR)
WRITE(6,6001)A

ELEMENT SRANK
SUBROUTINE SRANK(A,B,R,N,RS,T,NDF,NR)
DIMENSION A(l),B(l),R(l)
FNNN=F(N)
IF(NR-1)5,10,5

KT=l
CALL TIE(R,N,KT,TSA)
CALL TIE(R(N+1),N,KT,TSB)
FKTN = F(KT) + F(N)
IF(TSA)60,55,60

ELEMENT TIE
SUBROUTINE TIE(R,N,KT,T)
DIMENSION R(l)
T=O.O
Y=O.O

5 X=1.0E38
IND=O
DO 30 I=l,N
IF(R(I) - Y)30,30,10

10 IF(R(I)-X)20,30,30
20 X=R(I)

IND=IND+1
30 CONTINUE

IF(IND)90,90,40
40 Y=X

CT=O.O
DO 60I=1,N
IF (R(I) EQ.X) CT=CT+l.O

60 CONTINUE
IF (CT.NE.O) IF(KT-1) 75,80,75
GO TO 5

75 T=T+CT*(CT-1.0)/2.0
GO T05

80 CONTINUE
ICT=CT
T = T + F(ICT) /12.0
GO TO 5

90 RETURN
END

Figure I-Sample program with pseudo statement numbers

factorily) is: "How much testing is enough?" There
appears to be vital interest in the subject,2.3.4 but too
little in the way of practical applications has been ac­
complished in the past to provide any final answers.
We feel strongly that a measure of the variety of ways
in which a computer program is tested (or not tested)
can combine to form a software "experience index",
and quantification of the index supports evaluation of
both the computer program and testing thoroughness.
Based on this premise, the FLOW program was devel­
oped to: (1) support assessment of the extensiveness
with which a computer program is tested, (2) provide
a variety of quantified indices summarizing program
operation, and, (3) support efforts to create a more com­
prehensive but less costly test process. The objective of
FLOW is not to find errors, per se, but to quantitatively
assess how thoroughly a program has been tested and

QAFLOW MAP PRINT

ELEMENT SPEAR
PSEUDO NOS. FREQ

1 TO 7= 1

ELEMENT RANK
PSEUDO NOS. FREQ

1 TO 7= 20
14 TO 14= 200
24 TO 24= 2

ELEMENT SRANK
PSEUDO NOS. FREQ

1 TO 5= 1
15 TO 22= 1
31 TO 32= 1

CUMULATIVE TIME
PSEUDO NOS. FREQ

CUMULATIVE TIME
PSEUDO NOS. FREQ

8 TO 9= 200
15 TO 17= 20

CUMULATIVE TIME
PSEUDO NOS. FREQ

6 TO 10= 0
23 TO 26= 0

Evaluating Effectiveness of Software Verification 183

to support test planning by indicating the portions of
code which are not exercised by existing test cases.

Method

FLOW analyzes the source code of a computer pro­
gram and instruments the code in a manner which per­
mits subsequent compilation and makes possible moni­
tored execution of the program. This technique is rep­
resentative of one of several approaches toward soft­
ware measurement technology described by Kolence. 5

A complete application of FLOW provides for an ac­
cumulation of frequencies with which selected program
elements (e.g., statements, small segments of code, sub­
programs, etc.) are exercised as the program is being
tested. There are optional levels of detail at which usage

.0780 SECONDS
PSEUDO NOS. FREQ

.6430 SECONDS
PSEUDO NOS. FREQ

10 TO 11= 90
18 TO 22= 0

.0860 SECONDS
PSEUDO NOS. FREQ

11 TO 11 = 1
27 TO 29= 1

PSEUDO NOS. FREQ

PSEUDO NOS. FREQ
12 TO 13= 20
23 TO 23= 20

PSEUDO NOS. FREQ
12 TO 14= 10
30 TO 30= 0

ELEMENT TIE CUMULATIVE TIME 1.2350 SECONDS
PSEUDO NOS. FREQ PSEUDO NOS. FREQ PSEUDO NOS. FREQ PSEUDO NOS. FREQ

1 TO 2 = 2 3 TO 4 = 22 5 TO 6 = 220 7 TO 7= 110
8 TO 9= 65 10 TO 10= 220 11 TO 11= 22 12 TO 13= 20

14 TO 15= 200 16 TO 16= 20 17 TO 17= 200 18 TO 19= 20
20 TO 22= 0 23 TO 26= 20 20 TO 27= 2

**QAFLOW USAGE SUMMARY AFTER 1589 NUMBER PAIRS(ENTRY/EXIT SEGMENTS)
THE SUBJECT PROGRAM CONTAINS 90 EXECUTABLE STATEMENTS.
THE TEST DATA EXERCISED 72 OF THESE STATEMENTS.
THE TEST EFFECTIVENESS RATIO AT THE STATEMENT LEVEL IS .80
THE PROGRAM CONTAINS 1 TERlVIINATION POINTS, ONLY ONE OF WHICH WAS

EXECUTED. THE CORRECTED TEST EFFECTIVENESS RATIO IS .80
THE PROGRAM CONTAINS 4 ENTRY POINTS. THE TEST DATA EXERCISED 4.
THE TEST EFFECTIVENESS RATIO AT THE ENTRY POINT LEVEL IS 1.00

Figure 2-FLOW execution frequency summary

184 Fall Joint Computer Conference, 1972

monitoring can be performed. The desired level is select­
ed by the user and controlled by input.

Typical use of the complete FLOW capability in­
volves the application of three distinct FLOW elements.
The first of these is QAMOD, the code analysis and"
instrumentation module. The QAMOD module sequen­
tially analyzes each statement of a FORTRAN source
program and accomplishes the following:

1. The first executable statement of each element
(i.e., sub-routine or main program) is assigned
a pseudo statement number (PSN) of one. Each
subsequent statement (assuming that the most
detailed monitoring is opted) is assigned a se­
quential PSN and the statements are displayed
with their assigned number as illustrated in
Figure 1.* Statements are referenced by element
name and PSN during subsequent FLOW pro­
cessing.

2. The code is instrumented by the insertion of
transfers to the FLOW execution monitor sub­
program, QAFLOW. The function of the trans­
fers is the generation of a recording file contain­
ing the sequence of statements exercised during
test execution.

Upon completion of the analysis and instrumenta­
tion of the source program, the instrumented version
of the program is output to a file for subsequent com­
pilation and execution. QAFLOW is appended to the
program prior to execution with test data.

The third FLOW module, QAPROC, provides sum­
mary statistics on the frequency of use of program ele­
ments as well as detailed trace information and an indi­
cation of the effectiveness of the test. QAPROC accesses
the statement execution recording file generated by
execution of the instrumented subject program and
produces an evaluation and summary of the test case
executed. The recording file is sequentially accessed and
the data are assimilated into an internal table. At times
designated by the input control options,a display is
printed (Figure 2) which includes the following:

1. A map, delineated by subroutine, indicating the
number of executions which have been recorded
for each statement.

* The program shown is a modification of the Spearman Rank
Correlation Coefficient program from the IBM Scientific Sub­
routine Package.6 Figure 1 shows a portion of the main program
SPEAR and the subroutine SRANK (lines omitted indicated
by :). The complete subroutine TIE is included to support later
reference in this report.

2. Statistics indicating the percentage of the total
executable statements which were exercised at
least once.

3. Statistics indicating the percentage of the total
number of subroutines which were executed at
least once.

4. A list of the names of subroutines which were not
executed.

5. Total execution time spent in each subroutine.

Frequencies derived by FLOW from a number of
separate tests of the subject program may be combined
to provide a cumulative measure of the comprehensive­
ness of all testing applied to the program.

At the option of the user, detailed trace information
can be displayed. The trace depicts the sequence in
which statements (referenced by pseudo statement
number) were exercised during program execution. A
complete trace display for one test of the SPEAR pro­
gram is illustrated in Figure 3. In addition, time of en­
try to each subroutine is recorded and displayed to
support timing studies.

The information in Figure 3 is interpreted as follows:

• Execution is initiated at pseudo statement number
(PSN) 1 of the main program SPEAR at time 2.474;

• Subroutine SRANK is called from PSN 2 of
SPEAR at time 2.479;

• Subroutine RANK is called following the sequen­
tial execution of PSN 1, 2 and 3 of SRANK;

• Upon entry to subroutine RANK, PSN 1 and 2 are
executed 10 times before proceeding to PSN 3;

• When execution of RANK reaches PSN 24, control
is returned to subroutine SRANK at PSN 4.

The value of the FLOW trace information in under­
standing an otherwise complex logic structure can be
appreciated by following the execution of subroutine
TIE (using the program listing in Figure 1).

The interaction of the three FLOW modules is illus­
trated in Figure 4 with a description of inputs and out­
puts for a typical application.

CASE STUDIES

In early planning for the capability which FLOW
should provide, consideration was given to the require­
ments of the various phases of the software testing pro­
cess. Because of the resulting flexibility of the FLOW
program, successful use has been reported from a num­
ber of diverse applications. IVlajor usage has been in
two areas: (1) assessment of. testing effectiveness, and

Evaluating Effectiveness of Software Verification 185

QAFLOW TRACE PRINT
ELEMENT SPEAR TIME = 2.4740

1- 2,
ELEMENT SRANK TIME = 2.4790

1- 3,
ELEJ\IENT RANK TIME 2.4850

1- 2 (10 TIMES)
3- 9, 12- 14, 8- 11, 14- 14, 8- 11

14- 14, 8- 11, 14- 14, 8- 11, 14- 14

14- 14, 8- 9, 14- 14, 8- 9, 14- 14
8- 9, 14- 14, 8- 9, 12- 17, 23- 24
ELEMENT SRANK TIME 2.8040

4- 4~
ELEMENT RANK TIME 2.8100

1- 2 (10 TIMES)
3- 9, 12- 14, 8- 9, 14- 14, 8- 9

ELEMENT SRANK TIME 3.7410
17- 17,

ELEMENT TIE TIME 3.7470
1- 10, 5- 7, 10- 10, 5- 7, 10- 10
5- 7, 10- 10, 5- 7, 10- 10, 5- 7

10- 10, 5- 7, 10- 10, 5- 7, 10- 10
5- 7, 10- 10, 5- 7, 10- 17, 14- 15

17- 17, 14- 15, 17- 17, 14- 15, 17- 17
14- 15, 17- 17, 14- 15, 17- 17, 14- 15
17- 17, 14- 15, 17- 17, 14- 15, 17- 17
14- 15, 17- 19, 23- 26, 3- 6, 10- 10
5- 10, 5- 7, 10- 10, 5- 7, 10- 10
5- 7, 10- 10, 5- 7, 10- 10, 5- 7

10- 15, 17- 17, 14- 15, 17- 17, 14- 15
17- 17, 14- 15, 17- 17, 14- 17, 14- 15
17- 17, 14- 15, 17- 17, 14- 15, 17- 17
14- 15, 17- 17, 14- 15, 17- 19, 23- ·26
3- 6, 10- 10, 5- 6, 10- 10, 5- 6

10- 10, 5- 6, 10- 10, 5- 6, 10- 10

17- 17, 14- 15, 17- 17, 14- 15, 17- 19
23- 26, 3- 6, 10- 10, 5- 6, 10- 10
5- 6, 10- 10, 5- 6, 10- 10, 5- 6

10- 10, 5- 6, 10- 10, 5- 6, 10- 11
27- 27,

ELEMENT SRANK TIME 4.3700
18- 22, 27- 29, 31- 32,

ELEMENT SPEAR TIME = 4.4270
3- 7,

Figure 3-FLOW execution trace display

186 Fall Joint Computer Conference, 1972

OAMOD

QAPROC

(FIGURE 2)

INDEXED
LISTING OF
SUBJECT
SOURCE
PROGRAM

(FIGURE 1)

Figure 4-FLOW program overview

(2) analysis and solution of software problems difficult
to solve with conventional techniques. Brief descrip­
tions of several such applications are included here and
grouped accordingly.

Test effectiveness

• Houston Operations Predictor /Estimator (HOPE)

The HOPE program is used by NASA/MSC for orbit
determination and error analyses on the Apollo Mis­
sions. It contains approximately 500 subprograms in­
cluding 80,000 lines of code. Over a four year period of
program development, cases had been added to the

. test data file as required until the file consisted of 33
separate cases which required 4.5 hours of computer

time and 35-50 man-hours of test results validation.
Although developers were aware that redundant testing
was being performed, it was impractical to delete any of
the cases from the file. Because of the criticality of the
program's accuracy, removal of any test case without
precise proof of its impact on verification effectiveness
could not be allowed. In addition, the tight schedule of
the project did not permit detailed manual appraisal of
each test case.

The FLOW program provided the means of deter­
mining the areas of HOPE which were tested by each
case. The first FLOW analysis disclosed that the 33
cases tested 85 percent of the subprograms and that
one-half of this number were exercised by almost every
case. Consideration of these statistics prompted the
funding of extended analyses to produce a more effective
test file. An incremental test planning activity was per­
formed and a file of six cases was generated. These six
cases tested 93 percent of the subprograms, but they
required less than three hours of computer time and
less than 24 man-hours of test results examination.
Since the FLOW analyses indicate the areas of the
program exercised by each case, these six cases can be
selectively used at each update to assure maximum
cost effectiveness .

• Navigation Simulation Processor (NAVPRO)

N A VPRO is the program used by N ASA/MSC to
process data from Apollo Command Module and Lunar
Module onboard computer navigation simulation pro­
grams. NAVPRO contains approximately 75 subpro­
grams and 4000 executable statements.

FLOW was applied to NAVPRO to assist in the gen­
eration of a comprehensive set of test cases. The first
step was selection of a basic test from the cases which
were then being used for verification. FLOW analysis
of the effectiveness of this first test had surprising re­
suIts; although the case exercised 45 percent of the
NAVPRO code, it was apparent that the time span
being simulated (and consequently the case execution
time) could be reduced by 85 percent without signifi­
cantly reducing the effectiveness of the test. By elimi­
nating this redundant testing and then manually ex­
tending the input data with the goal of improving its
effectiveness, the case was modified such that it tested
80 percent of the code in one-fourth the time required
by the original case. By continued application of
FLOW, a complete test file consisting of four cases was
compiled which tested 98 percent of the executable
statements. The 2 percent not tested were areas of the
program dedicated to error terminations not considered
worthy of verification at each program update. These

were verified initially and will be retested only if modi­
fications are made which specifically affect their opera­
tion.

• Skylab Activities Scheduling Program

The FLOW program was used by NASA/MSC to
measure the comprehensiveness of a set of 20 test cases
for 52 subroutines comprising a crew model for the Sky­
lab Activities Scheduling Program. The testing which
had been performed was thought to be adequate but,
since the program is to be used for on-line mission
support, documentary evidence of sufficient verification
is especially important.

Each of the 20 test cases was executed and evaluated
separately by FLOW, then the results were accumu­
lated using one of the FLOW options. These cumula­
tive results verified that the critical software for each
of the subroutines was indeed exercised; thus, there was
no requirement to apply FLOW in the modification or
addition of test cases.

Although no direct manpower savings can be assigned
to this application, the value of the confidence in the
software and in the test cases due to the FLOW results
is evident. The users also acknowledged the value of
the trace capability of FLOW, since they easily diag­
nosed a program error which had been previously un­
discovered in their testing.

• Program Anatomy Tables Generator (TABGEN)

TABGEN is a utility program developed for NASA/
MSC as one of the components of the Automated Veri­
fication System (AVS). The functions of TABGEN are
to perform syntax analysis of FORTRAN programs,
segment the code into blocks of statements and generate
tables describing each of these blocks (e.g. variables
referenced, transfer destinations) and the logical rela­
tionships between blocks. TABGEN consists of approx­
imately 25 subroutines and 2000 executable statements.

Through FLOW application to TABGEN, test cases
were devised to test 100 percent of the executable state­
ments. The developers and users of TABGEN are con­
vinced of the value of thorough testing, due to the fact
that no errors have occurred since delivery of TABGEN
in November 1971. The original version of the program
was not altered until April 1972, when new requirements
made modifications necessary.

• Minuteman Operational Targeting Program
(MOTP)

MOTP is used by USAF/SAC to generate the target­
ing constants which must be supplied to the guidance

Evaluating Effectiveness of Software Verification 187

computers aboard the Minuteman II missile system.
The program contains approximately 160 subprograms
which are extensively overlaid. Prior to each delivery of
an updated version to SAC, extensive validation must
be performed. Because of the criticality of this valida­
tion exercise, a means of accurately measuring the test­
ing effectiveness was clearly required.

To determine the applicability of FLOW to the
MOTP verification effort, a particularly complex por­
tion of the program was instrumented and then moni­
tored during a complete targeting run. FLOW provided
new information about portions of the program which
were assumed to be exercised but, in fact, were not. The
results of this application clearly demonstrated the value
of using FLOW to complement verification efforts. The
decision was made to incorporate FLOW as a standard
testing procedure for future deliveries. Recommenda­
tions were also made for selective use of the FLOW
logic trace feature to gain a clearer understanding of
the more complex portions of the MOTP.

Problem solving

• Apollo Reference Mission Program (ARM)

The ARM program is used by NASA/MSC during
Apollo missions for simulation of all activities (powered
and free flight) from earth launch to re-entry. Because
of its extensive use during Apollo and anticipated fu­
ture applications, it is imperative that the program
execution time be optimal; expecially in the areas of
the program which receive the most use.

The FLOW program was applied to ARM to deter­
mine the most-used portions of the program during a
typical mission simulation and to obtain execution time
analyses. * Although the application did not produce
any surprising results, the predictions of the developers
were verified (i.e., timing had been of prime considera­
tion during development). Careful examination of cri­
tical statements (those exercised more than 10,000 times
during the run) resulted in some minor modifications to
improve timing which, if extrapolated over their antici­
pated period of use, will result in noticeable cost savings.

• DRUM SLAB II

The DRUM SLAB II aerodynamic analysis program
was developed for NASA/MSC to simulate the mole­
cule impact force and direction on spacecraft surfaces

* Similar applications have been produced by Knuth using the
FORDAP program.1

188 Fall Joint Computer Conference, 1972

during re-entry. During checkout, the program always
aborted after seven minutes of execution with an illegal
operation apparently resulting from erroneous storage
of data due to the complex computation of various in­
dices. Several unsuccessful attempts were made to man­
ually diagnose and solve the problem. Although the in­
correct data storage was thought to be occurring
throughout the run, it did not cause an abort until the
density of the molecules began to increase rapidly at
lower altitudes. It was not obvious which of the indices
were being miscalculated or at what point they were
computed. Because of the complex modelling of the pro­
gram and the fact that the original developers were not
available, the problem caused the development project
to be discontinued after three months of unsuccessful
debug efforts using conventional methods.

Several months later, after attending a FLOW dem­
onstration, the manager in charge of the DRUM
SLAB development requested that FLOW be applied
in an attempt to diagnose the problem. By selective
instrumentation of the DRUM SLAB program and
application of the FLOW data trace option, the problem
was found to originate at some point during execution
of the first 800 lines of the main program. Then, by close
examination of the statement execution trace for these
800 lines, the precise point at which the erroneous index
computation occurred was determined. Three separate
errors were found in the computation of various indices.
Correction of these computations eliminated the store
error and resulted in an apparently error-free execution
until the run was terminated by the operator at 15 min­
utes (the maximum execution time specified for the
run). Although limited funds and lack of personnel
familiar with the DRUM SLAB program prohibited a
complete verification of the modified program, the
utility of FLOW was proven by the fact that the prob­
lem had been solved in 50 man-hours by personnel to­
tally unfamiliar with the DRUM SLAB program.

• Minuteman Geometric Identification Data Program
(GIDATA)

The Minuteman Geometric Identification Data
(GIDATA) program has been used to generate absolute
and relative radar data for tracking sites. Recently,
the program was extensively modified to generate spe­
cial purpose output. The FLOW program was applied
to the GIDATA program before modification was
started in hope that the analysis would give a better
understanding of the program and, hence, aid in modifi­
cation design. Some of the most useful information ob­
tained from FLOW was:

• Subroutine level trace and usage summary

• Inefficient subroutine structure and calling se­
quences

• Areas where code was never used
• Relative subroutine timing indicating inefficient

code

Using this information a better understanding of
GIDATA was achieved and it became relatively simple
to determine necessary modifications for reducing pro­
gram execution time and core requirements. Upon com­
pletion of the GIDATA modifications, additional appli­
cations of FLOW will ensure comprehensive testing of
the program.

• Navigation Simulation Processor (NAVPRO)

In generation of a particular test case for NAVPRO
(program described in the previous sections of this re­
port), a problem developed when the error flag indicat­
ing vehicle impact with the lunar surface was being set
during execution. Since the flag was in global COM­
MON and could have been set in any of several subrou­
tines during the integration, it was difficult to determine
precisely where the error was occurring.

Since NAVPRO had already been instrumented for
statement execution monitoring, the origin of the error
was easily detected. By using a special option of FLOW,
the value stored in the error flag location was checked
at execution of each transfer during the run. The
FLOW display disclosed the exact statement at which
the vehicle impact flag was set and described the pro­
gram logic flow immediately preceding the impact.
The error, which was in the NAVPRO input data, was
found and corrected.

• Earth Re-entry Orbit Determination Program
(REPOD)

REPOD is a large multi-link program developed and
used in support of Minuteman trajectory analysis and
orbit determination. Since REPOD is an amalgamation
of several older programs, the detailed flow through
each of its 9 links is particularly difficult to understand.
The trajectory link is one of the more complex and was
therefore chosen for FLOW analysis to identify possible
program improvements. The analysis of the trajectory
link was particularly desirable because:

(1) A significant portion of the total REPOD execu­
tion time is spent in this link.

(2) It was felt, by the user, that the FLOW analy­
sis would lead to significant improvement in pro­
gram efficiency.

One application of FLOW provided some striking
results in identification of blocks of statements which
were exercised with unexpected high frequency.
FLOW also: (1) identified portions of REPOD not used
for selected input options, (2) displayed subroutine
and statement trace data for given options, and (3) in­
dicated primary areas of concern for subsequent pro­
gram improvements.

Using the FLOW results as a guide, a detailed exam­
ination of the trajectory integration algorithm was
initiated. The complete task culminated in significant
reductions in execution time (for example, processing
time for one function was cut from 67 seconds to 11
seconds) and optimum selection of error criterion and
integration step size for improved program performance.

SUMMARY

The initial PACE instance described here responded
- to an important need in supporting assurance of com­

prehensively tested and more reliable software products.
Although execution of all statements is by no means
a conclusive measure of test effectiveness, it is con­
sidered an important first step in the improvement of
conventional testing methodology.

Subsequent instances of PACE have produced:

• A program which displays unexercised statements
and performs an analysis of the FORTRAN code
to determine the conditions necessary for their
execution;3 the computation and input of signifi­
cant parameters is highlighted to support test re­
design activities.

• A program to determine all possible logical trans­
fers and extrapolate these to construct and display
all logic paths within a FORTRAN module.7

• A program to monitor the execution of trans­
fers during program execution;8 a test effectiveness
ratio is calculated based upon actual versus poten­
tial transfers exercised (used either as an alterna­
tive or in conjunction with FLOW statement usage
analyses).

Parallel research and development activities have
resulted in:

• A FLOW-like program to produce statement usage
frequency without the execution trace feature;9 al­
though the results are not as detailed as those
produced by FLOW, the program operation is more
efficient and therefore more easily applied to large
systems.

• Well-defined steps for the adaptation of PACE

Evaluating Effectiveness of Software Verification 189

technology to programming languages other than
FORTRAN (e.g., assembly language, COBOL,
JOVIAL).

This approach toward development of PACE tech­
nology has proved successful and has resulted in needed
exposure and critique of concepts and techniques.
PACE applications have already provided some very
meaningful answers to a variety of participants (from
programmer to procurer) in a number of software· de­
velopment activities. As was expected, each new appli­
cation lends additional insight into the evaluation of
existing PACE technology and provides vital informa­
tion for direction of continued design and implement a­
tion.10 Application of PACE capabilities has stimulated
interest in the effectiveness of testing among TRW per­
sonnel and its customers and has provided a firm foun­
dation upon which a long-neglected technology2 can
now advance.

ACKNOWLEDGMENTS

Without the cooperation of many individuals the col­
lection and presentation of the FLOW usage results
documented he:re would have been an extremely diffi­
cult task. Those particularly deserving of mention are
A. C. Arterbery, K. W. Krause, Dr. E. C. Nelson,
R' M. Poole, R. W. Smith and R. F. Webber.

REFERENCES

1 DE KNUTH
An empirical study of FORTRAN programs
Software-Practice and Experience Vol 1 pp 105-103 1971

2 F GRUENBERGER
Program testing and validating
Computing: A First Course 1968

3 J R BROWN et al
A utomated software quality assurance: A case study of three
systems
Presented at the ACM SIGPLAN Symposium Chapel Hill
North Carolina June 21-23 1972

4 LTC F BUCKLEY
Verification of software programs
Computers and Automation February 1971

5 K W KOLENCE
A software view of measurement tools
Datamation January 1971

6 System/360 scientific subroutine package (360A-CM-03X)
version III programmer's manual
IBM Application Program H20-0205-3

7 J R BROWN
Practical applications of automated software tools
To be published in the Proceedings of the Western
Electronic Show and Convention (WESCON)

190 Fall Joint Computer Conference, 1972

Los Angeles California September 19-22 1972
8 R W SMITH

Measurement of segment relationship execution frequency
TRW Systems (#72-4912.30-31) March 29 1972

9 R H HOFFMAN et al
Node determination and analysis program (NODAL) user's

manual
TRW Systems (#18793-6147-RO-00) June 30 1972

10 J R BROWN R H HOFFMAN
Automating software development-A survey of techniques and
automated tools
TRW Inc May 1972

A design methodology for reliable software systems*

by B. H. LI8KOV**

The JlrfITRE Corporation
Bedford, Massachusetts

INTRODUCTION

Any user of a computer system is aware that current
systems are unreliable because of errors in their soft­
ware components. While system designers and imple­
menters recognize the need for reliable software, they
have been unable to produce it. For example, operating
systems such as 08/360 are released to the public with
hundreds of errors still in them. l

A project is underway at the MITRE Corporation
which is concerned with learning how to build reliable
software systems. Because systems of any size can al­
ways be expected to be subject to changes in require­
ments, the project goal is to produce not only reliable
software, but readable software which is relatively easy
to modify and maintain. This paper describes a design
methodology developed as part of that project.

Rationale

Before going on to describe the methodology, a few
words are in order about why a design methodology
approach to software reliability has been selected. t The
unfortunate fact is that the standard approach to build­
ing systems, involving extensive debugging, has not
proved successful in producing reliable software, and
there is no reason to suppose it ever will. Although im­
provements in debugging techniques may lead to the
detection of more errors, this does not imply that all
errors will be found. There certainly is no guarantee of
this implicit in debugging: as Dijkstra said, "Program
testing can be used to show the presence of bugs, but
never to show their absence." 3

* This work was supported by Air Force Contract No. F19(628)-
71-C-0002.
** Present Address-Department of Electrical Engineering, Mas­
sachusetts Institute of Technology, Cambridge, Massachusetts.
t The material in this section is covered in much greater detail in
Liskov and Towster.2

191

In order for testing to guarantee reliability, it is neces­
sary to insure that all relevant test cases have been
checked. This requires solving two problems:

(1) A complete (but minimal) set of relevant test
cases must be identified.

(2) It must be possible to test all relevant test
cases; this implies that the set of relevant test
cases is small and that it is possible to generate
every case.

The solutions to these problems do not lie in the do­
main of debugging, which has no control over the sources
of the problems. Instead, since it is the system design
which determines how many test cases there are and
how easily they can be identified, the problems can be
solved most effectively during the design process: The
need for exhaustive testing must influence the design.

We believe that such a design methodology can be
developed by borrowing from the work being done on
proof of correctness of programs. While it is too difficult
at present to give formal proofs of the correctness of
large programs, it is possible to structure programs so
that they are more amenable to proof techniques. The
objective of the methodology presented in this paper is
to produce such a program structure, which will lend
itself to informal proofs of correctness. The proofs, in
addition to building confidence in the correctness of the
program, will help to identify the relevant test cases,
which can then be exhaustively tested. When ex­
haustive testing is combined with informal proofs, it is
reasonable to expect reliable software after testing is
complete. This expectation is borne out by at least one
experiment performed in the past.4

The scope of the paper

A key word in the discussion of software reliability is
"complex"; it is only when dealing with complex sys-

192 Fall Joint Computer Conference, 1972

tems that reliability becomes an acute problem. A two­
fold definition is offered for "complex." First, there are
many system states in such a system, and it is difficult
to organize the program logic to handle all states cor­
rectly. Second, the efforts of many individuals must be
coordinated in order to build the system. A design
methodology is concerned with providing techniques
which enable designers to cope with the inherent logical
complexity effectively. Coordination of the efforts of
individuals is accomplished through management tech­
niques.

The fact that this paper only discusses a design
methodology should not be interpreted to imply that
management techniques are unimportant. Both design
methodology and management techniques are essential
to the successful construction of reliable systems. It is
customary to divide the construction of a software sys­
tem into three stages: design, implementation, and test­
ing. Design involves both making decisions about what
precisely a system will do and then planning an overall
structure for the software which enables it to perform
its tasks. A "good" design is an essential first step
toward a reliable system, but there is still a long way to
go before the system actually exists. Only management
techniques can insure that the system implementation
fits into the structure established by the design and that
exhaustive testing is carried out. The management
techniques should not only have the form of require­
ments placed on personnel; the organization of person­
nel is also important. It is generally accepted that the
organizational structure imposes a structure on the sys­
tem being built.5 Since we wish to have a system struc­
ture based on the design methodology, the organiza­
tional structure must be set up accordingly. *

CRITERIA FOR A GOOD DESIGN

The design methodology is presented in two parts.
This section defines the criteria which a system design
should satisfy. The next section presents guidelines
intended to help a designer develop a design satisfying
the criteria.

To reiterate, a complex system is one in which there
are so many system states that it is difficult to under­
stand how to organize the program logic so that all
states will be handled correctly. The obvious tech­
nique to apply when confronting this type of situation
is "divide and rule." This is an old idea in program­
ming and is known as modularization. Modularization
consists of dividing a program into subprograms

* Management techniques intended to support the design
methodology proposed in this paper are described by Liskov.6

(modules) which can be compiled separately, but which
have connections with other modules. We will use the
definition of Parnas:7 "The connections between mod­
ules are the assumptions which the modules make about
each other." Modules have connections in control via
their entry and exit points; connections in data, ex­
plicitly via their arguments and values, and implicitly
through data referenced by more than one module;
and connections in the services which the modules pro­
vide for one another.

Traditionally, modularity was chosen as a technique
for system production because it makes a large system
more manageable. It permits efficient use of personnel,
since programmers can implement and test different
modules in parallel. Also, it permits a single function to
be performed by a single module and implemented and
tested just once, thus eliminating some duplication of
effort and also standardizing the way such functions
are performed.

The basic idea of modularity seems very good, but
unfortunately it does not always work well in practice.
The trouble is that the division of a system into mod­
ules may introduce additional complexity. The complex­
ity comes from two sources: functional complexity and
complexity in the connections between the modules.
Examples of such complexity are:

(1) A module is made to do too many (related but
different) functions, until its logic is completely
obscured by the tests to distinguish among the
different functions (functional complexity).

(2) A common function is not identified early
enough, with the result that it is distributed
among many different modules, thus obscuring
the logic of each affected module (functional
complexity) .

(3) Modules interact on common data in unexpected
ways (complexity in connections) .

The point is that if modularity is viewed only as an
aid to management, then any ad hoc modularization of
the system is acceptable. However, the success of
modularity depends directly on how well modules are
chosen. We will accept modularization as the way of
organizing the programming of complex software sys­
tems. A major part of this paper will be concerned with
the question of how good modularity can be achieved,
that is, how modules can be chosen so as to minimize
the connections between them. First, however, it is
necessary to give a definition of "good" modularity. To
emphasize the requirement that modules be as disjoint
as possible, and because the term "module" has been
used so often and so diversely, we will discard it and
define modularity as the division of the system into

"partitions." The definition of good modularity will be
based on a synthesis of two techniques, each of which
addresses a different aspect of the problem of construct­
ing reliable software. The first, levels of abstraction,
permits the development of a system design which copes
with the inherent complexity of the system effectively.
The second, structured programming, insures a clear
and understandable representation of the design in the
system software.

Levels of abstraction

Levels of abstraction were first defined by Dijkstra.8

They provide a conceptual framework for achieving a
clear and logical design for a system. The entire system
is conceived as a hierarchy of levels, the lowest levels
being those closest to the machine. Each level supports
an important abstraction; for example, one level might
support segments (named virtual memories), while
another (higher) level could support files which consist
of several segments connected together. An example of
a file system design based entirely on a hierarchy of
levels can be found in Madnick and Alsop. 9

Each level of abstraction is composed of a group of
related functions. One or more of these functions may
be referenced (called) by functions belonging to other
levels; these are the external functions. There may also
be internal functions which are used only within the
level to perform certain tasks common to all work being
performed by the level and which cannot be referenced
from other levels of abstraction.

Levels of abstraction, which will constitute the parti­
tions of the system, are accompanied by rules governing
some of the connections between them. There are two
important rules governing levels of abstraction. The
first concerns resources (I/O devices, data) : each level
has resources which it owns exclusively and which other
levels are not permitted to access. The second involves
the hierarchy: lower levels are not aware of the existence
of higher levels and therefore may not refer to them in
any way. Higher levels may appeal to the (external)
functions of lower levels to perform tasks; they may also
appeal to them to obtain information contained in the
resources of the lower levels. *

* In the Madnick and Alsop paper referenced earlier, the hierarchy
of levels is strictly enforced in the sense that if the third level
wishes to make use of the services of the first level, it must do so
through the second level. This paper does not impose such a strict
requirement; a high level may make use of a level several steps
below it in the hierarchy without necessarily requiring the
assistance of intermediate levels. The 'THE' systemS and the
Venus systemlO contain exampl~ of levels used in this way.

Design Methodology for Reliable Software Systems 193

Structured programming

Structured programming is a programming discipline
which was introduced with reliability in mind. 11 ,12 Al­
though of fairly recent origin, the term "structured pro­
gramming" does not have a standard definition. We
will use the following definition in this paper.

Structured programming is defined by two rules. The
first rule states that structured programs are developed
from the top down, in levels. * The highest level de­
scribes the flow of control among major functional
components (major subsystems) of the system; compo­
nent names are introduced to represent the components.
The names are subsequently associated with code which
describes the flow of control among still lower-level
components, which are again represented by their
component names. The process stops when no undefined
names remaIn.

The second rule defines which control structures may
be used in structured programs. Only the following
control structures are permitted: concatenation, selec­
tion of the next statement based on the testing of a con­
dition, and iteration. Connection of two statements by
a goto is not permitted. The statements themselves may
make use of the component names of lower-level com­
ponents.

Structured prograInming and proofs of
correctness

The goal of structured programming is to produce
program structures which are amenable to proofs of
correctness. The proof of a structured program is
broken down into proofs of the correctness of each of
the components. Before a component is coded, a speci­
fication exists explaining its input and output and the
function which it is supposed to perform. (The specifi­
cation is defined at the time the component name is
introduced; it may even be part of the name.) When the
component is coded, it is expressed in terms of specifica­
tions of lower level components. The theorem to be
proved is that the code of the component matches its
specifications; this proof will be given based on axioms
stating that lower level components match their speci­
fications.

The proof depends on the rule about control struc­
tures in two important ways. First, limiting a compo­
nent to combinations of the three permissible control
structures insures that control always returns from a
component to the statement following the use of the

* The levels in a structured program are not (usually) levels of
abstraction, because they do not obey the rule about ownership
of resources.

194 Fall Joint Computer Conference, 1972

component name (this would not be true if go to state­
ments were permitted). This means that reasoning
about the flow of control in the system may be limited
to the flow of control as defined locally in the component
being proved. Second, each permissible control struc­
ture is associated with a well-known rule of inference:
concatenation with linear reasoning, iteration with in­
duction, and conditional selection with case analysis.
These rules of inference are the tools used to perform
the proof (or understand the component).

Structured progra:mming and syste:m design

Structured programming is obviously applicable to
system implementation. We do not believe that by it­
self it constitutes a sufficient basis for system design;
rather we believe that system design should be based on
identification of levels of abstraction. * Levels of ab­
straction provide the framework around which and
within which structured programming can take place.
Structured programming is compatible with levels of
abstraction because it provides a comfortable environ­
ment in which to deal with abstractions. Each struc­
tured program component is written in terms of the
names of lower-level components; these names, in effect,
constitute a vocabulary of abstractions.

In addition, structured programs can replace flow­
charts as a way of specifying what a program is sup­
posed to do. Figure 1 shows a structured program for the
top level of the parser in a bottom-up compiler for an

begin
integer relation;
boolean must-scan;
string symbol;
stack parse_stack;
must.scan := true;
push (parse_stack, eoLentry);
while not finished(parse_stack) do

begin
if must.scan then symbol := scan_next-symbol;
relation := precedenceJelation(top(parse_stack), symbol);
perform_opera tion_based_onJelation (relation, parse_stack,

end
end

symbol, must-scan)

Figure I-A structured program for an operator
precedence parser

* A recent paper by Henderson and Snowden13 describes an
experiment in which structured programming was the only
technique used to build a program. The program had an error in
it which was the direct result of not identifying a level of
abstraction.

INITIALIZE

..

/ FINISHED? \

YES NO

SCAN SYMBOL
IF NECESSARY

COMPUTE
PRECEDENCE
RELATION

.r

PERFORM OPERATION
BASED ON PRECEDENCE
RELATION

Figure 2-Flowchart 'of an operator precedence parser

operator precedence grammar, and Figure 2 is a flow­
chart containing approximately the same amount of
detail. While it is slightly more difficult to write the
structured program, there are compensating advan­
tages. The structured program is part of the final pro­
gram; no translation is necessary (with the attendant
possibility of introduction of errors). In addition, a
structured program is more rigorous than a flowchart.
For one thing, it is written in a programming language
and therefore the semantics are well defined. For
another, a flowchart only describes the flow of control
among parts of a system, but a structured program at a
minimum must also define the data controlling its flow,

so the description it provides is more concrete. In addi­
tion, it defines the arguments and values of a referenced
component, and if a change in level of abstraction occurs
at that point, then the data connection between the two
components is completely defined by the structured
program. This should help to avoid interface errors
usually uncovered during system integration.

Basic definition

We now present a definition of good modularity sup­
porting the goal of software reliability. The system is
divided into a hierarchy of partitions, where each parti­
tion represents one level of abstraction, and consists of
one or more functions which share common resources.
At the same time, the entire system is expressed by a
structured program which defines the way control
passes among the partitions. The connections between
the partitions are limited as follows:

(1) The connections in control are limited by the
rules about the hierarchy of levels of abstraction
and also follow the rules for structured programs.

(2) The connections in data between partitions are
limited to the explicit arguments passed from the
functions of one partition to the (external) func­
tions of another partition. Implicit interaction on
common data may only occur among functions
within a partition.

(3) The combined activity of the functions in a
partition support its abstraction and nothing
more. This makes the partitions logically inde­
pendent of one another. For example, a parti­
tion supporting the abstraction of files composed
of many virtual memories should not contain
any code supporting the existence of virtual
memories.

A system design satisfying the above requirements is
compatible with the goal of software reliability. Since
the system structure is expressed as a structured pro­
gram, it should be possible to prove that it satisfies the
system specifications, assuming that the structured pro­
grams which will eventually support the functions of the
levels of abstraction satisfy their specifications. In ad­
dition, it is reasonable to expect that exhaustive testing
of all relevant test cases will be possible. Exhaustive
testing of the whole system means that each partition
must be exhaustively tested, and all combinations of
partitions must be exhaustively tested. Exhaustive
testing of a single partition involves both testing based
on input parameters to the functions in the partition
and testing based on intermediate values of state vari-

Design Methodology for Reliable Software Systems 195

abIes of the partition. When this testing is complete, it
is no longer necessary to worry about the state variables
because of requirement 2. Thus, the testing of combina­
tions of partitions is limited to testing the input and
output parameters of the external functions in the
partitions. In addition, requirement 3 says that parti­
tions are logically independent of one another; this
means that it is not necessary when combining parti­
tions to test combinations of the relevant test cases for
each partition. Thus, the number of relevant test cases
for two partitions equals the sum of the relevant test
cases for each partition, not the product.

GUIDELINES FOR SYSTEM DESIGN

Now that we have a definition of good modulariza­
tion, the next question is how a system modularization
satisfying this definition can be achieved. The tradi­
tional technique for modularization is to analyze the
execution-time flow of the system and organize the sys­
tem structure around each major sequential task. This
technique leads to a structure which has very simple
connections in control, but the connections in data tend
to be complex (for examples see Parnas14 and CohenI5).

The structure therefore violates requirement 2; it is
likely to violate requirement 3 also since there is no
reason (in general) to assume any correspondence be­
tween the sequential ordering of events and the inde­
pendence of the events.

If the execution flow technique is discarded, however,
we are left with almost nothing concrete to help us make
decisions about how to organize the system structure.
The guidelines presented here are intended to help
rectify this situation. First are some guidelines about
how to select abstractions; these guidelines tend to
overlap, and when designing a system, the choice of a
particular abstraction will probably be based on several
of the guidelines. Next the question of how to proceed
with the design is addressed. Finally, an example of the
selection of a particular abstraction within the Venus
systemlO is presented to illustrate the application of
several of the principles; an understanding of Venus is
not necessary for understanding the example.

Guidelines for selecting abstractions

Partitions are always introduced to support an ab­
straction or concept which the designer finds helpful in
thinking about the system. Abstraction is a very valu­
able aid to ordering complexity. Abstractions are intro­
duced in order to make what the system is doing clearer
and more understandable; an abstraction is a conceptual
simplification because it expresses what is being done

196 Fall Joint Computer Conference, 1972

without specifying how it is done. The purpose of this
section is to discuss the types of abstractions which
may be expected to be useful in designing a system.

Abstractions of resources

Every hardware resource available on the system will
be represented by an abstraction having useful charac­
teristics for the user or the system itself. The abstrac­
tion will be supported by a partition whose functions
map the characteristics of the abstract resource into the
characteristics of the real underlying resource or re­
sources. This mapping may itself make use of several
lower partitions, each supporting an abstraction useful
in defining the functions of the original partition. It is
likely that a strict hierarchy will be imposed on the
group of partitions; that is, other parts of the system
may only reference the functions in the original parti­
tion. In this case, we will refer to the lower partitions
as "sub-partitions."

Two examples of abstract resources are given. In an
interactive system, "abstract teletypes" with end-of­
message and erasing conventions are to be expected.
In a multiprogramming system, the abstraction of
processes frees the rest of the system from concern about
the true number of processors.

Abstract characteristics of data

In most systems the users are interested in the struc­
ture of data rather than (or in addition to) storage of
data. The system can satisfy this interest by the inclu­
sion of an abstraction supporting the chosen data struc­
ture; functions of the partition for that abstraction will
map the structure into the way data is actually repre­
sented by the machine (again this may be accomplished
by several sub-partitions). For example, in a file man­
agement system such an abstraction might be an in­
dexed sequential access method. The system itself also
benefits from abstract representation of data; for ex­
ample, the scanner in a compiler permits the rest of the
compiler to deal with symbols rather than with charac­
ters.

Simplification via limiting information

According to the third requirement for good modu­
larization, the functions comprising a partition support
only one abstraction and nothing more. Sometimes it is
difficult to see that this restriction is being violated, or
to recognize that the possibility for identification of
another abstraction exists.

One technique for simplification is to limit the amount

of information which the functions in the partition need
to know (or even have access to). An example of such
information is the complicated format in which data is
stored for use by the functions in the partition (the
data would be a resource of the partition). The func­
tions require the information embedded in the data but
need not know how it is derived from the data. This
knowledge can be successfully hidden within a lower
partition (possibly a sub-partition) whose functions will
provide requested information when called; note that
the data in question become a resource of the lower
partition.

Simplification via generalization

Another technique for simplification is to recognize
that a slight generalization of a function (or group of
functions) will cause the functions to become generally
useful. Then a separate partition can be created to con­
tain the generalized function or functions. Separating
such groups is a common technique in system imple­
mentation and is also useful for error avoidance, mini­
mization of work, and standardization. The existence
of such a group simplifies other partitions, which need
only appeal to the functions of the lower partition
rather than perform the tasks themselves. An example
of a generalization is a function which will move a
specified number of characters from one location to
another, where both locations are also specified; this
function is a generalization of a function in which one
or more of the input parameters is assumed.

Sometimes an already existing partition contains
functions supporting tasks very similar to some work
which must be performed. When this is true, a new
partition containing new versions of those functions
may be created, provided that the new functions are
not much more complex than the old ones.

System maintenance and modification

Producing a system which is easily modified and
maintained is one of our primary goals. This goal can
be aided by separating into independent partitions
functions which are performing a task whose definition
is likely to change in the future. For example, if a parti­
tion supports paging of data between core and some
backup storage, it may be wise to isolate as an inde­
pendent partition those functions which actually know
what the backup storage device is (and the device be­
comes a resource of the new partition). Then if a new
device is added to the system (or a current device is
removed), only the functions in the lower partition 'will
be affected; the higher partition will have been isolated

from such changes by the requirement about data con­
nections between partitions.

How to proceed with the design

Two phases of design are distinguished. The very first
phase of the design (phase 1) will be concerned with de­
fining precise system specifications and analyzing them
with respect to the environment (hardware or software)
in which the system will eventually exist. The result of
this phase will be a number of abstractions which repre­
sent the eventual system behavior in a very general
way. These abstractions imply the existence of parti­
tions, but very little is known about the connections
between the partitions, the flow of control among the
partitions (although a general idea of the hierarchy of
partitions will exist), or how the functions of the parti­
tions will be coded. Every important external charac­
teristic of the system should be present as an abstrac­
tion at this stage. Many of the abstractions have to do
with the management of system resources; others have
to do with services provided to the user.

The second phase of system design (phase 2) investi­
gates the practicality of the abstractions proposed by
phase 1 and establishes the data connections between
the partitions and the flow of control among the parti­
tions. This latter exercise establishes the placement of
the various partitions in the hierarchy. The second
phase occurs concurrently with the first; as abstractions
are proposed, their utility and practicality are im­
mediately investigated. For example; in an information
retrieval system the question of whether a given search
technique is efficient enough to satisfy system con­
straints must be investigated.

A partition has been adequately investigated when
its connections with the rest of the system are known
and when the designers are confident that they under­
stand exactly what its effect on the system will be.
Varying depths of analysis will be necessary to achieve
this confidence. It may be necessary to analyze how the
functions of the partition could be implemented, involv­
ing phase 1 analysis as new abstractions are postulated
requiring lower partitions or sub-partitions. Possible re­
sults of a phase 2 investigation are that an abstraction
may be accepted with or without changes, or it may be
rejected. If an abstraction is rejected, then another
abstraction must be proposed (phase 1) and investi­
gated (phase 2). The iteration between phase 1 and
phase 2 continues until the design is complete.

Structured program.m.ing

It is not clear exactly how early structured- program­
ming of the system should begin. Obviously, whenever

Design Methodology for Reliable Software Systems 197

the urge is felt to draw a flowchart, a structured pro­
gram should be written instead. Structured programs
connecting all the partitions together will be expected
by the end of the design phase. The best rule is probably
to keep trying to write structured programs; failure
will indicate that system abstractions are not yet
sufficiently understood and perhaps this exercise will
shed some light on where more effort is needed or where
other abstractions are required.

When is the design finished?

The design will be considered finished when the fol­
lowing criteria are satisfied:

(1) All major abstractions have been identified and
partitions defined for them; the system resources
have been distributed among the partitions and
their positions in the hierarchy established.

(2) The system exists as a structured program, show­
ing how the flow of control passes among the
partitions. The structured program consists of
several components, but no component is likely
to be completely defined; rather each component
is likely to use the names of lower-level com­
ponents which are not yet defined. The inter­
faces between the partitions have been defined,
and the relevant test cases for each partition
have been identified.

(3) Sufficient information is available so that a
skeleton of a user's guide to the system could be
written. Many details of the guide would be
filled in later, but new sections should not be
needed.*

A n example from Venus

The following example from the Venus systemlO is
presented because it illustrates many of the points
made about selection, implementation, and use of ab­
stractions and partitions. The concept to be discussed
is that of external segment name, referred to as ESN
from now on.

The concept of ESN was introduced as an abstrac­
tion primarily for the benefit of users of the system.
The important point is that a segment (named virtual
memory) exists both conceptually (as a place where a

* This requirement helps to insure that the design fulfills the
system specifications. In fact, if there is a customer for whom the
system is being developed, a preliminary user's guide derived
from the system design could be a means for reviewing and
accepting the design.

198 Fall Joint Computer Conference, 1972

programmer thinks of information as being stored) and
in reality (the encoding of that information in the com­
puter). The reality of a segment is supported by an
internal segment name (ISN) which is not very con­
venient for a programmer to use or remember. There­
fore, the symbolic ESN was introduced.

As soon as the concept of ESN was imagined, the
existence of a partition supporting this concept was im­
plied. This partition owned a nebulous data resource, a
dictionary, which contained information about the
mappings between ESN sand ISN s. The formatting of
this data was hidden information as far as the rest of
the system was concerned. In fact, decisions about the
dictionary format and about the algorithms used to
search a dictionary could safely be delayed until much
later in the design process. A collective name, the dic­
tionary functions, was given to the functions in this
partition.

Now phase 2 analysis commenced. It was necessary
to define the interface presented by the partition to the
rest of the system. Obvious items of interest are ESN s
and ISN s; the format of ISN s was already determined
by the computer architecture, but it was necessary to
decide about the format of ESNs. The most general
format would be a count of the number of characters
in the ESN followed by the ESN itself; for efficiency,
however, a fixed format of six characters was selected.

At this point a generalization of the concept of ESN
occurred, because it was recognized that a two-part
ESN would be more useful than a single symbolic ESN.
The first part of the ESN is the symbolic name of the
dictionary which should be used to make the mapping;
the second part is the symbolic name to be looked up in
the dictionary. This concept was supported by the
existence of a dictionary containing the names of all
dictionaries. A format had to be chosen for telling dic­
tionary functions which dictionary to use; for reasons of
efficiency, the ISN of the dictionary was chosen (thus
avoiding repeated conversions of dictionary ESN into
diction~ry IS N) .

When phase 2 analysis was over, we had the identifi­
cation of a partition; we knew what type of function
belonged in this partition, what sort of interface it pre­
sented to the rest of the system, and what information
was kept in dictionaries. As the system design pro­
ceeded, new dictionary functions were specified as
needed. Two generalizations were realized later. The
first was to add extra information to the dictionary;
this was information which the system wanted on a seg­
ment basis, and the dictionaries were a handy place to
store it. The second was to make use of dictionary func­
tions as a general mapping device; for example, dic­
tionaries are used to hold information about the map-

ping of record names into tape locations, permitting
simplification of a higher partition.

In reality, as soon as dictionaries and dictionary func­
tions were conceived, a core of dictionary functions was
implemented and tested. This is a common situation in
building systems and did not cause any difficulty in this
case. For one thing, extra space was purposely left in
dictionary entries because we suspected we might
want extra information there later although we did not
then know what it was. The search algorithm selected
was straight serial search; the search was embedded in
two internal dictionary functions (a sub-partition) so
that the format of the dictionaries might be changed
and the search algorithm redefined with very little ef­
fect on the system or most of the dictionary functions.
This follows the guideline of modifiability.

CONCLUSIONS

This paper has described a design methodology for the
development of reliable software systems. The first part
of the methodology is a definition of a "good" system
modularization, in which the system is organized into a
hierarchy of "partitions", each supporting an "abstrac­
tion" and having minimal connections with one another.
The total system design, showing how control flows
among the partitions, is expressed as a structured pro­
gram, and thus the system structure is amenable to
proof techniques.

The second part of the methodology addresses the
question of how to achieve a system design having good
modularity. The key to design is seen as the identifica­
tion of "useful" abstractions which are introduced to
help a designer think about the system; some methods
of finding abstractions are suggested. Also included is a
definition of the "end of design", at which time, in addi­
tion to having a system design with the desired struc­
ture, a preliminary user's! guide to the system could be
written as a way of checking that the system meets its
specifications.

Although the methodology proposed in this paper is
based on techniques which have contributed to the pro­
duction of reliable software in the past, it is nevertheless
largely intuitive, and may prove difficult to apply to
real system design. The next step to be undertaken at
MITRE is to test the methodology by conscientiously
applying it, in conjunction with certain management
techniques,6 to the construction of a small, but com­
plex, multi-user file management system. We hope that
this exercise will lead to the refinement, extension and
clarification of the methodology.

ACKNOWLEDGMENTS

The author wishes to thank J. A. Clapp and D. L.
Parnas for many helpful criticisms.

REFERENCES

1 J N BUXTON B RANDELL (eds)
Software engineering techniques
Report on a Conference Sponsored by the NATO Science
Committee Rome Italy p 20 1969

2 B H LISKOV E TOWSTER
The proof of correctness approach to reliable systems
The MITRE Corporation MTR 2073 Bedford
Massachusetts 1971

3 E W DIJKSTRA
Structured programming
Software Engineering Techniques
Report on a Conference sponsored by the NATO Science
Committee Rome Italy J N Buxton and B Randell (eds)
pp 84.;.88 1969

4 F T BAKER
Chief programmer team management of production
programming
IBM Syst J 111 pp 56-73 1972

5 M CONWAY
How do committees invent?
Datamation 14 4 pp 28-31 1968

6 B H LISKOV
Guidelines for the design and implementation of reliable
software systems

Design Methodology for Reliable Software Systems 199

The MITRE Corporation MTR 2345 Bedford
Massachusetts 1972

7 D L PARNAS
Information distribution aspects of design methodology
Technical Report Department of Computer Science
Carnegie-Mellon University 1971

8 E W DIJKSTRA
The structure of the "THE"-multiprogramming system
Comm ACM 11 5 pp 341-346 1968

9 S MAD NICK J W ALSOP II
A modular approach to file system design
AFIPS Conference Proceedings 34 AFIPS Press
Montvale New Jersey pp 1-13 1969

10 B H LISKOV
The design of the Venus operating system
Comm ACM 15 3 pp 144-149 1972

11 E W DIJKSTRA
Notes on structured programming
Technische Hogeschool Eindhoven The Netherlands 1969

12 H D MILLS
Structured programming in large systems
Debugging Techniques in Large Systems R Rustin (ed)
Prentice Hall Inc Englewood Cliffs New Jersey pp 41-55

13 P HENDERSON R SNOWDEN
An experiment in structured programming
BIT 12 pp 38-53 1972

14 D L PARNAS
On the criteria to be used in decomposing systems into modules
Technical Report CMU-CS-71-101 Carnegie-Mellon
University 1971

15 A COHEN
Modular programs: Defining the module
Datamation 18 1 pp 34-37 1972

A summary of progress toward proving
program correctness

by T. A. LINDEN

National Security Agency
Ft. George G. Meade, Maryland

INTRODUCTION

Interest in proving the correctness of programs has
grown explosively within the last two or three years.
There are now over a hundred people pursuing research
on this general topic; most of them are relative new­
comers to the field. At least three reasons can be cited
for this rapid growth:

(1) The inability to design and implement software
systems which can be guaranteed correct is
severely restricting computer applications in
many important areas.

(2) Debugging and maintaining large computer
programs is now well recognized as one of the
most serious and costly problems facing the
computer industry.

(3) A large number of mathematicians, especially
logicians, are interested in applications where
their talents can be used.

This paper summarizes recent progress in developing
rigorous techniques for proving that programs satisfy
formally defined specifications. Until recently proofs of
correctness were limited to toy programs. They are
still limited to small programs, but it is now conceivable
to attempt to prove the correctness of small critical
modules of a large program. This paper is designed to
give a sufficient introduction to current research so that
a software engineer can evaluate whether a proof of
correctness might be applicable to some of his problems
sometime in the future.

THE NATURE OF CORRECTNESS PROOFS

Given formal specifications for a program and given
the text of a program in some formally defined language,
it is then a well-defined mathematical question to ask

201

whether the program text is correct with respect to
those specifications. The mathematics necessary for this
was originally worked out primarily by Floydl and
Manna.2

I t must be made clear that a proof of correctness is
radically different from the usual process of testing a
program. Testing can and often does prove a program is
incorrect, but no reasonable amount of testing can ever
prove that a nontrivial program will be correct over all
allowable inputs.

Example

The approach to proving programs correct which
was developed and popularized by Floyd is still the
basis for most current proofs of correctness. I t is
generally known as the method of inductive assertions.
Let us begin with a simple example of the basic idea.
Consider the flowchart in Figure 1 for exponentiation
to a positive integral power by repeated multiplication.
For simplicity, assume all values are integers. I have
put assertions or specifications for correctness on the
input and output of the program. We want to prove
that if X and Yare inputs with Y>O, then the output Z
will satisfy Z = KY. This assertion at the output is the
specification for correctness of the program. The asser­
tion at the input defines the input conditions (if any)
for which the program is to produce output satisfying
the output assertion. Note that the proof will use
symbolic techniques to establish that the· program is
correct for all allowable inputs.

The proof technique works as follows: Somewhere
within each loop we must add an assertion that ade­
quately characterizes an invariant property of the loop.
This has been done for the single loop flowchart of
Figure 1. It is now possible to break this flowchart into
tree-like sections such that each section begins and ends
with assertions and no section contains a loop. This is

202 Fall Joint Computer Conference, 1972

shown in Figure 2 if one disregards the dashed-line
boxes. We want to show that if execution of a section
begins in a state with the assertion at its head true,
then when the execution leaves that section, the asser­
tion at the exit must also be true. By taking an assertion
at the end of each of these sections and using the
semantics of the program statement above it, one can
generate an assertion which should have held before
that statement if the assertions after it are to be guar­
anteed true. Working up the trees one then generates
all the assertions in dashed-line boxes in Figure 2. Each
section will then preserve truth from its first to its last
assertions if the first assertion implies the assertion
that was generated in the dashed-line box at the top.
One thus gets the logical theorems or verification condi­
tions given below each section. With a little thought it
can now be seen that if these theorems can all be proven
and if the program halts, then it will halt with the
correct output values. In this case the theorems are
obviously true. Halting can be proven by other
techniques.

Figure 1-Exponentiation program

- - ---z = Xl
__ r - -:--- -- - ----- --,

:.lY~~ ~=XYl ~ W~~ ~xX == X~ll!
>--+J~ ___ ----i~: ~YJ ____ I

z = Xl ~ [(Y = I ~ Z = X Y) & (Y f I ~ Z x X == xI+ 1)]

Figure 2-Sectioned flowchart

The careful reader will note that the input assumption
Y> 0 is not really needed for the proof of either of these
theorems. This is because that assumption is really only
needed to prove that the program terminates.

Inherent difficulties

This process for proving the correctness of programs
is subject to many variations both to handle program­
ming constructs which do not occur in this example and
to try to make the proof of correctness more efficient.
Full treatments with many examples are available in a
recent survey by Elspas, et al.,3 and in Manna's forth­
coming textbook. 4 Some further general comments
about the nature of the problem will be made here.
Analogous comments could be made about most of the
other approaches to proving correctness.

Programs can only be said to be correct with respect
to formal specifications or input-output assertions.

Summary of Progress Toward Proving Program Correctness 203

There is no formal way to guarantee that these specifica­
tions adequately express what someone really wants the
program to do.

Given a program with specifications on the input and
output, there is probably no automatic way to generate
all the additional assertions which must be added to
make the proof work. For a human to add these asser­
tions requires a thorough understanding of the program.
The programmer should be able to supply these asser­
tions if he is able to formalize his intuitive under­
standing of the program.

Given a program with assertions in each loop and
given an adequate definition of the semantics of the
programming language, it is fairly routine to generate
the theorems or verification conditions. Several existing
computer programs that do this are described below.

The real problem in proving correctness lies in the
fact that even for simple programs, the theorems that
are generated become quite long. This length makes
proving the theorems very difficult for a human or for
current automatic theorem provers.

Formalizing the programmer's intuition of correctness

It may not be apparent, but the process of proving
correctness is just a formalization into rigorous logical
terms of the informal and sometimes sloppy reasoning
that a programmer uses in constructing and checking
his program. The programmer has some idea of what he
expects to be true at each stage of his program (the
assertions), he knows how the programming language
semantics will transform a stage (generating the asser­
tions in dashed-line boxes of Figure 2), and he con­
vinces himself that the transformations will give the
desired result (the proof of the theorem). In this sense
proving program correctness is just a way to put into
formal language everything one should understand in
reading and informally checking a program for correct­
ness. In fact, there is no clear division between the idea
of reading code to check it for correctness and the idea
of proving it correct by more rigorous means; the
difference is one of degree of formality.

One question that should be addressed in this context
regards the fact that both the correctness and the
halting problems for arbitrary programs are known to be
undecidable in the mathematical sense. However, this
question of mathematical undecidability should not
arise for any program for which there are valid intuitive
reasons for the program to be correct.

Confidence in correctness

I hope I have made the point that logical proof of
correctness techniques are radically different from

testing techniques which are based on executing the
program on selected input data in a specific environ­
ment. However, I do not want to imply that in a prac­
tical situation a proof or anything else can lead to
absolute certitude of correctness. In fact a proof by
itself does not necessarily lead to a higher level of
confidence than might be achieved by extensive testing
of a program. From a practical viewpoint there are a
number of things that could still be wrong after a proof
if one is not careful: what is proven may not be what
one thought was proven, the proof may be incorrect, or
assumptions about either the execution environment or
the problem domain may not be valid. However, a
proof does give a quite different and independent view
of program correctness, and if it is done well, it should
be able to provide a very high level of confidence in
correctness. In particular, to the extent that a proof is
valid, there should no longer be any doubt about what
might happen after allowable but unexpected input
values.

MANUAL PROOFS

The basic ideas in the last section have been known
for some time. This section describes the practical
progress which has been made with manual proofs in
the last few years.

The size of programs which can be proven by hand
depends on the level of formality that is used. In 1967
McCarthy and Painter5 manually proved the correct­
ness of a compiler for very elementary arithmetic
expressions. I t was a formal proof based on formal
definitions of the syntax and semantics of the simple
languages involved.

Rigorous but informal proofs

A more informal approach to proofs is now popular.
This approach is rigorous, but uses a level of formality
like that in a typical mathematics text. Arguments are
based on an intuitive definition of the semantics of the
programming language without a complete axiomatiza­
tion. Using these techniques a variety of realistic,
efficient programs to do sorting, merging, and searching
have been proven correct. The proof of a twenty line
sort program might require about three pages. It would
now be a reasonable exercise for advanced graduate
students.

Proofs of significantly more complex programs have
also been published. London6,7 has done proofs of a pair
of LISP compilers. The larger compiler is about 160
lines of highly recursive code. It complies almost the

204 Fall Joint Computer Conference, 1972

full LISP language-enough so it can compile itself.
It is a generally unused compiler. It was written for
teaching purposes, but it is not just a toy program.
Another complex program has been proven correct by
Jones.s The program is a PL-1 coding of a slightly
simplified version of Earley's recognizer algorithm. It
is about 200 lines of code. Probably the largest program
that has been proven correct is in the work on computer
interval arithmetic by Good and London.9 There they
proved the correctness of over 400 lines of Algol code.
The largest individual procedure was in the 150-200
line category. A listing of many other significant
programs which have been proven correct can be found
in London's recent paper. lO

If a complex 200 line program can now be proven
correct by one man in a couple of months, one can begin
to think about breaking larger programs into modules
and getting a proof of correctness within a few man
years of effort. Clearly there are programs for which a
guarantee of the correctness of the running program
would be worth not man years but many man decades
of effort. We had better take a closer look at the
feasibility of such an undertaking and what the proof
of correctness would really accomplish.

Environment problems

In most existing proofs of program correctness, what
has been proven correct is either the algorithm or a high
level language representation of the algorithm. With
today's computers what happens when the program
actually runs on a physical computer would still be
anybody's guess. It would be a significant additional
chore to verify that the environment for the running
program satisfies all the assumptions that were made
about it in the proof. Problems with round off errors,
overflow, and so forth can be handled in proofs. Good
and London,9 Hoare,11 and others have described tech­
niques for proving properties of programs in the context
of computer arithmetic, but this can make the proof
much more complex. Furthermore, to assure correctness
of the running program one would have to be sure that
all assumptions about the semantics of the program­
ming language were actually valid in the implementa­
tion. The compiler and other system software would
have to be certified. Finally, this could all be for naught
considering the possibility of hardware failure as it
exists in today's machines.

Thus, proving the correctness of a source language
program is only one aspect of the whole problem of
guaranteeing the correctness of a running program.
Nevertheless, eliminating all errors from the source

language program would certainly go a long way toward
improving the probability that the program will run
according to specifications.

Errors in the proof

An informal proof of correctness typically is much
longer than the program text itself-often five to ten
times as long. Thus the proof itself is subject to error
just like any other extremely detailed and complex task
done by humans. There is the possibility that an in­
formal proof is just as wrong as the program. However,
a proof does not have any loops and the meaning of a
statement is fixed and not dependent on the current
internal state of the computer. To read and check a
proof is a straightforward and potentially automatable
operation. The same can hardly be said for programs.
Despite its potential fallibility, an informal proof would
dramatically improve the probability that a program is
correct. There is evidence from London's work7 that a
proof of correctness will find program bugs that have
been overlooked in the code.

Less rigorous proofs

A person proving a program correct by manual
techniques must first achieve a very thorough under­
standing of all details of the program. This clearly limits
manual proof techniques to programs simple enough to
be totally comprehended by the program provers. It
also means that clarity and simplicity is very important
in the program design if the program is to be proven
correct. There is another school of thought which
places primary emphasis on techniques for obtaining
clarity and structure in the program design. Dijkstral2

•
l3

as long been the primary advocate of this approach. By
appropriately structuring the program and by using
what is apparently a much less formal approach to
proofs, Dijkstra claims to have proven the correctness
of his THE operating system.l4 Millsl6 advocates a
similar approach with the program being sufficiently
structured so an informal proof can be as short as the
program text itself.

I t is probably true that more practical results can be
obtained with less rigorous approaches to proofs,
especially in the near future. I t is even debatable
whether the more rigorous proofs give more assurance of
correctness, but the formality does make it more
feasible to automate the proof process. Whether or not
one feels that the rigorous hand proofs of correctness
will have much practical value, they are providing
experience with different proof techniques that should

Summary of Progress Toward Proving Program Correctness 205

be very valuable in attempting to automate the proof
process.

AUTOMATING PROOFS OF CORRECTNESS

In proving program correctness the logical statement
that has to be proven usually is very long; however,
the proof is seldom mathematically deep and much of
it is likely to be quite simple. In the example given
previously the theorems to be proven were almost
trivial. I t would seem that some sort of automatic
theorem proving should be able to be applied in proving
program correctness. This has been tried. So far the
results have not been very exciting from a practical
viewpoint.

Computer-generated proofs

Fully automatic theorem provers based on the
resolution principle generally can prove correctness for
very small programs-not much larger than the ex­
ponentiation program above. However, Slagle and
N orton16 report that they have obtained fully automatic
proofs of the verification conditions for Hoare's sophis­
ticated little program FIND17 which finds the nth
largest element of an array. In 1969 King18 completed
a program verifier that automatically generated the
verification conditions and then used a special theorem
prover based on a natural deduction principle to auto­
matically prove them. This system successfully proved
programs to do a simple exchange sort, to test whether
a number is prime, and similar integer manipulation
programs. The data types were limited to integer
variables and one dimensional arrays. Others have
experimented with other data types and proof pro­
cedures. At the time of this writing I believe that there
is no automatic theorem prover which has proven
correctness for a program significantly larger than
those mentioned.

Automatic theorem provers still cannot handle the
length and complexity of the theorems that result from
larger programs. Another problem lies in the fact that
some semantics of the programming language and
additional facts about the application area of the pro­
gram have to be supplied to the theorem prover as
axioms. Automatic theorem provers have difficulty in
selecting the right axioms when they are given a large
number of them. Even in the minor successes that have
been achieved, a somewhat tailor-made set of axioms
or rules of inference have been used.

Computer-aided proofs

There are now several efforts directed toward pro­
viding computer assistance for proving correctness.
This takes the form of systems to generate verification
conditions and to do proof checking, formula simplifi­
cation and editing, and semiautomatic or interactive
theorem proving. Unfortunately at this time almost any
automation of the proof process forces one into more
detailed formalisms and reduces the size of the program
that can be proven. This is because the logical size of
the proof steps that can be taken in a partially auto­
mated proof system is still quite small. Presumably this
is a temporary phenomenon. It seems reasonable to
expect that we will soon see computer-aided verification
systems which make use of some automatic theorem
proving and can be used to prove correctness of pro­
grams somewhat larger than those that have been
proven by hand.

Igarashi, London, and Luckham19 are developing a
system for proving programs written in PASCAL. The
verification condition generator handles almost all the
constructs of that language except for many of the data
structures. Their approach is based on the work of
Hoare.ll •2o

Elspas, Green, Levitt, and Waldinger21 are developing
a proof of correctness system based on the problem­
solving language QA4.22 It will use the goal-oriented,
heuristic approach to theorem proving which is char­
acteristic of that language.

Good and Ragland23 have designed a simple language
NUCLEUS with the idea that a verification system
and a compiler for the language could be proven correct.
Both the verification system and the compiler would be
written in NUCLEUS and the proofs of correctness
would be based on a formal definition of the language.
Theintent is that the language would then be able to
be used to obtain other certified system software.

These three systems give a general idea of the current
work going on. A proof-checking system will be de­
scribed in the next section. Several other interesting
systems have been implemented and basic information
about them is readily available in London's recent
paper. 10

Long-range outlook

Proofs of correctness are currently far behind testing
techniques in terms of the size and complexity of the
programs that can be handled adequately. It is very
much an open question whether automated proof tech­
niques will ever be feasible as a commonly used alter-

206 Fall Joint Computer Conference, 1972

native to testing a program. Many arguments pro and
con are too subjective for adequate consideration here;
however, a few comments are in order before one uses
the rate of progress in the past as a basis for extrap­
olating into the future.

Proofs are based on sophisticated symbolic mani­
pulations, and we are still at an early stage of gathering
information about ways to automate them. Existing
proof systems have been aimed mostly at testing the
feasibility of techniques. Few if any have involved
more than a couple man years of effort-many have
been conceived on a scale appropriate for a Ph.D.
dissertation. If and when a cost-effective system for
proving correctness becomes feasible, it will certainly
require a much larger implementation effort.

Proofs may be practical only in cases where a very
high level of confidence is desired in specified aspects of
program behavior. With computer-aided proofs one
could hope to eliminate most of the sources of error that
might remain after a manual proof. As exemplified by
the work of Good and Ragland,23 the verification
system itself as well as compilers and other system
software should be able to be certified. If the basic
hardware/software is implemented with a system such
as LOGOS24 for computer-aided design of computer
systems, then there should be a reasonable guarantee
that the implemented computer system meets design
specifications. With sufficient error-checking and re­
dundancy, it should thus be possible to virtually
eliminate the danger of either design or hardware
malfunction errors. By the end of this decade these
techniques may make it possible to obtain virtual
certitude about a program's behavior in a running
environment. There are many applications in areas such
as real-time control, financial transactions, and com­
puter privacy for which one would like to be able to
achieve such a level of confidence.

SOME THEORETICAL FRONTIERS

Proofs of program correctness involve one in a seem­
ingly exorbitant amount of formalism and detail. Some
of this is inherent in the nature of the problem and will
have to be handled by automation; however, the
formalisms themselves often seem awkward. The long
formulas and excessive detail may result partially
because we have not yet found the best techniques and
notation. Active theoretical research is developing
many new techniques that could be used in proving
correctness. Research in this area, usually called the
mathematical theory of computation, has been active
since McCarthy's25.26 early papers on the subject. I feel

that practical applications for proofs of correctness will
develop slowly unless new techniques for proving
correctness can significantly reduce the awkwardness of
the formalisms required. This section will describe
some of the current ideas being investigated. The topics
chosen are those which seemed more directly related to
techniques for facilitating proofs of correctness.

Induction techniques for loops and recursion

Proving correctness of programs would be com­
paratively simple if programs had no loops or recursion.
However, some form of iteration or recursion is central
to programming, and techniques for dealing with it
effectively in proofs have been a subject of intensive
study. All the techniques use some form of induction
either explicitly or implicitly. The method of inductive
assertions described previously handles loops in flow­
charts by the addition of enough extra assertions to
break every loop and then appeals to induction on the
number of commands executed. For theoretical pur­
poses it is often easier and more general to work with
recursively defined functions rather than flowcharts.
Almost ten years ago McCarthy proposed what he
called Recursion Induction26 for this situation. Manna
et al. have extended the inductive assertion method to
cover recursive, 27 parallel,28 and non-deterministic29

programs. Several other induction principles have
been proposed by Burstall,30 Park,3l Morris, 32 and
Scott.33 A development and comparison of the various
induction principles has been done recently by Manna,
Ness, and V uilleman. 34

Formalizing the semantics of programming languages

The process of constructing the verification conditions
or logical formulation of correctness is dependent on the
meaning or semantics of the programming language.
One can also take the opposite approach-proving
correctness is a formal way of knowing whether a
higher level meaning is true of the program. Thus the
meaning or semantics of any program in a language is
implicitly defined by a formal standard for deciding
\vhether the program satisfies a specification. There is
a very close interrelation between techniques for
formalizing the semantics of a programming language
and proofs of program correctness. Floyd's early work
on assigning meanings to programsl has been developed
especially by Manna2 and Ashcroft.35 Bursta1l36 gives an
alternative way to formulate program semantics in
first-order logic. Ashcroft37 has recently summarized
this work and described its relevance.

Summary of Progress Toward Proving Program Correctness 207

Hoare,1l·2o Igarashi,38 de Bakker,39 and others have
worked to develop axiomatic characterizations of the
semantics of particular programming languages and
constructs. The Vienna Definition Language40 uses an
abstract machine approach to defining semantics, and
Allen41 describes a way of obtaining an axiomatic
definition from an abstract machine definition. The
axiomatic definition is generally more useful in proofs.
Scott and Strachey have developed another approach
to defining semantics42 which is described below.

Work on defining the semantics of programming
languages is very active with many different approaches
being tried. Those described above are only the ones
more closely related to proofs. If any of these ideas can
greatly simplify the expression or manipulation of
properties of programs, they should have a similar
simplifying impact on proofs of correctness.

Formal notation for specifications

Formal correctness only has meaning with respect
to an independent, formal specification of what the
program is supposed to do. For some programs such
specifications can be given fairly easily. For example,
consider a routine SORT which takes a vector X of
arbitrary length n as an argument and produces a
vector Y as its result. With appropriate conventions,
the desired ordering on Y is specified by:

(Vi,j)[l~i<j~~Y(i) ~Y(j)]

One also needs a specification about the relation between
X and Y. With the property PERM (x) meaning "x is a
permutation" and using 0 for functional composition,
the following will do:

(ap) [PERM(P)&Y =XoP]

Note that the specification allows for anyone of many
possible algorithms to be chosen-presumably on the
basis of efficiency. Yet from an external point of vi~w
the specification is complete. If SORT is to be used as
part of a larger program, the specifications contain all
one may want to know about it.

We can usually define correctness in this way for
numeric, mathematical, and other simple programs
typically found in program libraries. In fact the causality
is largely the other way around: it is worth putting a
program in a library to the extent that there is a good
way of precisely defining the effects of the program
without getting into all the details of its algorithmic
implementation.

I t would be useful to have a good way of writing
formal specifications for a much wider range of com-

putational processes. Parnas has been working on such
techniques for formally specifying software modules.43

His approach does handle error messages, and all side
effects have to be carefully formalized.

From a proof of correctness point of view the for­
malism must have convenient deductive techniques as
well as expressive power. First-order predicate calculus
has the best deductive techniques, but without exten­
sive definitions and axioms, its expressive power is very
poor. For the SORT program above we assumed a
definition of permutation, and still the specifications are
more obscure than one might desire. For many pro­
grams the attempt to define their external effects with
the formalism of a fairly standard predicate calculus can
lead to extremely long and complex expressions. In
particular, proof techniques associated with iteration
and recursion have often been awkward when expressed
in formal logic. One reason is that recursion and itera­
tion lead to partial functions, that is, functions that
may not be defined at all points. There has been a need
for the logic that handles undefined values and can be
easily used to prove properties of partial functions.
Despite many efforts there has been no really successful,
agreed-upon logical calculus that dealt with undefined
values in a clean and natural way. Some recent work by
Scott offers a possible solution to this and other
problems.

The work of Scott, Strachey, and Milner

In 1964 Strachey44 outlined an approach to defining
the semantics of a programming language by mapping
programs into a mathematical structure built up from
a rather small number of precisely specified basic
concepts. The approach eliminated any need for an
abstract evaluating mechanism. Unfortunately the
idea required some mathematical objects (such as
self-referential functions) for which there was no firm
mathematical foundation.

In 1969 Scott started to work on the underlying
mathematical problems. The main breakthrough led to
the first matmheatical model of the X-calculus.45 .46 The
work involved the breaking of new ground in both
lattice theory and topology. Function spaces are con­
sidered as lattices by using the "is consistent with and
less defined than" relation on partial functions for the
lattice partial ordering. It is then possible to define a
logic with a fairly natural induction scheme which seems
to have great generality and ease of expression for prov­
ing properties of recursively defined functions.

Scott's techniques allow for the construction of a
universe of computable mathematical functions which

208 Fall Joint Computer Conference, 1972

is sufficiently general so that it should be possible to
define the meaning of any program by associating with
it a specific function in this universe.42 .47 The semantics
of a program are thus defined mathematically in terms
of a limited number of basic mathematical concepts
and not in terms of the result of a calculation on a
machine. The semantical function that makes the as­
sociation is defined recursively on the syntax of the
program. The mathematical universe is sufficiently
general so that the semantical function itself exists
within the universe.ss

The practicality of this approach has yet to be deter­
mined, but it seems to hold out the hope of a much
less cumbersome way to formalize semantics. This
mathematical approach to semantics may enable one
to abstract from the arbitrary choices a great amount
of extraneous detail that is typical of program imple­
mentations. The trick, of course, is to abstract from the
right detail without losing important properties of the
program.

Milner48 has implemented a mechanical proof checker
for a logic of computable functions based on some of the
work of Scott. The implementation includes extensive
simplification mechanisms and an interactive goal set­
ting structure. Milner and Weyhrauch have used the
logic to formalize semantics,49.50 to prove simple pro­
gram correctness,50 and to give a mechanical proof of
compiler correctness based on formally defined seman­
tiCS.51 The proof checker is still limited to proving
properties of rather small programs; however, express­
ing formal properties of programs does seem to be
simplified. The expression simplification mechanisms
have also been useful.

The nature of this and other active theoretical re­
search indicates that there may soon be techniques
which will significantly simplify the problem of prov­
ing program correctness.

INTEGRATING PROOFS WITH PROGRAM
DESIGN

Proving program correctness has usually been done
after a program is written. An alternate approach is to
integrate the proof with the program design. This ap­
proach provides some hope that proofs might eventually
help to organize and simplify the program production
process. A proof of correctness will greatly increase the
amount of formalism that must be dealt with. However,
if a proof can be integrated into the design and writing
stages, it should eliminate most of the need for debug­
ging and may alleviate the problems of documenta­
tion and maintenance. Floyd52 has envisioned an auto-

mated verification system such that a programmer can
interact with it in real time as he is writing his program.

Hoare's proof of correctness for his program FIND53
was done in a top down way with the program and the
proof evolving simultaneously. Jones in his proof of
Earley's recognizer algorithmS exemplified a process he
calls the formal development of correct algorithms. It
is the longest published example of how a proof might
discipline program design.

Throughout the development of the algorithm Jones
uses a special formal notation related to the Vienna
Definition Language, he does not introduce an ordinary
programming language until the very end. With this
notation he was able to give a formal, non-procedural
specification for a recognizer in about half a page. He
then develops the algorithm by stages while at each
stage extending a proof that the partially developed
algorithm will meet the specifications. At each stage the
proof depends on formally expressed assumptions about
the undeveloped part of the algorithm.

At the present time the amount of formalism re­
quired for the proof tends to overwhelm the program
design effort. Nevertheless., this approach appears to
make proofs of correctness somewhat more practical in
an actual programming environment.

A utomatic program synthesis

Rather than writing both specifications and a pro­
gram, one might want to let the computer create the
program and thus be responsible for its correctness.
One technique for automatic program synthesis is
closely related to techniques for proving correctness.
One proves that there is an output satisfying the speci­
fications and then extracts a program from this proof.54 •55

By using induction in the proof, it is possible to con­
struct programs with loops. Manna and Waldinger
have given several examples of this.56

While automatic program synthesis would be more
useful than proving correctness, automatic synthesis
requires a much more difficult proof. Since techniques
for generating the required proofs are the major un­
solved problem in this whole area, this form of auto­
matic program synthesis is a more long-range goal than
proofs of correctness.

CONCLUSION

Work on proving properties of programs has progressed
to the point where one can argue whether there will soon
be useful results. It is mostly a matter of what one
means by "useful".

Summary of Progress Toward Proving Program Correctness 209

The software engineer who is worried about large
programming projects will find current proof techniques
hopelessly inadequate for all the large scale problems
that are the center of his concern. Even for small
modules he will probably find that test methods are
more cost-effective than rigorous proofs. One should be
able to obtain very great confidence in the correctness
of a moderate-sized program if the level of talent and re­
sources that would be necessary for a rigorous proof
were devoted to reading and testing the program.
Considering the time it normally takes for research re­
sults to work their way into practical applications, I
would expect that it will be at least three or four years
before this situation changes significantly.

Within the next three or four years, less rigorous
techniques for structuring, understanding, and check­
ing a program may become widely used. More rigorous
proof techniques could be useful on small critical mod­
ules where adequate confidence cannot be achieved by
other means. In this case it may be worth the additional
cost of a proof to obtain an independent evaluation of
correctness.

While most work on proving correctness has been for
programs written in higher level languages, the most
useful early applications may occur either for algorithms
at the hardware or microcode level or for the calling
structure at the highest level in the design of a large
program. In both cases there is a high priority on cor­
rectness, and one would like to be assured of correct­
ness long before testing becomes possible.

If current research on simplifying and automating
the proof process can significantly reduce the difficulty
of proving correctness, then in a few years proofs may
be commonly used on small critical modules. Gradually
the proof techniques could then be extended to larger
programs so that they can be more useful in imple­
menting very reliable systems. It is unlikely that proof
techniques will be cost-effective for routine programs
within this decade, but the potential is there for even­
tually revolutionizing the software marketplace.

REFERENCES

1 R W FLOYD
Assigning meanings to programs
Proceedings of a Symposium in Applied Mathematics Vol 19
Mathematical Aspects of Computer Science American
Mathematical Society 1967 pp 19-32

2 Z MANNA
The correctness of programs
Journal of Computer and System Sciences Vol 3 No 2
May 1969 pp 119-127

3 B ELSPAS K N LEVITT R J WALDINGER
A WAKSMAN

An assessment of techniques for proving program correctness
Computing Surveys Vol 4 No 2 June 1972

4 Z MANNA
Introduction to the mathematical theory of computation
McGraw Hill Book Co Inc to be published

5 J McCARTHY J PAINTER
Correctness of a compiler for arithmetic expressions
Proceedings of a Symposium in Applied Mathematics Vol 19
Mathematical Aspects of Computer Science American
Mathematical Society 1967 pp 33-41

6 R L LONDON
Correctness of a compiler for a LISP subset
Proceedings of an ACM Conference on Proving Assertions
about Programs
SIGPLAN Notices Vol 7 No 1 and SIGACT News No 14
Jan 1972 pp 121-127

7 R LONDON
Correctness of two compilers for a LISP subset
Artificial Intelligence Memo 151 Stanford Univ Oct 1971

8 C B JONES
Formal development of correct algorithms: An example based
on Earley's recognizer
Proceedings of an ACM Conference on Proving Assertions
about Programs
SIGPLAN Notices Vol 7 Noland SIGACT
News No 14 Jan 1972 pp 150-169

9 D I GOOD R L LONDON
Computer interval arithmetic: Definition and proof of correct

, implementation
Journal of the ACM Vol 17 No 4 Oct 1970 pp 603-612

10 R L LONDON
The current state of proving programs correct
Proceedings of the ACM Annual Conf ACM 1972

11 CAR HOARE
An axiomatic basis of computer programming
Communications of the ACM Vol 12 No 10 Oct 1969
pp 576-583

12 E W DIJKSTRA
Notes on structured programming
Technische Hogeschool Eindhoven August 1969

13 E W DIJKSTRA
A constructive approach to the problem of program correctness
BIT Vol 8 1968 pp 174-186

14 E W DIJKSTRA
The structure of the "THE" multiprogramming system
Communications of the ACM Vol 11 No 5 May 1968
pp 341-346

15 H D MILLS
The complexity of programs
Proc of SIGPLAN Symposium on Computer Program Test
Methods Prentice-Hall to appear

16 J R SLAGLE L M NORTON
Experiments with an automatic prover having partial ordering
rules
Heuristics Laboratory, National Institutes of Health 1971

17 CAR HOARE
Algorithm 65, find
Communications of the ACM Vol 4 No 7 July 1961 p 321

18 J C KING
A program verifier
PhD Thesis Carnegie-Mellon University Sept 1969

19 S IGARASHI R L LONDON D LUCKHAM
Private communication

210 Fall Joint Computer Conference, 1972

20 CAR HOARE
Procedures and parameters: A n axiomatic approach
Symposium on Semantics of Algorithmic Languages
E Engeler ed Springer-Verlag 1971 pp 102-116

21 B ELSPAS M W GREEN K N LEVITT
R J WALDINGER
Research in interactive program-proving techniques
Stanford Research Institute Report May 1972

22 J F RULIFSON R J WALDINGER
J A DERKSEN
A language for writing problem-solving programs
Foundations of Information Processing IFIP Congress 71
North Holland Publ Co 1971 pp 111-115

23 D I GOOD L C RAGLAND
NUCLEUS-A language for provable programs
Proc of SIGPLAN Symposium on Computer Program Test
Methods Prentice-Hall to appear

24 C W ROSE
LOGOS and the software engineer
These Proceedings

25 J McCARTHY
Towards a mathematical science of computation
Proc of IFIP 1962 C M Popplewell ed North Holland Publ
Co pp 21-28

26 J McCARTHY
A basis for a mathematical theory of computation
Computer Programming and Formal Systems P Braffort
D Hirschberg eds North Holland Publ Co Amsterdam 1963
pp 33-70

27 Z MANN A A PNUELI
Formalization of properties of functional programs
Journal of the ACM Vol 17 No 3 July 1970 pp 555-569

28 E A ASHCROFT Z MANNA
Formalization of properties of parallel programs
Machine Intelligence 6 Edinburgh Univ Press 1971

29 Z MANNA
The correctness of non-deterministic programs
Artificial Intelligence Vol 1 No 11970

30 R M BURSTALL
Proving propertis of programs by structural induction
Computer Journal Vol 12 1969 pp 41-48

31 D PARK
Fixpoint induction and proofs of program properties
Machine Intelligence 5 B Meltzer D Michie eds Edinburgh
Univ Press 1969 pp 59-78

32 J H MORRIS
Another recursion induction principle
Communications of the ACM Vol 14 No 5 May 1971
pp 351-354

33 D SCOTT
The lattice of flow diagrams
Symposium on Semantics of Algorithmic Languages
E Engeler ed Springer-Verlag 1971 pp 311-366

34 Z MANNA S NESS J VUILLEMIN
Inductive methods for proving properties of programs
Proc of an ACM Conference on Proving Assertions about
ProgramsSIGPLAN Notices Vol7No 1 and SIGACT News
No 14 Jan 1972 pp 27-50

35 E A ASHCROFT
Mathematical logic applied to the semantics of computer
programs
PhD Thesis Imperial College London 1970

36 R M BURST ALL
Formal description of program structure and semantics in first

order logic
Machine Intelligence 5 Edinburgh Univ Press 1970 pp 79-98

37 E A ASHCROFT
Program correctness methods and language definition
Proc of an ACM Conference on Proving Assertions about
Programs SIGPLAN Notices Vol 7 No 1 and SIGACT News
No 14 Jan 1972 pp 51-57

38 S IGARASHI
Semantics of ALGOL-like statements
Symposium on Semantics of Algorithmic Languages
E Engeler ed Springer-Verlag 1971 pp 117-177

39 J W DEBAKKER
Axiom systems for simple assignment statements
Symposium on Semantics of Algorithmic Languages
E Engeler ed Springer-Verlag 1971 pp 1-22

40 P WEGNER
The Vienna definition language
Computing Surveys Vol 4 No 1 March 1972 pp 5-63

41 C D ALLEN
Derivation of axiomatic definitions of programming languages
from algorithmic definitions
Proc of an ACM Conference on Proving Assertions about
Programs SIGPLAN Notices Vol 7 No 1 and SIGACT News
No 14 Jan 1972 pp 15-26

42 D SCOTT C STRACHEY
Toward a mq,thematical semantics for computer languages
Proc of the Symposium on Computers and Automata
Microwave Research Institute Symposia Series Vol 21
Polytechnic Institute of Brooklyn 1971

43 D L PARNAS
A technique for software module specification with examples
Communications of the ACM Vol 15 No 5 May 1972
pp 330-336

44 C STRACHEY
Towards a formal semantics
Formal Language Description Languages for Computer
Programming T B Steel Jr ed North Holland Publ Co
Amsterdam 1966 pp 198-220

45 D SCOTT
Outline of a mathematical theory of computation
Proc of the Fourth Annual Princeton Conference on
Information Sciences and Systems 1970

46 D SCOTT
Lattice theory, data types and semantics
Formal Semantics of Programming Languages R Rustin ed
Prentice-Hall 1972 pp 65-106

47 D SCOTT
Mathematical concepts in programming language semantics
AFIPS Conference Proc Vol 40 SJCC 1972 pp 225-234

48 R MILNER
Logic for computable functions; Description of a machine
implementation
Artificial Intelligence Memo 169 Stanford Univ May 1972

49 R MILNER
Implementation and applications of Scott's logic for computable
functions
Proc of an ACM Conference on Proving Assertions about
Programs SIGPLAN Notices Vol 7 and SIGACT News
No 14 Jan 1972 pp 1-6

50 R W WEYHRAUCH R MILNER
Program semantics and correctness in a mechanized logic
Proc USA-Japan Computer Conference Tokyo 1972

51 R MILNER R W WEYHRAUCH

Summary of Progress Toward Proving Program Correctness 211

Proving compiler correctness in a mechanized logic
Machine Intelligence 7 Edinburgh Univ Press 1972

52 R W FLOYD
Toward interactive design of correct programs
Invited Papers IFIP Congress 71 North Holland Publ Co
1971 pp 1-4

53 CAR HOARE
Proof of a program: FIND
Communications of the ACM Vol 14 No 1 Jan 1971
pp 39-45

54 C C GREEN

The application of theorem proving to question-answering
systems
PhD Thesis Stanford Univ 1969

55 R J WALDINGER R C T LEE
PROW: A step toward automatic program writing
Proc International Joint Conf on Artificial Intelligence
Washington DC 1969

56 Z MANNA R J WALDINGER
Towards automatic program synthesis
Communications of the ACM Vol 14 No 3 March 1971
pp 151-165

Supercomputers for ordinary users *

by DAVID J. KUCK

University of Illinois at Urbana-Champaign
Urbana, Illinois

INTRODUCTION

The best way to begin this paper is by explaining its
title. I take "supercomputers" to mean those computers
which are the biggest, fastest and most complicated
available. And by "ordinary" users I mean "nonsuper"
users, i.e., people who have had at most an introductory
programming course. The point of this paper is to
discuss how computer system design and organization
could (and I believe should) proceed in the next ten
or twenty years.

Briefly put, I think that by careful analysis of users'
algorithms, designers could produce computers which
are much more cost effective than present machines. It
is also the designers' responsibility to consider new uses
for machines, particularly in the non-numerical file
processing area, and thus make the benefits of
super-computers more directly available to ordinary
users.

This paper does not present some machine organiza­
tion as "the one best way." In spite of the many papers,
debates and advertisements which have been carried
out in this spirit, it should be obvious that such an
attitude is absurd. Clearly, there are many different
computer/software configurations extant which serve
quite different sets of users in reasonably acceptable
ways. In fact, it is not difficult to find people who
believe that the architecture of computers is a subject
which has reached the end of its line-at least for many
applications. "General purpose computers have been
built and improved for some 25 years," they say, "and
the real problem now is getting better software." They
have a point. But, unfortunately, they are viewing and
discussing an effect rather than its causes.

It would be impossible to discuss these causes in any
detail in this short paper, even if I knew what all of
them were. But it is safe to lump many of them as

* This work was supported in part by NSF Grant GJ 27446.

213

follows: Too many layers of software are being used
in an attempt to make general purpose computers
appear as a variety of special purpose machines. Does
it really make sense to force basically the same machine
organization to serve for large numerical calculations,
interactive airline reservation systems, and system sim­
ulation studies? As further reinforcement, consider the
fact that central processors typically account for 20
percent or less of the total hardware bill paid by most
computer center managers today.21 Primary and second­
ary memories account for over 50 percent and other
peripheral devices make up the remainder. And since
hardware accounts for at most about half of the overall
costs (software, people, and facilities are the rest),
perhaps less than 10 percent of the total cost is in the
central processor. Is the real point of central processor
unit design to encourage more research on hardware
and software for memory hierarchies? Rather, it would
seem more reasonable to design various processors which
are much faster because they contain many more gates
than present machines, which are tailored to different
kinds of users, and which tend to reduce software needs.

I believe that the architecture and organization of
computer systems is a subject which is just now begin­
ning to be studied properly. As a result of current stud­
ies, computer systems could begin to be very different
from their present form, say, 20 years hence. Sensitive
people now have enough intuition about the "rights"
and "wrongs" of enough sufficiently different hardware
and software ideas to make this possible. We should be
able to write programs which serve as computer system
design aids using various formalizations of this intui­
tion. Thus, while it has not been possible to find "the
one best way" in terms of one machine to satisfy all
users, it should be possible to find comprehensive de­
sign procedures which yield good machines for particu­
lar classes of computations. This would effectively
automate or eliminate the intellectual interest from
whole classes of computer system design. Since it may

214 Fall Joint Computer Conference, 1972

be assumed that technology and user algorithms will
keep changing forever, such design procedures should
be relatively independent of those matters.

Now let us return to the "ordinary" users of our title.
These ultimate consumers of computation and its prod­
ucts have almost no idea about what kind of computer
they should be using. Indeed, in view of the present
state of affairs sketched above, probably no machine
designer knows either. But if steps were taken to auto­
mate the design of entire computer systems, then it
should be possible to incorporate these users' needs by
analysis of the algorithms they wish to run. My point
is that the best possible "consumer advocate" for
ordinary (and all other) users is the computer system
designer.

In order to make our discussion concrete, the follow­
ing list is presented and will be elaborated in the re­
mainder of this paper:

Computer designer's goals and responsibilities

• Computerism
1. Reduce the use of high cost components and sub­

systems in a machine.
2. Increase the use of low cost components and sub­

systems in a machine.
3. Maximize and balance data flow rates through­

out a system by introducing concurrency.
• Consumerism

4. Measure user algorithms to determine system
design.

5. Make machines extensible in their capabilities.
6. Incorporate new processing features into hard­

ware to replace programs.

This distinction between "computerism" and "con­
sumerism" is somewhat arbitrary, but we wish to
emphasize the designers' two responsibilities. "Cost"
in the above refers to some criterion function incor­
porating both time and money.

SYSTEM COST EFFECTIVENESS

There is no single accepted definit'on of "cost ef­
fectiveness", but, like the weather, everyone talks about
it and this paper is no exception. First, let us con~ider
effectiveness in terms of speed. Users are interested in
fast job completion in batch systems and fast response
in interactive systems. l\iultiprogramming and multi­
processing are two important architectural techniques
which have been introduced as aids in fulfilling both of
these goals for ordinary users. We shall discuss these

below, ignoring the pending large parallel and pipeline
machines since they are generally not intended for ordi­
nary users. In the following, "primary memory" means
all random access memories including bulk core storage.

Since multiprogramming causes several users and
some system software to be in primary memory at the
same time, it is usually possible to keep several parts
of the machine (e.g., I/O and CPU) busy at the same
time. This introduction of a number of concurrent tasks
speeds up the overall completion of an ensemble of
tasks. Since several users are in primary memory, it is
also possible to interrupt each of them after a short time
and output the results of some progress on their job­
hence speeding up system response time. But the pen­
alties paid are well-known. The two most important are
very large random access memories and very large sys­
tem programs which may lead to more CPU cycles be­
ing used by the system than by the users. Demand
paging is an attempt to decrease primary memory size,
but it leads to even more system overhead. Several sys­
tem redesign approaches have been attempted. An in­
tuitively simple and good one is to dump from primary
memory all of a user's pages when he has a page fault
and then obtain the missing page and merge it with the
dumped set before restarting him. This was attempted
in the BCC 500 computer, which has not become opera­
tional.

Multiprocessing has also been introduced in an at­
tempt to speed up machines. Here several programs
share a set of parallel memories and processors. Again,
there is a system program overhead to decide what to
do next. Also there are problems of memory conflicts
which prevent all but one program from proceeding
when several must access one memory unit at the same
time. This can degrade the system to the effectiveness
of a single processor. Finally, there are problems of pri­
mary memory size. Unless it is increased 'over that of a
monoprocessor a large amount of swapping or page
faulting will degrade the system. Attempts to use more
than three or four processors in this way have generally
been unsuccessful. Two processors ~re usually as ef­
fective as about 1.5 or 1.7 processors and in one fortu­
nate case four processors were as effective as three.17

But in all multiprogramming and mUltiprocessing
situations, it is "the mix" of jobs which appear simul­
taneously that determines the success or failure of the
!ystem's performance. Obviously, no designer can do
Jlything about such random phenomena except in a

3tatistical way. For a survey of some details of the
above matters, the reader is referred to References 7
and 12.

Later we will give some details of a new scheme for
delivering the performance demanded by batch and

interactive users. In this scheme batch users are given
fast service by executing their programs using highly
concurrent processing. l\1any processors and memory
units are involved. Interactive users are satisfied by
partitioning (space sharing) the overall machine and
simultaneously executing a number of them. Each such
active user's program may still use a number of proces­
sors and memories, however.

What is new about this proposal? Superficially noth­
ing; all of the general ideas are old ones. Several basic
points are new, however. They include techniques for
the analysis of ordinary programs to run them on such
a machine. We will further discuss these below. But we
must now deal with the "cost" part of cost effectiveness.

In the Introduction under Computerism, points 1
and 2 were about system cost. These are both obvious
and well-known. In the last five years many meetings
have dealt with the future of computers and everyone
worth its salt has had a paper entitled "The Impact of
LSI on ... ," where the reader may insert his favorite
computer part for the ellipsis. And indeed large-scale
integration, when it arrives, should decrease cost and
size while increasing reliability and speed. But too
often people rejoice about such a thing as being able to
afford 5 times as much random access memory and
hence treat the symptoms rather than the causes of
problems with present computers. Our point is that the
availability of large amounts of logic should be regarded
as a chance to put more processing back into computers.

It should be noted that the equivalent of about ten
or twenty thousand gates is about the most that can
reasonably be used in a fast, standard arithmetic and
logic unit. Furthermore, it should be observed that the
speed of arithmetic in such units is nonlinearly expen­
sive. In other words, anticipating carries in d bit arith­
metic units requires about ad log2 d gates (a:S;10) to
add two numbers in O(lOg2 d) time while less than 10
gates can do the job in time Oed). Of course, fixed point
addition is not equivalent to a modern arithmetic unit,
but the trend is clear.

We draw two conclusions from the above. The first
is that functions which have not been incorporated in
traditional arithmetic and logic units (and control units
as well) should now be considered for inclusion. Thus,
more gates would lead to higher speeds in various new
applications and we mention several later.

Our second conclusion is that in the traditional area
of arithmetic, when many concurrent (parallel or pipe­
line) operations may be performed one must rethink
the individual arithmetic algorithms. For example, it is
not difficult to design a medium speed arithmetic unit
with about 1000 gates and call this an LSI component.
If sufficiently many components of this type could be

Supercomputers for Ordinary Users 215

operated simultaneously, high system speed could be
achieved at low cost. In general, one must consider
various kinds of logic, various numbers of bits per step,
and various numbers of words to process concurrently
using parallel and pipeline techniques. As an exercise,
the reader is invited to consider the range of design pos­
sibilities for an inner product processor (or component)
with high speed and low cost. If a range of logic speeds
and costs, the number of simultaneous arithmetic opera­
tions, and the number of bits per step are all design
parameters many new possibilities arise. The high speed
of such designs results from concurrent processing rather
than relying on state of the art technology as has often
been the case. Low cost in dollars, development time
and headaches would result from the use of conservative,
well understood circuits. Thus, good cost effectiveness
could be obtained through proper system organization.

ANALYSIS OF PROGRAMS

That hardware and software designers should study
user programs is not a new idea. Most modern ma­
chines are built on the basis of some such analysis and
simulation. However, here we are arguing for new kinds
of analyses which lead to relatively more processor and
less memory cost while speeding up the system's per­
formance without using faster parts.

Various classes of programs should be studied to de­
termine for some general machine assumptions at what
theoretically maximum speed they may be processed.
This is a study of the semantics and pragmatics of pro­
gramming languages, not the syntax. Then the practi­
calities of actual machine design should lead to proposed
systems. The following outlines our steps in this direc­
tion.

First, consider the set of all FORTRAN programs.
Ignoring input/output statements, the executable state­
ments in a FORTRAN program can be lumped into
three kinds of blocks: DO loops, blocks which are out­
side DO loops and which contain only assignment
statements, and clusters of (one or more) IF statements
with only a few intervening assignment statements.
We have developed a number of algorithms and imple­
mented an operation level analyzer10 ,15 ,18 which breaks
FORTRAN programs into these three kinds of blocks.
Using the analyzer, we have measured a number of
parameters for a collection of FORTRAN programs
totalling several thousand statements. Some of these
programs were dominated by DO loops and others had
no DO statements at all. All were short programs (aver­
age less than 50 statements). On this basis we observe
that a machine capable of executing 16 operations simul-

216 Fall Joint Computer Conference, 1972

taneously could be effectively used in processing simple
ordinary FORTRAN programs. For some of the pro­
grams we analyzed and for many large computations,
several hundred to a few thousand operations could be
performed simultaneously. We emphasize that no multi­
programming is being assumed here. While traditional
multiprogramming and multiprocessing have led to
speed improvements of one or two binary orders of mag­
nitude, our simple programs enjoyed speed-ups of from
one to five binary orders of magnitude and bigger speed­
up could be achieved for bigger programs.

The analysis of programs need not be restricted to
empirical study. In fact, bounds on the time required by
certain classes of programs can be obtained as analyt­
ical functions of parameters of programs which may be
measured statically. Thus, designers could know how
well they were doing in some absolute sense. For ex­
ample, it has recently been shown by demonstrating an
algorithm, l that any arithmetic expression containing
only the add, subtract and multiply operators can be
evaluated in less than 2.5 log2 n steps if the original ex­
pression contains n variables and constants. This upper
bound is quite close to the lower bound of log2 n steps
(assuming two argument fan-ins). Note that this results
in a speedup of about n/2.5 log n.

While the above remarks were restricted to FOR­
TRAN programs, any FORTRAN-like program (e.g.,
ALGOL or parts of PL/I) will obviously yield to a
similar analysis. In fact, programs in languages of a
quite different nature from FORTRAN may be handled
by these techniques. For example, all of the important
blocks (routines) of GPSS, a discrete system simulation
language, have been so analyzed. 4 Roughly speaking,
any program which may be broken into one or more of
the three kinds of blocks mentioned earlier (pure as­
signment statement, loop, conditional jump tree) could
be analyzed in this way. In order to achieve the speedup
mentioned above certain machine organization features
must be introduced.

MACHINE ORGANIZATION

Now we turn to a discussion of the organization of a
class of machines. The members of this class are all
made from the same building blocks, but the configura­
tions vary in size and organization to suit users' pro­
grams. We break the computation process into three
kinds of operations: accessing data, aligning data and
processing data. To achieve speed, we assume that all
three are carried out simultaneously in a pipeline fashion
each driven by its own control unit. Furthermore, we
assume that each of the three exploits pipeline and/or
parallel organizations of parts to achieve high speed.

At this point we expand point 3 under Computerism
in the Introduction. Subject to the constraints of the
computations to be performed:

(1) The data path bandwidths should be matched
everywhere in the system and maximized.

(2) Either pipeline or parallel operations can be used
to match data path bandwidths.

(3) Long pipelines introduce long delays in transient
data flow while large parallel arrays introduce
data alignment problems.

(4) Sufficient control unit lookahead and local
(cache) memory should be provided so as to
maintain a steady state flow of data.

In the following we assume that these are followed
and that steady state data flow through the computer
system may be assumed to be a reasonable measure of
its performance.

By accessing data we mean the operations of fetching
and storing in the primary memory. Assume that n
operands are needed in a unit time step by the rest of
the machine. A limiting case is where one memory unit
with a data rate n times faster than the rest of the sys­
tem is used. Any pattern of n words may be accessed in
unit time simply by using an index register to access
various locations. Alternatively, if a parallel set of mem­
ory units is used, access conflicts arise if several data
elements needed simultaneously are stored in the same
memory unit. While this may be a serious problem in
current multiprogrammed machines, if only one pro­
gram is running, then array accessing of the kind ac­
tually found in real FORTRAN programs is possible
without conflicts. Some theoretical limitations and a
proposed class of memories together with useful parti­
tions which may be accessed in one memory cycle are
discussed in Reference 2. Such a memory works well for
the array fetching requirements of DO loops. But blocks
of assignment statements or IF blocks require random
patterns of scalars. However, the total number of dis­
tinct scalars is small, probably less than 4096 in any
FORTRAN program. Thus if inexpensive, slower tech- .
nology were used elsewhere in a machine, the scalar
memory could be a relatively expensive, high speed
semiconductor memory which operates as discussed
above by using an index register to provide any pattern
of data required.

By alignment we mean the bringing together of proper
pairs of numbers for calculation. In a system containing
many memories and processors, the arguments needed
by one processor on some step may come from that
processor's registers (or cache), some memory unit,

some other processor or a control unit (for program
constants). The problem of designing alignment net­
works is very important, dependent on the details of
computations to be performed and not easy to solve for
large systems. It should be noted that using the kinds
of memories discussed above leads to alignment prob­
lems which are relatively simple. We have studied
various aspects of the problem in References 11, 14 and
13, in which a number of options are discussed.

Processing data refers to those operations which either
transform the data into a different form or examine the
data to determine future actions. We raise three points
here and discuss file processing later. In order to evalu­
ate IF blocks quickly, tree processing logic has been de­
signed which evaluates a many way jump in a few
clocks.5 Its effectiveness for FORTRAN is discussed in
Reference 15 and for GPSS in Reference 4. Our second
point is that in the evaluation of FORTRAN-like pro­
grams, the quick execution of supplied functions is ob­
viously desirable. A uniform scheme for this is described
in Reference 6, and has been implemented experi­
mentally using a small microprogrammed processor.
This leads to our third point which concerns pipelining.
Since the speed improvement gained by pipelining de­
pends on the number of levels in the pipeline, it is in
one's best interest to choose more time-consuming
operations for pipelining although this must be bal­
anced against design principle (3) mentioned above.

If a machine is cleanly broken into memory, ·align­
ment, and processing sections, several advantages ac­
crue. One is that a great variety of configurations is
possible. For example, machines which need compli­
cated alignment networks can have them, but still use
the same processors as machines with simple intercon­
nection problems. Similarly, programs with many jumps
can have a more powerful tree processor of the kind
mentioned above.

Another advantage of breaking the design into mem­
ory, alignment and processor sections is that with care
the size and hence the effective speed of the machine
can be increased as the work load increases. For example,
assume a 16 processor cluster of processors, memories
and alignment networks were a basic· building block.
Using combinations of these, systems containing say
64, 256, etc., processors could be built to provide high
speed for larger and larger jobs. Also, in the large con­
figurations 16 unit clusters could still be used in a space
shared way to run many small jobs simultaneously and
give quick response. The details of this are somewhat
messy but for the kinds of systems being outlined here
some details are given in Reference 11. Generally, this
is a very important matter. It allows users not to
worry (as soon) about reprogramming for a completely

Supercomputers for Ordinary Users 217

different machine organization. Indeed this kind of
idea was probably the most important in the original
360/series announcement. Note that point 5 under
Consumerism in the Introduction raised this subject.

MEl\;fORY HIERARCHIES

So far we have outlined some ideas about how more
processing could be done simultaneously in computers.
This exploits cheap parts by using more of them. We
have discussed how, by detailed program analysis, ef­
fectively high computation speeds may be achieved
and at the same time primary memory size may be re­
duced by monoprogramming instead of multiprogram­
ming. The latter follows from the fact that only one
user's program and less system program must be resi­
dent in primary memory if swapping or a BeC 500 type
paging scheme is used. Now we go a step further in re­
ducing primary memory size by exploiting a memory
hierarchy for a monoprogrammed machine. The main
motivation for memory hierarchies is to reduce costly
fast primary memory in favor of less expensive per bit
slow secondary memories. l\1:any technologies are avail­
able and more are likely to appear. But techniques for
effectively using memory hierarchies are not well under­
stood.

Earlier we mentioned demand paging schemes for
multi programmed machines which attempt to exploit
memory hierarchies. An alternative is anticipatory pag­
ing for a monoprogrammed machine. Suppose that some
program makes repeated sweeps over a large data base,
one much too large for primary memory. Furthermore,
suppose that by some kind of analysis the program may
be broken into (one or more) parts which have reason­
ably predictable running times. If at the beginning of
one sweep over the data it is known what sequence of
I/O blocks the program will require on the next sweep,
it is possible to effectively mask all rotational latency of
a disk or drum on which this data is stored. This is pos­
sible regardless of what reordering of the data is re­
quired from sweep to sweep and is accomplished by us­
ing a rather small buffer memory. For more details see
Reference 9.

The above ideas were motivated by the difficulties of
large partial differential equation and matrix computa­
tions. In Reference 8 several illustrative examples are
given from these areas but their applicability is not
restricted to such problems. Indeed, there seems to be a
big need for such techniques in the area of business
data processing and related areas. This leads us to our
next topic.

218 Fall Joint Computer Conference, 1972

FILE PROCESSING

The exploitation of memory hierarchies and new kinds
of processor organization in wide areas outside of
FORTRAN-like programs seems to be a very ripe
possibility. In the area of what might be called COBOL­
like programs, existing systems which do not work well
are easy to find.

These computations are often dominated by I/O
operations on current machines.3 It is likely that the
analysis of such programs would indicate that what pro­
cessing is done could often be speeded up by the intro­
duction of more simultaneous processing. In this same
vein, demands for management information systems,
information retrieval systems, computer-aided educa­
tion and so on appear constantly. It is easy to think of
new applications which might in fact lead to leisure time
edification of ordinary users who know practically noth­
ing about computer use. The ability to browse through
newspaper files to get background when a news event
breaks, the ability to ask about various aspects of
history (e.g., music, politics, science) in quick succession,
the ability to consult an expert body of details about a
technical hobby (e.g., photography), this is a quick list
of things that ordinary users should be able to get from
supercomputers in twenty or so years. These ordinary
users should include managers, students, people at home,
scientists and so on.

Point 6 under Consumerism in the Introduction was
aimed at matters like this. Such areas are underde­
veloped today but with a concentrated push by design­
ers should not remain so. Of course, the reader should
keep in mind that Vannevar Bush pointed all this out
some 25 years ago in "As We May Think," but in fact
technology has come a long way since then.

Indeed, technology does not seem to be the problem
now. It would be easy to do searches by streaming data
from many heads of a rotating memory through some
kind of associative processor (perhaps combining as­
sociative hardware and hash addressing). This processor
could be of the type described in Reference 20 or a set
of coordinated simple processors (mounted on the read
heads or externally).16 In fact, IB1VI built HARVEST
in this spirit over 10 years ago, but a commercial version
was never made available. The details of how to use
such a system in various contexts and how the system
configuration should be stylized to serve particular prob­
lem areas best is the central problem. We have been ex­
ploring such problems experimentally with a small
microprogrammed processor and a disk. 19 ,22 While we
do not have the problem solved, the following are some
observations.

First, we remark that systems which use abstracts

only or some kind of (nonexhaustive) indexing are crip­
pled from the outset by not being aware of everything
in the source material. On the other hand, full text
searching for certain word co-occurrences can be over­
whelmingly time consuming in some case:; even for
feasibly powerful hardware systems. Thus it seems that
while the full text must be available for machine search­
ing, concordances with pointers should be associated
with the text at various levels. This allows the range of
detailed searching to be narrowed beforehand.

After certain portions of the full data base have been
selected by the machine as possibly interesting, it seems
more reasonable to narrow the set of hits by allowing
more detailed user interrogation and search than to
rely on complicated, previously designed filtering pro­
grams. Thus, the system must be interactive and the
user must be allowed to move his context of search
from the whole data base, to various previously selected
parts and back again.

We conclude by repeating several points. First, there
are many different kinds of bulk storage devices avail­
able today. Interesting memory hierarchy management
schemes are beginning to appear. Overall, hardware
systems are easy to configure but useful ones require
careful algorithm development. The study of COBOL­
like programs may be useful in this respect, and analy­
sis similar to that discussed for FORTRAN-like pro­
grams may yield interesting results about new processor
configurations. But organizing the systems, their data
and algorithms remains an important and hard design
problem.

SUMMARY

This paper outlines some of the responsibilities machine
designers have to ordinary users. If sufficiently complex
analytical methods were used in the measurement of
users' programs and the design of computer systems, the
resulting machines could be much more cost effective
than present ones. Low system cost can be achieved by
avoiding the fastest possible hardware and by exploit­
ing memory hierarchies. High effectiveness can be
achieved in several ways, including the implementation
of high level functions in processors and by performing
many operations concurrently. We did not mention the
problem of replacing parts of operating systems by
dedicated microprogrammed processors in control units,
an area that deserves careful study. Another important
effectiveness improvement would be to make the bene­
fits of machines available to more ordinary users through
new kinds of processing.

Some details were sketched of how logic design might

be changed if more degrees of freedom were introduced
by more concurrent processing. At this point the design
of computer systems moves a step closer to the doors of
the semiconductor manufacturers. The results of the
analysis of programs could be used to combine chips
properly, or going one step further they could be used
to constrain the design of the chips themselves.

In short, we have presented arguments and methods
for achieving a better match between machines and the
computations of users. Finally, we remark that careful
planning should go into all systems design to allow the
easy measurement of as many useful parameters as pos­
sible to study a machine after it is built, and to aid in
subsequent designs.

CONCLUSION

It is very easy (and hence quite common) for university
professors to go around waving their arms and pontifi­
cating about how things should be. Every sensible com­
puter person knows that it is not such people who
determine what machines will come into common use,
but rather "market forces" which do. These mystical
processes primarily involve actual users of computers,
their bosses; salesmen of computers, their bosses;
managers of computer manufacturing; and boards of
directors. Paper and real machines conceived in uni­
versities, by users, and even in the back rooms of com­
puter manufacturing establishments, are ignored. "You
have to give users something they can understand."

In the last few years there has been a tendency for
computer manufacturers in the U. S. to merge with
each other and two large corporations got out of the
business. If the trend continues we could perhaps ex­
pect less rather than more variety and imagination in
available machines. Recall that before 1920 there were
perhaps several hundred different automobile varieties
available in the U. S., powered by steam, electricity,
gasoline, etc. By the late 1920s, there were only a few
major manufacturers left and "You can have any color
you want as long as it's black" dominated. It took
some forty years for "consumerism" to become an im­
portant market force in the automobile world.

Perhaps active consumerism on the part of people who
d~sign paper and other machines will be more effective
in the computer area. Possibly the knowledgeable cur­
rent users can clarify their demands and make them
felt. Maybe even the masses of potential ordinary users
will realize what computers could mean to themselves
and press for the commercial availability of such com­
puter services. But if all these fail, assuming the auto­
mobile analogy is valid, current twenty year predictions

Supercomputers for Ordinary Users 219

will finally be precipitated some forty years from now
by some bright, young lawyer with a book entitled
"Non Cost Effective at Any Speed."

REFERENCES

1 R BRENT D J KUCK K MARUYAMA
Parallel evaluation of arithmetic expressions without diviSion
Submitted for publication

2 P BUDNIK D KUCK
The organiz.ation and use of parallel memories
IEEE Trans Comput Vol C-20 December 1971 pp 1566-1569

3 F T COYLE
The hidden speed of ISAM
Datamation June 1971

4 E W DAVIS JR
A multiprocessor for simulation applications
PhD Thesis University of Illinois at Urbana-Champaign
Department of Computer Science Report No 527 June
1972

5 E W DAVIS JR
Concurrent processing of conditional jump trees
Compcon 72 IEEE Computer Society Conference
Proceedings September 1972 San Francisco

6 B DE LUGISH
A class of algorithms for automatic evaluation of certain
elementary functions in a binary computer
PhD Thesis University of Illinois at Urbana-Champaign
Department of Computer Science Report No 399 June 1970

7 P J DENNING
Virtual memory
Computing Surveys Vol 2 No 3 September 1970

8 D E GOLD
Elimination of rotational latency by dynamic disk allocation
PhD Thesis University of Illinois at Urbana-Champaign
Department of Computer Science Report No 522 May 1972

9 D E GOLD (
Applications of some switching network results to dynamic
allocation of memories in a hierarchy
Compcon 72 IEEE Computer Society Conference
Proceedings September 1972 San Francisco

10 P W KRASKA
Parallelism exploitation and scheduling
PhD Thesis University of Illinois at Urbana-Champaign
Department of Computer Science Report No 518 June 197?

11 D KUCK
Student memo
Unpublished University of Illinois at Urbana-Champaign
Department of Computer Science December 1971

12 D J KUCK D H LAWRIE
The use and performance of memory hierarchies-A survey
Software Engineering Vol 1 Academic Press Inc New Y or1c
and London 1970

13 D J KUCK D H LAWRIE Y MURAOKA
Interconnection networks for processors and memories i'fl.
large systems
Compcon 72 IEEE Computer Society Conference
Proceedings September 1972 San Francisco

14 D J KUCK Y MURAOKA
Fast computers from slow parts

220 Fall Joint Computer Conference, 1972

Compcon 72 IEEE Computer Society Conference
September 1972 San Francisco

15 D J KUCK Y MURAOKA S C CHEN
On the number of operations simultaneously executable in
Fortran-like programs and their resulting speed-up
To be published in IEEE Trans Computers

16 D H LAWRIE
On the design of disc processors
Unpublished Memo 1969

17 E MORENOFF W BECKETT P G KESEL
F J WINNINGHOFF P M WOLFF
I,.-way parallel processor partition of an atmospheric
primitive-equation prediction model
Proceedings of AFIPS Spring Joint Computer Conference
1971 AFIPS Press

18 Y MURAOKA
Parallelism exposure and exploitation in programs
PhD Thesis University of Illinois at Urbana-Champaign

Department of Computer Science Report No 424 February
1971

19 E J POLLEY JR
An assembler for efficient file manipulation
MS Thesis University of Illinois at Urbana-Champaign
Department of Computer Science Report No 534 August
1972

20 J A RUDOLPH L C FULMER
W C MEILANDER
With associative memory, speed limit is no barrier
Electronics June 1970

21 W F SHARPE
The economics of computers
Columbia University Press New York 1969

22 H YAMADA
Emulation of disc file processor
MS Thesis University of Illinois at Urbana-Champaign
Department of Computer Science Report No 436 June 1971

The TI ASC-A highly modular and
flexihle super computer architecture *

by w. J. WATSON

Texas Instruments Incorporated
Dallas, Texas

INTRODUCTION

Early in 1966, a large computer development program
was begun by Texas Instruments. The goal for this
effort was to provide needed capacity for supporting
seismic processing, plus offering a general super com­
puter capability in the support of new markets.

This development has resulted in the Advanced
Scientific Computer (ASC)-a highly modular system
offering a wide spectrum of computing power and con­
figurability.

OVERVIEW OF THE SYSTEM

The major subsystems of a typical configuration are
shown in Figure 1: the central memory, the central
processor, the peripheral processor, on-line bulk
storage, a digital communications interface, plus a
selection of standard peripherals.

The peripheral processor has been designed for
executing the operating system. The central processor
has been designed expressly to provide high computing
power for large arrays of data. The central processor
operates as a slave to the peripheral processor. This
design approach was chosen to maximize the over­
lapping of system overhead tasks with the execution
of user programs. In operation the job stream is ana­
lyzed by the peripheral processor. The language pro­
cessors, plus user object code, are executed by the central
processor. System control and I/O tasks are processed
by the peripheral processor. I/O is routed through
high-speed, head-per-track disc storage. A data com­
munications interface for the common carriers is pro­
vided for the support of remote batch and interactive

* A description of the Advanced Scientific Computer System,
by the Staff of Texas Instruments (Internal Texas Instruments
Publication MlOOIP).

221

terminals. Standard types of peripherals are also pro­
vided. The central memory serves as the common access
communications and access storage medium for these
subsystems.

CENTRAL l\1:EMORY

The ASC central memory consists of a memory con­
trol unit (l\1:CU) and appropriately sized modules of
high-speed or medium-speed central memory. Op­
tionally, a medium-speed central memory extension
can be used in conjunction with a high-speed memory.

The lVICU is organized as a two-way, 256-bit/channel
(8-word) parallel access traffic net between eight inde­
pendent processor ports and nine memory buses, with
each processor port having full accessibility to all
memories. The nine memory buses are organized to
provide eight-way interleaving for the first eight buses
with the ninth bus used for the central memory ex­
tension. The l\1:CU provides the facilities for con­
trolling access from the eight processor ports to a CM
having a 24-bit address space (16 million words). A
port expander can be utilized to expand the number of
processor ports. Figure 2 illustrates this structure.

The lVICU is designed to operate asynchronously,
independent of cable delays, processor clock rates, and
memory unit access and cycle times. This capability
allows for a great deal of flexibility to accommodate
improvements in memory or processor technologies
which may be desired. The l\1:CU is capable of handling
a maximum data transfer rate of 80 million words per
second per port, giving a total transfer capacity of
640M words per second. Therefore, a significant
capacity beyond today's memory and processor speeds
is available in the MCU.

The semiconductor high-speed central memory
modules have a cycle time of 160 ns and a read time
of 140 ns. Additionally, all transfers are 256 bits

222 Fall Joint Computer Conference, 1972

CENTRAL

MEMORY

CErITRAL
PROCESSOR (CP)

PERIPHERAL
PROCESSOR (PP)

DISC STORAGE

DATA COMMUNICATIONS -s-- COMMON CARRIERS

PERIPHERALS

Figure i-Major ASC subsystems

(eight 32-bit words) with a Hamming code providing
single-bit error correction and double-bit error detection
for each 32-bit word. High-speed central memory is
typically divided into eight equal sized modules which
permits eight-way interleaving. A patch board within
the lVICU controls the memory address decoding and
sets the interleaving pattern.

The optional central memory extension provides for
large amounts of relatively economical medium-speed
memory to be utilized in support of the high-speed
central memory. The memory extension uses 1 J.LS

semiconductor technology and is also accessed in 8-word
increments. Single-bit error correction is provided at I

the 8;..word level. The central memory extension is in­
cluded in the address space of the central memory and,

INTERLEAVED
HIGH-SPEED OR
MED IUM-SPEED
MEMORY MODULES

~'EMORY

CONTROL

UNIT

(MCU)

PRIMARY
MEMORY
ACCESS PORTS

r------t---------- L ------l

~ SECONDARY
f MEf10RY

ACCESS PORTS

I I..,.,CENTRAL
I I MEMORY

---------~---------IflTERLEAVED MED IUM-SPEED MEMORY MODULES

EXTENSION
(OPTIONAl)

Figure 2-Modular structure of the ASC central memory

therefore, can be addressed by a processor or channel
controller for instructions or operands. It is also possible
to effect block transfers of data between high-speed
memory and the memory extension. This is possible
because both a normal memory bus and a memory
access port are provided. Block transfers are initiated
by the peripheral processor with the specification of
the source starting address, the destination starting
address, and the block length. The block transfer
proceeds automatically at 40M words per second, and
the peripheral processor is notified upon completion.

The central memory size is limited only by the 24-bit
address (16 megawords). The proportions of fast
memory and memory extension may be varied in
order to balance memory capacities to suit the par­
ticular system requirements. The present high-speed
memory module is modular from 16K to 128K 32-bit
words. This permits memories from 128K to one
million words to be (:!onfigured.

PROGRAM ADDRESS
PAGE NUMBERS

(0)
(I) I_L
(2) f--t

Lt
(1) " r--

~
(N) '0

(H+l) '

(63)

Figure 3-Memory mapping

1////// /0/// ///!

:

.0

.4

63

Central memory management and access control
of memory ports is achieved through· the use of two
facilities: map registers and protect registers. Each
user program has its own unique page address map.
Page addresses not required by the program are mapped
into absolute page zero which is not accessible to the
CPo When a program is loaded into memory, it will
likely be loaded into discontiguous memory pages.
During program execution, program developed page
addresses are converted, without execution time
penalty, to actual page addresses by the map registers.
Because a reference to page zero is denied and the rele­
vant processor notified, the map registers provide for
inter-user memory protection. Figure 3 shows the
mapping scheme. Desired page sizes depend on the
amount of central memory and the problem mix of a
particular installation. Four different page sizes may
be specified for an ASC system, varying from 4K to

256K words. A program may utilize anyone of the
page sizes available.

The protect registers allow for intra-user protection.
These registers consist of three pairs of bounds registers
for defining the upper and lower addresses of access
for read, write, or execute areas. The five combinations
of protection presently used by the system software
with the bounds registers are:

• Execute Only
• Read Only
• Execute, Read, No Write
• Read, Write, No Execute
• Read, Write, Execute

An attempt to reference an area out of bounds for a
particular control state is denied and the processor
notified of the attempted violation.

In large ASC systems; more processors and control
units require additional access ports to memory. In
these cases memory port expanders are utilized to
provide additional ports and are utilized to service
the devices not requiring the full bandwidth of a
memory port. Each memory access port expander
provides a 1: 4 expansion with a maximum bandwidth
degradation of ten percent; i.e., from 80 million 32-bit
words per second to approximately 72 million 32-bit
words per second. These expanders can be concatenated
to provide further increases in connectivity. Priorities
at the single access port interface are resolved on either
a fixed or distributed basis. The mode is selected by
patch card wiring in the expander hardware.

CENTRAL . PROCESSOR

The central processor (CP) provides both scalar (sin­
gle operand) and vector (array) instructions at the ma­
chine level. The basic instruction size is 32 bits, with 16-,
32-, or 64-bit operands. The single instruction stream,
which contains a mixture of scalar and vector instruc­
tions, is preprocessed by the instruction processing unit.

The central processor design is such that one, two,
three, or four execution units or "pipes" can be pro­
vided. These units employ the pipeline concept in both
scalar and vector modes. A single execution unit can
have up to twelve scalar instructions in process at one
time. From one to four vector results can be produced
every 60 ns, depending on the number of execution units
provided.

The CP has 48 program-addressable registers. This
group of 32-bit registers consists of sixteen base address
registers, sixteen arithmetic registers, eight index
registers, and eight vector parameter registers. This

BASI: { REGISTERS

INDEX
REGISTERS

VECTOR
PARAMETER

REGISTERS

The TI ASC 223

OCTETS

EFFECTIVE ADDRESS" (M,' 'T)' N

Figure 4-Instruction format and register groups

last group is used to extend the instruction format for
the complete specification of vector instructions. The
basic instruction format is shown as it relates to these
register groups in Figure 4.

The CP scalar ,instruction repertoire includes an
extensive set of Load and Store instructions: halfword,
fullword, and doubleword instructions, with immediate,
magnitude, and negative operand capabilities. Ability
to load and store register files and to load effective
addresses is also available. Arithmetic scalars include
various adds, subtract, multiply, and divide for half­
word (16-bit) and fullword (32-bit) fixed point numbers
and fullword and doubleword (64-bit) floating point
numbers. Scalar logical instructions are provided as
are arithmetic, logical, and circular shifts. Various
comparison instructions and combination comparison­
logical instructions are provided for halfword, fullword,
and doublewords. Many combinations of test and
branching instructions with incrementing or decre­
menting capability are also available. Stacking and
modifying arithmetic registers can be done with single
instructions. Subroutine linkage is accomplished
through Branch. and Load' instructions. Format con­
version for single and doublewords, as well as normalize
instructions, are available.

The vector capabilities of the CP are made available
through the use of VECTL (vector after loading vector
parameter file) and VECT (assumes parameter file is
already loaded) instructions. The vector repertoire
includes such arithmetic operations as add, subtract,
multiply, divide, vector dot product, matrix multi­
plication, and others for both fixed point and floating
point representations. Vector instructions are also
available for shifting; logical operations; comparisons;
format conversions; normalization; and special opera­
tions-such as lVIerge, Order, Search, Peak Pick,
Select and Replace, among others.

224 Fall Joint Computer Conference, 1972

r------, r----------,

PRIMARY
MEMORY
PORTS {~

I \
I \

I I \
I I \

I
I
I
I
I I
L _____ .J

TWO-PIPFLINE CP
ASC 2X

PRIMARY
MEMORY
PORTS {~ I \ ,

/ I \ "
/ I \ ,

/ I \ ,

FOUFP-PIPFlINE CP
ASC 4X

Figure 5-Basic structure of the CP

I

One important characteristic of the vector instruction
capability is the ability to encompass three dimensions
of addressability within a single vector instruction.
This is equivalent to a nest of three indexing loops in
a conventional machine.

The basic structure of the CP, shown in Figure 5,
has three major components: the instruction processing
unit (IPU) for non-arithmetic stages of instruction
processing for the CP instruction stream, the memory
buffer unit (MBU) to provide operand interfacing
with the central memory, and an arithmetic unit (AU)
to perform the specified arithmetic or logical operations.
Figure 5 shows a CP diagram for 2- or 4-pipeline CP's,
each with a corresponding number of MBU-AU pairs.
Note that a memory port is required for the IPU and,
in addition, one memory port for each pipeline
(MBU-AU pair) in a CPo

A significant feature of the CP hardware is an
operand look-ahead capability which causes memory
references to be requested prior to the time of actual
need. Double buffering in multiple 8-word (octet)
buffers for each pipeline prov:des a smooth data flow
to and from each arithmetic unit. The pipelined AU
achieves its highest sustained flow rate in the vector
mode, typically a result each 60 ns per AU.

Instruction processing unit

The primary function of the instruction processing
unit (IPU) is to supply a continuous stream of in­
structions for execution by the other parts of the CPo
One Central Memory port is required to provide the
instruction stream. Two 8-word (octet) buffers are
utilized to achieve a balanced stream of instructions
from memory to the IPU. Instructions are transferred
from memory in octets as are all other references to
memory for fetching or storing of information.

The following functions are performed by the IPU:

(1) instruction fetch, (2) instruction decode, (3) register
operand selection, (4) effective address development
through indexing and/or indirect addressing, (5) im­
mediate operand development, (6) branch address
development, (7) determination of branch condition,
(8) storage of AU results into the register file, (9) scalar
hazard and register conflict resolution, (10) generation
of vector starting addresses, and (11) transmittal of
vector parameters to the l\fBU during vector initializa­
tion.

Up to 36 instructions in various stages of execution
can be overlapped within the 4-pipe CPo There are
twenty positions for instructions in the 2-pipe CP and
twelve positions for instructions in the I-pipe CPo Four
levels are contained within the IPU, and eight levels
are contained in each arithmetic pipeline (MBU-AU
pair). In addition to the previously mentioned func­
tions, the IPU performs routing of instructions to the
MBU-AU pairs based on an optimum use of arithmetic
unit capability.

Vector processing is altered by software in order to
distribute segments of the vector for multiple pipe
systems.

Several features are provided to alleviate the po­
tential problems of branches and instruction depen­
dencies in the instruction pipeline. The Prepare-to­
Branch instruction, used extensively by the Fortran
compiler, increases the execution speed of branches,
particularly important in loop iterations. This instruc­
tion provides the IPU control hardware with advance
address information to facilitate uninterrupted in­
struction processing. Instruction dependencies are
recognized by the hardware. It scans the instruction
stream and distributes the independent instructions
across MBU-AU pairs to insure proper, yet efficient,
execution sequences.

Memory buffer unit

The memory buffer unit (MBU) provides an inter­
face between central memory and the arithmetic unit.
Its primary function is to supply the arithmetic unit
with a continuous stream of operands from memory
and to provide for the storing of the results back to
memory. Note that all references to memory, whether
for fetching or storing, are made in 8-word increments
(octets).

The MBU has three double buffers, one octet per
buffer, called the "X" and "Y" buffers for input and
the "Z" buffers for output. This double buffering is
provided so that pipeline processing can be sustained
at a high rate with minimal memory access conflicts
These buffers are illustrated in Figure 6.

TO
MEMORY
CONTROL

UNIT

x

MEMORY BUFFER UNIT

Y z

Figure 6-Multiple operand streams in the memory buffer unit

Dur'ng scalar operations, data specified by effective
addresses developed in the IPU are fetched or stored
as required. The Z buffer can be transferred directly
to the X or Y buffers so that memory references are
not necessary for scalar operands which res'de in the
Zbuffer.

For most vector operations, two operand data
strings are fetched, while a result data string is stored.
Addresses for sustaining the vector operations are
computed in the MBU using parameters initially
specified by the vector parameter file.

A rithmetic unit

The primary function of a CP arithmetic unit (AU)
is to perform the arithmetic operations specified by
the operation code of the instruction currently at the
AU level. There is one AU per pipeline in the CP, each
having a 60 ns basic cycle time. A distinguishing feature
of an AU is the pipeline structure which allows efficient
execution of the arithmetic part of all instructions.
There are eight exclusive partit:ons of the AU pipeline
involved, each of which can provide an output every
60 ns. These e~ght sections are (1) received register,
(2) exponent subtract, (3) align, (4) add, (5) normalize,
(6) multiply, (7) accumulate, and (8) output. Figure 7
shows how different sections of the AU are utilized for
execution of particular instructions; i.e., floating point
addition and fixed point multiplication.

An AU is a 64-bit parallel operating unit for most
scalar and vector instructions. Exceptions are double
length multiply and all types of division. In these
circumstances various combinations of the components

The TI ASC 225

of the AU are utilized; and, therefore, more than one
clock cycle is required to complete these arithmetic
operations.

Fixed point negative numbers are represented in

FLOATING ADD FIXED MULT

~
I •

RECEIVER REGISTER

I L ___

"
EXPONENT SUBTRACT

"
ALIGN

I MULTIPLY :--i
+ • ADD

L ___
~,

NORMALIZE

ACCUMULATE I

-,
I
I
I
I
I
I
I
I
I
I
I

_-1

- ..,

I .--- I
_-1 •

OUTPUT

I

~, + RESULT RESULT

Figure 7-Arithmetic unit pipeline concept

226 Fall Joint Computer Conference, 1972

COMMUNICATION
REGISTERS (CR)

Figure 8-Peripheral processor

two's complement notation, and the floating point
representation is hexadecimal with the exponent biased
by 40(16).

THE PERIPHERAL PROCESSOR

The peripheral processor (PP) is a powerful multi­
processor designed to perform the control and data
management functions of the ASC. Several aspects
of the implementation of the peripheral processor
concept greatly increase the effectiveness of the ASC
system. Figure 8 shows the logical organization of the
PP.

The PP is a collection of eight individual processors
called virtual processors (VP's). Each VP has its own
program counter along with arithmetic, index, base,
and instruction registers. The eight VP's share a read
only memory, an arithmetic unit, an instruction pro­
cessing unit, and a central memory buffer. Use of the
common units is distributed among the VP's using
sixteen single 85 ns cycles. When an equally distributed
sequence of time units is used, each of the eight VP's
receives two 85 ns cycles every 1.4 fJ.s. The typical PP
instruction requires two 85 ns cycles for completion.

TIME - TIME
SLOT

NUMBER

TIME -
"TIME
SLOT

NUMBER

Figure 9-Two possible VP time slot assignments

The distribution of available time units can be dy­
namically varied to suit particular processing require­
ments. Figure 9 illustrates two possible distributions.

The read only memory within the PP is utilized for
program storage and execution of those short routines
which are highly utilized by the VP's, such as polling
loops. The read only memory consists of up to 4K
32-bit words of non-volatile memory elements with a
cycle time of less than 85 ns. It is modular in 256-word
increments.

Because the PP is intended to perform control
functions rather than execute mathematical algorithms,
the instruction set is oriented toward control operations
and does not require multiplication, division, or floating
point operations. The instruction format is similar to
that of the central processor, using a 32-bit word for
each instruction. Instructions are provided for bit
(1 bit), byte (8 bits), halfword (16 bits), and fullword
(32 bits) operations.

Each VP has direct access to the entire central
memory for program execution and data storage.
Therefore, a single copy of reentrant code can be
executed simultaneously by more than one VP.

The communications register' (CR) file contains
sixty-four 32-bit word registers which are program
addressable by the VP's. The CR file serves as the
principal storage media for control information neces­
sary for the coordination of all parts of the ASC system.
Synchronization of communications is achieved be­
tween all processors (CP, VP's, channel controllers,
and peripheral unit controllers) from interpret at on of
status bits received from all devices into the CR file.

DISC STORAGE

Disc storage is the principal secondary storage
system for the ASC system. Disc storage consists of
head-per-track (HIT) disc systems supplemented by
positioning-arm disc (P AD) systems.

Head-per-track (HI) disc system

The HIT disc system is a high-performance device
whose effective performance is further enhanced be­
cause the operating system utilizes a shortest-access­
time-first (SATF) algorithm! for data transfers. This
combination of hardware and software provides a very
high effective transfer rate'. Each HIT disc module has
a capacity of 25 million 32-bit words with a transfer
rate of approximately 500K words per second. Using
the shortest-access-time-first algorithm, access time
will average approximately 5 ms which results in an
exceptionally fast "effective" transfer rate. The rota­
tional period of the disc is 32 ms. Each HIT disc
module has seven discs with fourteen surfaces. Two
surfaces of the module are used as alternate storage
for inoperative sections. For data ordering purposes,
the discs are divided into bands and then further sub­
divided into sectors of 64 words each.

Positioning-arm disc (PAD) system

The PAD system, when utilized to supplement head
per track, is available in a variety of configurations.
Control of PAD systems is achieved by use of channel
interface, disc controller, and disc interface units. From
two to eight PAD disc drives may be attached to a set
of control devices. The number of controllers and discs
per controller will' depend upon the storage and re­
trieval problem requirements.

The PAD system has a transfer rate of 200K words
per second and a storage capacity of 25M words per
disc drive. Access time is divided into two categories:
positioning-arm time which is 30 ms average with a maxi­
mum of 55 ms and average rotational latency which is
8.4 ms. Thus, average total access time is approximately
38ms.

DATA COl\1MUNICATIONS

The data communication system is very modular
and, thus, externally flexible in the various devices
which may be utilized for communication with the
ASC. Data communications are controlled by a data
concentrator which, in turn, interfaces to the lVICU
through a channel control device.

f!ata concentrator

.The data concentrator is a TI-980 minicomputer
equipped with special-purpose hardware communica­
tion interface units on its direct memory access ports.
The TI-980 is a small, general-purpose computer with
up to 64K 16-bit words of memory and a one-micro­
second cycle time. The data concentrator hardware

The TI ABC 227

is under control of a data communications operating
system which executes in the TI-980. This operating
system provides for the functions of buffering, reformat­
ting, routing, protocol handling, error control and re­
covery procedures, and system control messages. The
system services multiple stations concurrently.

The data communications system presently supports
communication with three types of stations: high­
performance user terminals, other large computers,
and remote concentrators. The system can be easily
extended to support smaller terminals down to the
teletype level. These stations may be either remote or
local. When local, the communication link is imple­
mented with multiple conductor cables. Since the
transfer is asynchronous by word, the average transfer
rate is very dependent upon cable length with a maxi­
mum transfer rate of 250,000 words per second for
distances less than 500 feet.

Remote links

Remote links are presently implemented with non­
switched, full duplex common carrier data transmission
facilities. Data is transferred over these links synchro­
nously at rates determined by the modems and com­
mon carrier bandwidths. ,The data communication
system supports transfer rates up to a maximum of
240,000 bits per second. Because the system supports
full duplex transmission, this capacity typically trans­
lates to the ability to support a 1200 Ipm printer
simultaneously with a 1000 cpm reader over a 9600
bps transmission facility.

PERIPHERALS

Standard types of magnetic tape drives, card equip­
ment, and printers have been interfaced with the ASC.
These interfaces are attached to primary or secondary
memory ports through a variety of standard selected
and multiplexed data channels.

Preservation of global system modularity concepts in
the design of the ASC has resulted in a capability for
configuring systems having a very wide range of cost
and capabilities.

In the memory area capacity, performance, con­
nectivity, protection, and mapping are all variable over
wide bounds. The central processor can be tailored to
provide a wide range of processing power by using one,
two, three, or four pipes.

The peripheral processor provides for dynamically
matching the execution rates of up to eight independent
instruction streams with the task requirements. The

228 Fall Joint Computer Conference, 1972

q TRACK
DUAL DEMSITY

TAPE UNI"TS

7 TRACK
TRIPLE Dt:.-ITY

TAPE UNITS

I
t_

I
I
I

TAP'1t: SWITCH UNIT

TAP'1t: CONTItOLLIt:RS

1=- ------- --- -- .-J

NOTIt: ALL .f't:R£NCt:S JUtt: TO
'1 .IT WORDS

Mt:MORY
PORT

t:~AMDt:R

PAD CHANNIt:L
AND CONTROLLER

PAD CHANNEL
ANO CONTROLLER

PAD CHANNt:L
AND CONTROLLt:R

PAO CHANNt:L
AND CONTROLLER

TWO PAD DISCS
50 M WORDS

TWO PAD DISCS
50 M WORDS

TWO PAD DISCS
50 M WORDS

TWO PAO DISCS
50 tot WORDS

PER I Pttt:RAL PROCESS ING UN IT

Figure 10-A possible ASC system configuration

highly flexible communication register file provides a
matrix of 2048 bits which can be manipulated and
sensed by the eight virtual processors. Flexible hard­
ware interfaces are provIded for coupling these bits to
external I/O signal lines. Finally, the modular read
only program memory of the peripheral processor ac­
commodates growth and modifications in read only
memory resident operating system code.

An example of a complete system configuration is
illustrated in Figure 10.

ACKNOWLEDGMENTS

Although it would not be possible to acknowledge all
of the contributors to the ASC program, particular

recognition should be given to Messrs. H. G. Cragon,
W. D. Kastner, E. H. Husband, D. R. Best, C. M.
Stephenson, C. R. Hall, F. A. Galindo, and E. C.
Garth, all of whom contributed immeasurably to the
architecture of the ASC system. Many other members
of the Texas Instruments Equipment Group staff have
also made significant contributions in the development
of the ASC system.

REFERENCE

1 P J DENNING
Effects of scheduling on file memory operations
Proceedings of the Spring Joint Computer Conference
1967

A production implementation of an
associative array processor-ST ARAN

by JACK A. RUDOLPH

Goodyear Aerospace Corporation
Akron, Ohio

INTRODUCTION

The associative or content-addressed memory has
been an attractive concept to computer designers ever
since Slade and McMahon's 1957 paperl described a
"catalog" memory. Associative memories offered relief
from the continuing problem presented by the typical
coordinate-addressed memory which requires that an

. "address" be obtained or calculated before data stored
at that address may be retrieved. The associative
memory could acquire in a single memory access any
data from memory without pre-knowledge of its loca­
tion. Ordered files and sorting operations could be
eliminated. Unfortunately, early associative memories
were expensive, hence none found their way as the
"main frame" memory into any commercial computer
design. .

The organization of an associative memory (AM)
requires that each n-bit physical word of the memory
be connected to a dedicated processing element (PE)
which performs the compare function between a bit
read non-destructively from the word and a corre­
sponding input bit from a query word. The PE's for
all words are driven by a central controller, thus a
single query bit is simultaneously compared with the
corresponding stored bit in every word of the AM.
With the ability to simultaneously write back the
state of each PE into a specified bit position of each
word it became possible to perform bit-serial arith­
metic between fields of bits within each physical
memory word. An array of associative memory words
could then be viewed as an array of simple computers­
an associative array processor-with all the simple
computers in the array simultaneously executing the
same instruction obtained from a common control unit
as is done in the more complex ILLIAC-IV design.

An alternative AP design provides a PE at each bit

229

of each physical memory word. This design, though
complex in terms of logic and interconnection require­
ments, permits a simultaneous compare of all bits in a
query word with all bits of the memory word rather
than the serial-by-bit operation described earlier;

Due to the early high cost of semi-conductor mem­
ory and logic elements none of the many associative
processor designs described in the literature were
attractive enough to warrant development. However,
it has now become commercially feasible to construct
a computing system embodying "main frame" memory
content addressability coupled with array arithmetic
capability operating under a more or less conventional
stored program control system.

Several proprietary versions of the associative pro­
cessor (AP) are being developed. The first working
engineering model2 known to the author, built for
USAF by Goodyear Aerospace Corporation, was
demonstrated during a Tri-Service contract review in
June, 1969 at Akron, Ohio. The same machine, modi­
fied to include a larger instruction memory, was loaned3

by USAF in 1971 to the FAA for conflict detection
tests in a live air traffic control terminal environment
at Knoxville, Tennessee operating in a multi-computer
configuration with a Univac 1230 conventional com­
puter. The original test objectives were achieved by
December, 1971 and additional experiments involving
terrain avoidance processing were completed success­
fully in June, 1972.

The lessons learned in programming and testing the
USAF AP model resulted in a new design called
STARAN S which was committed to production in
1971. This first commercial AP was publicly intro­
duced in a series of live demonstrations in May, 1972
at the TRANSPO exhibit in Washington, D.C. and
in June, 1972 at Boston,Mass.

This paper describes STARAN S and its program-

230 Fall Joint Computer Conference, 1972

ming language, provides examples of its applications,
and discusses measures of AP cost-effectiveness.

STARAN* DESCRIPTION

A configuration diagram of ST ARAN S is shown
in Figure 1. Studies have shown that initial uses of
AP's would be weighted toward real-time applications
involving interface with a wide variety of sensors,
conventional computers, signal processors, interactive
displays, and mass storage devices. To accommodate
all such interfaces the STARAN system was divided
into a standardized main frame design and a custom
interface unit. A variety of I/O options implemented
in the custom interface unit include conventional
direct memory access (DMA), buffered I/O (BIO)
channels, external function channels (EXF) and a
unique interface called parallel I/O (PIO).

STARAN

ASSOCIAT IVE

ARRAY

PROCESSOR

MAIN

FRAME

DIRECT
MEMORY

DMA 1 ACCESS

I I

BUFFERED

CUSTOM
IN PUT I

• BIO I OUTPUT

I INTERFACE 1
UNIT

EXT ERNAL
FUNCT ION

II EXF I COMMANDS

~ I -
PAR ALL E L

INPUT I

II PIO J I. OUT PUT

~ r

'--I
~

";
I
I

.....J
I

I
I
1
J

"I

I
I
J

"'

TYPICAL

USER

EQUIPMENT

I
I
I
I
I

e COMPUTE RS I
ePERIPHERALS

e DISPLAYS I
eSENSORS I

I
I
I

L __ ..J

Figure l-STARAN system configuration

A top-cut diagram of the STARAN main frame is
shown in Figure 2. It consists ofa conventionally
addressed control memory for program storage and
data buffering, a control logic unit for sequencing and
decoding instructions from control memory and from
one to thirty-two modular AP arrays.

A typical AP array is also shown in Figure 2. This
key element of the STARAN S computer system is
the "main frame" memory which provides content
addressability and parallel processing capabilities.
Each array consists of 65,536 bits organized as a
multi-dimensional access memory matrix of 256 words

* T. M. Goodyear Aerospace Corporation, Akron, Ohio

ASSOCIATIVE

PROCESSOR

CONVENTIONAL

ASSOCIATIVE PROCESSOR ARRAY

TO/FROM CONTROL
I ,

• O--------~--~ I
'i'f-'
i r---"!r- ~
1
1

INPUT-OUTPUT :

PARALLEL
INPUT-OUTPUT

1
1
1

~:~~Lll~LU~7Lunt4~~,-
01 \

~', \.
WORD

: SLICE

\"
256 PE's

256 WORDS. 256 BITS PER ARRAY

Figure 2-Associative processor diagrams

by 256 bits with parallel access to up to 256 bits at a
time in either the word or bit direction. In addition
to the storage elements, each array contains 256 bit­
serial PE's often referred to in associative memory
literature as the response store. The unique PIO capa­
bility is provided by the response store, where every
PE has an independent external device I/O path.
Control signals generated by the control logic unit are
fed to the processing elements in parallel and all pro­
cessing elements execute the instruction simultane­
ously. As additional arrays are added to the system
these are also connected in 'parallel to the control logic
unit, thus application programs need not be modified
as the capacity of the system increases.

Major elements of the STARAN block diagram
shown in Figure 3 are described below:

[

M'CRO PROGRAM
AP MEMORy

CONTROL PAGE 0
Mf.MORy

S1ZX32

Figure 3-STARAN basic block diagram

AP control memory

The conventionally addressed and indexed AP con­
trol memory is used to store assembled AP application
programs. It is also used for data storage and to act
as a buffer between AP control and other elements of
STARAN S. The AP control memory and associative
array cycles are overlapped.

Control memory is divided into several memory
blocks. Three fast "page" memories contain the current
AP program _ segments; the slower core memory con­
tains the remainder of the AP program. A program
pager transfers program segments from the slow to
the fast memory blocks. Control memory words con­
tain 32 bits of either data or instructions.

The "page" memories use volatile, bipolar, semi­
conductor elements. A page contains 512 words but
can be doubled to 1024 words each on an optional
basis. Page 0 may contain a library of microprograms
such as arithmetic subroutines. Pages 1 and 2 are used
in ping-pong fashion, with AP control executing in­
structions out of one page while the other is being
loaded by the program pager. This permits use of the
page memories for selected segments of the program
or for the entire program if fast execution is required.

The high-speed data buffer (HSDB), like the page
memories, uses volatile, bipolar, semi-conductor ele­
ments. It contains 512 words but also can be doubled
to 1024 words. All buses can access the HSDB to
store data or instruction items that need to be accessed
quickly by the different STARAN elements.

The bulk core memory uses nonvolatile core storage.
It contains 16,384 words and is optionally expandable
to 32,768 words. It is used for storing complete AP
application programs. Since the bulk core memory is
accessible to all buses it is useful as a buffer for data
items that do not require the high-speed of the HSDB.

A block of up to 30,720 AP control memory ad­
dresses is reserved for the direct memory access (DMA)
channel to external memory. All buses can access the
DMA block, thus it is possible to operate the AP
solely from programs stored on external memory as,
for example, the main frame memory of a conventional
computer.

AP control logic

Executing instructions from control memory, AP
control logic directly manipulates data within the
associative arrays and is the data communication
path between control memory and the arrays.

STARAN 231

Program pager logic

The program pager loads the fast page memories
from the slow core memory. While the AP control is
executing a program segment out of one page, the
pager can be loading the other page with a future
program segment.

E~ternal function logic

External function (EXF) logic enables the AP
control, sequential control, or an external device to
control the STARAN S operation. By issuing external
function codes to EXF a STARAN S element can
interrogate and control the status of -the other ele­
ments.

Sequen~ial control processor

The sequential control (SC) portion of STARAN S
consists of a sequential processor having an 8K 16-bit
memory, a keyboard-printer, a perforated tape reader/
punch unit, and logic capability to interface the se­
quential processor with other ST ARAN S elements.
SC is used for system software programs such as
assembler operating system, diagnostic programs,
debuggin~, and housekeeping routines. SC perip~erals
which may be useful programming aids are avaIlable
as options.

I nput/ output options

A custom interface unit (not shown in Figure 3) can
provide any required combination of DMA, BIO,
EXF or PIO channels. A DMA channel to a conven­
tionai computer, for example, would permit rapid
interchange of data between the systems in the com­
mon memory bank. The unique parallel I/O (PIO)
channel with a width of up to 256 bits per array,
provide~ an extreme width channel up to 8192 ?its
wide at transfer rates in the sub-microsecond regIOn.
For example, a four-array STARAN S can input . or
output 1024-bit word or bit slices at an average slIce
rate exceeding 3 megacycles/sec providing an I/O
bandwidth many times wider than that of a conven­
tional computer. PIO provides a unique c~pabil~ty
for large data base' processing when used WIth WIde
bandwidth mass storage devices.

A photograph of a six array (model S-1500)
STARAN is shown in Figure 4.

232 Fall Joint Computer Conference, 1972

Figure 4-STARAN S-1500

ASSOCIATIVE PROCESSOR SOFTWARE

The STARAN software system consists of a sym­
bolic assembler called APPLE (for Associative Pro­
cessor Programming LanguagE), and a set of super­
visor, utility, debug, diagnostic, and subroutine library
program packages. An associative compiler has not
yet been developed for ST ARAN. Early applications
of STARAN must therefore be accomplished by assem­
bly language programmers. Programmers find APPLE
a convenient language to use, however, and write
significantly fewer instructions to program a suitable
application on STARAN than would have to be written
for a conventional machine since APPL"E's command
structure reflects the content address ability and pro­
cessing characteristics of the associative arrays the
language controls. For example, although the pro­
grammer must explicitly define his record formats via
field definition statements, he usually need not be con­
cerned with physical record location in the arrays.
Also, he need not order data tables by key, since any
desired datum may be located in one parallel search
operation. A third example of APPLE convenience is
the elimination of the conventional programming loop
which requires advancing a list pointer, examination
of an exit criterion, and making a decision for each pass
over different data sets. The APPLE array instruction
processes all pertinent data sets simultaneously and
does not require initialization of an index register with
the count of data sets to be processed.

Internally, all software packages with the exception

of array diagnostics and the subroutine library operate
on the SC. In the minimum STARAN configuration
the software packages are furnished on paper tape for
input via the SC tape reader. Where STARAN is
installed with interface to a conventional computer
system in a multicomputer configuration, APPLE and
supporting software can be input to STARAN using
the existing peripherals of the conventional computer.

The usual load, store, test, branch, and control
instructions required for sequential execution of an
application program are present in APPLE. Where
APPLE departs most from conventional assemblers
is in the search and arithmetic array instructions. A
representative set of fixed point standard instructions
is shown in Table I with the approximate timing for­
mulas. Hardware floating point is available on special
order.

Associative search and arithmetic instructions are
of two types, "argument register" and "field". In the
first an operand (32 bits max) stored in the argument
register of AP control is used as the search or arith­
metic argument against a specified field in all array
words simultaneously. Instructions of the field type
perform similar operations but between specified
fields within each array word.

Instruction execution times are dependent upon n,
the number of bits in the operands (fields) involved
in the instruction executions, but are not functions of
the number of operands being processed, which rela­
tionship is exactly the opposite of that existing in the
conventional computer. This characteristic dependence
of execution time on operand or field length is a con­
sequence of the word-parallel bit-serial design of the
associative arrays discussed earlier.

From the programmer's point of view, Table I has
interesting connotations; some of which are:

1. in real time applications the programmer can
easily time out his initial flow diagram since
programming loops in the conventional sense
are eliminated. This single consequence of
associative processing can save much of the
reprogramming effort invariably found neces­
sary during the testing phase of conventional
attacks on real-time problems;

2. he can conserve on execution time (and array
memory space) by defining fields to use only as
many bits as are required by the application;
and

3. he has no need for overhead-generating tech­
niques such as indexed file constructions, linked
lists, or sort and merge operations usually
needed in a conventional computer. This capa-

STARAN 233

TABLE I-Typical APPLE Associative Fixed Point Instructions

MNEMONIC INSTRUCT 10K APPROX. EXECUTIO:J TIME (ps) ** MIPS* PEn. ARRAY
FORMULA n = fa n=32 POR n=32

ARGUMENT REGISTER I::--1STRUCTIOt,:S

::QC EXACT MATCH COMPARAND 0.6+0.15n 3.0 5.4 47
C:Te GREATER THAN COMPARAND 0.7+0.15n 3.1 5.5 47
LTC LFSS THAl'! COMPARAND 0.7+0.15n 3. 1 5.5 47
ADC ADD An. TO FIELD 2.8+0. R5n 16 30 8.5

FIELD INSTRUCTIONS

EQF EXACT MATCH FIfLDS 0.6+0.43n 7.4 14 18
GTF (~RFATER THAt; FIELDS 2.3+0.43n 9.1 16 16
LTF LESS THM~ FIELDS 2.3+0.43n 9.1 16 16
MAXF MAX FIELDS 0.6+0.68n 11 23 11
MU:P Mn~ P IELDS 0.6+0.68n 11 23 11
ADF ADD FIELD TO FIELD 2.8+0.85n 16 30 8.5
MPF MULTIPLY FIELD BY FIELD 5.8+2.9m+ 277 980 0.26

0.85mn+0.4

-k Max execution rate of specified instructior.s for sing Ie array wi th all 256 PE ts active.

** n or m equal number of bits in operand

bility results in a significant reduction both in
the number of instructions which must be
written and executed and the amount of mem­
ory required.

ARRAY STORAGE ALLOCATION

The concept of a file of related records as used in
associative processing requires some discussion. In
conventional approaches to file generation one thinks
of the distinction between a logical file and a corre­
sponding physical file; that is, a logical collection of
records, usually ordered by some key, is placed as a
block of contiguous addresses in a physical file. The
conventional operating system· keeps track of the
beginning address and the block length for the file
whether stored in core or on external stores. Thus in
most cases logically different files are stored in physi­
cally separate areas of store.

The associative approach differs from the conven­
tional approach in several ways: the records within
the logical file need not and usually are not ordered
by any key; records within a logical file usually are
not stored in contiguous locations in an area of the

array or on external devices; and the operating system
generally is not required to keep track of individual
file beginning addresses and block lengths.

In STARAN, records belonging to different logical
files may be physically intermixed in the array as
well as being logically unordered. Within each record
format, in addition to defining the item fields, the pro­
grammer defines a set of control tag fields. How these
tags are used is described below.

When new records are added to a logical file the
update program writes the new, properly formatted
record into the first available empty array location.
Since empty array locations usually are not contigu­
ously located within the array, records belonging to a
specific file are scattered throughout the array in
random locations. This characteristic is illustrated in
the array map example of Figure 5.

Empty array memory locations are identified by
executing an EQC on a one-bit activity tag field using
an "0" as the search criteria. The execution time for
this search (see Table I) is less than one microsecond
at the end of which time all processing elements for
physical memory words containing a 0 in the activity
field will be in the "ON" state. At the conclusion of
the search a hardware pointer automatically points to

234 Fall Joint Computer Conference, 1972

INTERMIXED, UNORDERED RECORDS FROM THREE FILES

0 I OSIS 1 I
MONT I T

2
CI)

JONES 1 I I I
CI) :3 w STATE I 71 SALES T 72 SALES
a::
a
a
<{

BROWN I I I I
\ 41 i L \ I

a
a:: JONES \ I I
0
3:

I

I

I

SECT ION
IDENT

TAG *
\
,\1
\

I " 10 0

REP EXPENSES

\
I \

\\0 1

\

/

FILE DESCRIPTOR TAG

IACTIVITY TAG

0 1 1

0 0 1

1 0 1

0 0 i SALES RECORD

1 0 i

0 1 1

1 0 1

0

>- COST I PROJECT ·1 ENGR 1 CUSTOMER 1 DIVISION 0 1 1

EMPTY ARRAY WORD

PROJECT RECORD
<{

a:: L.'
a::
<{

0 0 DELETED RECORD
-l

NAME <{ 0 0 PERSON NEL RECORD, SEC 1
u
- OHIO 0 0 CI)

~ 252 DAVIS 0 0 1 0
a..

253 NAME DIV DEPT HIRE DATE 0 1 0 PERSONNEL RECORD, SEC 2

254 SMITH 0 0 0

255 SMITH 0 0

0 255

4-- BIT ADDRESS--+

*PARENT RECORD IDENTIFIER IN TWO-SECTION PERSONNEL RECORD
IS EMPLOYEE NAME

Figure 5-Associative array map example

the PE having the lowest physical address in the array
(or arrays). The new record, with its activity field set
to a "1," is written into this first empty location. The
hardware pointer then moves to the next available
empty memory location for writing another record if a
batch of new entries must be loaded. If no empty loca­
tions are found the program will exit to whatever
routine the programmer has chosen for handling this
type of error-for example, if appropriate to a specific
application, the program may select an age test of all
records in a particular file, purging the oldest to make
room for the newest. A record once located may be
deleted from a file by merely setting the activity bit
to an "0."

When a specific file is to be processed in some man­
ner, the scattered locations containing the file's records
are activated by performing EQC's on both the ac­
tivity field and an n-bit "file descriptor" tag field. If,
as in the example of Figure 5, the file descriptor field

is two bits long, the entire selected file will be ready
for processing in less than 2 microseconds « 1 p..s for
the activity bit search, < 1 p..s for the file descriptor
field search).

Where record lengths are greater than the 256-bit
length of the associative array word, several non­
contiguous associative array words may be used to
store the single· record in sections, one section per
array word. The format for each record section must
contain the same activity and file descriptor fields as
are used in all record formats, and in addition it must
contain a parent record identifier and an n-bit "sec­
tion identifier" tag field. The scattered locations
containing the desired section of all records in the
specific file may be activated by performing EQC's on
the activity, file descriptor, and section identifier
fields. All three searches can be completed in approxi­
mately 2 or 3 microseconds.

These two or three tag search operations in the AP

permit random placement of records in the physical
file and eliminate the bookeeping associated with file
structuring and control required in conventional
systems. The same approach is used for files which
exceed the capacity of the associative arrays-the
records of such files are stored in a similar manner on
external mass storage devices and are paged into the
arrays as required.

The strategy used to allocate array storage space
can have a significant effect on program execution
time. An example is shown in Figure 6 where the
products of three operand pairs are required. In A,
the operands are stored in a single array word. For
20-bit fixed point operands the three MPF instructions
would execute in a total of 1175 microseconds. All
similar data sets stored in other array words would
be processed during the same instruction execution.
However, an alternative storage scheme (B) which
utilizes three PE's per data set requires only one MPF
execution to produce the three products in 392 micro­
seconds. If one thousand data sets were involved in

STARAN 235

each case the average multiply times per product
would be 392 and 131 nanoseconds, respectively, but
at the expense, in B, of using 3000 processing elements.
Unused bits in B may be assigned to other functions·

A last example of how array storage allocation can
affect program execution time is shown in Figure 7
where the columns represent fields. Here the sum
el, of 16 numbers is required. If the 16 numbers are
directly or as a result of a previous computation stored
in the same field of 16 physically contiguous array
words, the near-neighbor relationships between the
processing elements can be used to reduce the number
of ADF executions to four. All similar 16 number sets
would be processed at the same time.

STARAN APPLICATIONS

While many papers have appeared (see Minker4

for a comprehensive bibliography) which discuss the
application of AM's and AP's in information retrieval,

PROBLEM: 0i , bi , ci ,di ,ei ,fj ARE 20 BIT OPERANDS.

FORM PRODUCTS ojbj, cjdj , ejfj FOR n DATA SETS

METHOD A - ALLOCATE ONE ARRAY WORD (PROCESSING ELEMENT) PER DATA SET FILE

SET IDENT

PROGRAM A-i. MPF A, B, G I
2. MPF C, D, H n sets processed in 1175.A(s (fixed point)
"3. MPF E, F, J

METHOD B - ALLOCATE THREE ARRAY WORDS (PROCESSING ELEMENTS) PER DATA SET

FIELD NAME - A B C

°i bi OJ bj j 01 1

Cj dj ci di j 01 t

ej fj ej fj i 01 t

/ I ! ? 1 III
an bn On bn n 011

cn dn cn dn n 011

en fn en fn n 011

PROGRAM B - MPF A, B, C 1 n sets processed in 392 .A(s (fixed point)

Figure 6-Effect of array memory allocation on execution time

236 Fall Joint Computer Conference, 1972

~1---~--- ~] JJT~ ~~ JT~;:r '<

0e be

°9
010

°11

°12

013

°14

°15

°16

16

Lai
1

NUMBER OF OPERATIONS IS

-fn2N = ..In216 = 4

Figure 7-Tree-sum example

text editing, matrix computations, management in­
formation systems and sensor data processing systems,
there are none yet published which describe actual
results with operating AP equipment in any applica­
tion. (But see Stillman: for a recent AM application
result.)

Recent actual applications of the AP have been in
real time sensor related surveillance and control sys­
tems. These initial applications share several common
characteristics:

1. a highly active data base;
2. operations upon the data base involve multiple

key searches in complex combinations of equal,
greater, between-limits, etc., operations;

3. identical processing algorithms may be per­
formed on sets of records which satisfy a com­
plex search criterion;

4. one or more streams of input data must be
processed in real time; and

5. there is a requirement for real time data output
in accordance with individual selection criteria
for multiple output devices.

A portion of the processing inherent in these applica­
tions is parallel-oriented and well suited to the array
processing capability of the AP. On the other hand
these same applications also involve a significant
amount of sequentially-oriented computation which
would be inefficient to perform upon any array pro­
cessor, a simple example being coordinate conversion
of serially occurring sensor reports.

A ir traffic control

An example of an actual AP application in an air
traffic control environment is shown in Figure 8. In
this application a two array (512 processing elements)
ST ARAN 8-500 model was interfaced via leased tele­
phone lines with the output of the FAA ARSR long
range radar at Suitland, Maryland. Digitized radar
and beacon reports for all air traffic within a 55 mile
radius of Philadelphia were transmitted to ST ARAN
in real time. An FAA air traffic controller's display
of the type used in the new ARTS-III terminal ATC
system and a Metrolab Digitalk-400 digital voice
generator were interfaced with STARAN to provide
real-time data output. The controller's keyboard was
used to enter commands, call up various control pro­
grams and select display options.

Although a conventional computer is not shown
explicitly in Figure 8 the sequentially oriented portions
of the overall data processing load were programmed
for and executed in the ST ARAN sequential controller
as shown in Figure 9. Sequential and associative pro­
grams and instruction counts for ST ARAN are shown
in Table II. In a larger system involving multiple
sensors and displays, and more ATC functions such as
metering and spacing, flight plan processing, and
digital communications, the sequential and parallel
workloads would increase to the point where a separate
conventional computer system interfaced with the
AP would be required.

The STARAN system was sized to process 400
tracks. Since the instantaneous airborne count in the
55 mile radius of Philadelphia was not expected to
exceed 144 aircraft, a simulation program was de­
veloped to simultaneously generate 256 simulated

ARSR
RADAR

r STARAN
TELEPHONE LINES

S- 500 ..
SUITLAND,
MARYLAND

l
FAA

DISPLAY MONITOR

• BEACON TRACKI NG

• RADAR TRACK I NG 1 • CONFLICT DETECT ION

• CONFLICT RESOLUTION

• TERRAIN AVOI DANCE
VFR

• AUTOMAT IC vorCE ADVISORY

• DIGITAL DISPLAY
VOICE GENERATOR

PROCESSING

Figure 8-Air traffic control application

---...,
I
I

I M~E1_""'...I.:_--.j _
DATA DATA
LINE RECEIVER

ASSEMBLY

TELETYPE SC''''-f---t

TAPE

READER/PUNCH

SC
LIVE DATA
INTERRUPT
HANDLER

, __________ .J

I
I

AP

EXECUTIVE

SC
---+---1 ..

CONTROLLER

CLOCK
INTERRUPT

AVA

ON -LINE SC

DEBUG AND
UTILITY
PACKAGE

SC
KEYBOARD
INTERRUPT
HANDLER

STARAN 237

DATA PATH

CONTROL PATH

SC SEQUENTIAL
CONTROL PROCESSOR

AP ASSOCIATIVE
PROCESSOR

• EXTERNAL DEVICE

ARTS m
KEYBOARD

L _______ ..,

SC I
I I

I
I
I
I
I

r---­
I

TARGET
SIMULATION
ROUTINE

AUTOMATIC -----....-.. I
I
I
I
I

VOICE ADVISORY
DRIVER

I
L ________ .,

I

I

I AP AP AVA AP

: CONFLICT CONFLICT
1- - - - - - PREDICTION RESOLUTION MESSAGE
I SELECTOR I

I I L _________ 't. ______ ____ :!t __ __________ ~ _________ ...J

Figure 9-ATC program organization

aircraft tracks. Display options permitted display of
mixed live and simulated aircraft. The 400 aircraft
capacity is representative of the density expected as
North-South traffic loads increase through the late
'70s. Conflict prediction and resolution programs based
upon computed track data were demonstrated and
used to display conflict warning options. Automatic
voice services were provided for operator-designated
aircraft, thus simulating warning advisories for VFR
pilots requesting the service. The voice messages,
which in an operational system would be automatically
radioed to the pilot, were generated by the Metrolab
unit from digital formats produced by the associative
processor and broadcast in the demonstration area
via a public address system. A· typical message would
be read out in voice as, "ABLE BAKER CHARLIE,
FAST TRAFFIC SEVEN O'CLOCK, 4 MILES,
ALTITUDE 123 HUNDRED, NORTHEAST
BOUND".

Top level flow charts for four of the associative
programs used in the demonstration are shown in
Figures 10, 11, 12, and 13. A detailed report is in
preparation describing all of the ATC programs used
in this demonstration, but some comments on the
four flow charts shown may be of interest.

Live target tracking (Figure 10) is performed in two
dimensions (mode C altitude data was not available)
using both radar· and beacon target reports to track
all aircraft. Incoming reports are correlated against
the entire track file using five correlation box sizes,
three of which vary in size with range. Any incoming
report which does not correlate with an existing track
is used to automatically initiate a new tentative track.
An aircraft track must correlate on two successive
scans and have a velocity exceeding 21 knots to qualify
as an established track and must correlate on three
successive scans to achieve a track firmness level high
enough to be displayed to a controller as a live target.

238 Fall Joint Computer Conference, 1972

TABLE II-STARAN Air Traffic Control Programs

SEQUENTIAL PROGRAMS

INSTR
NAME COUNT

Executive ,
Keyboard Inte rrupt

Real Time Interrupt > 1600

Live Data Input

Automatic Voice Output .

ret Operating Instructions 1"6"00

There are provisions for 15 levels of track firmness
including 7 "coast" levels. If a report correlates with
more than one track, special processing (second pass
resolve) resolves the ambiguity. Correlated new reports
in all tracks are used for position and velocity smooth­
ing once per scan via an alpha-beta tracking filter
where for each track one of nine sets of alpha-beta
values is selected as a function of track history and
the correlation box size required for the latest report
correlation. If both beacon and radar reports correlate
with a track, the radar report is used for position
updating. Smoothed velocity and position values are
used to predict the position of the aircraft for the
next scan of the radar and for the look-ahead period
involved in conflict prediction.

Track simulation processing (Figure 11) produces
256 tracks in three dimensions with up to four pro­
grammable legs for each track. Each leg can be. of 0
to 5 minute duration and have a turn rate, accelera­
tion, or altitude rate change. A leg change can be
forced by the conflict resolution program to simulate
pilot response to a ground controller's collision avoid­
ance maneuver command. Targets may have velocities
between 0-600 knots, altitudes between 100-52,000
feet, and altitude rates between 0-3000 feet per minute.

The conflict prediction program sequentially selects

ASSOCIATIVE PROORAMS

INSTR
COUNT

Tracking System 881

Track Simulation System 415

Turn Detection 88

Conf 1 ict Pred ic t ion 488

Conflict Resolution 296

Automat ic Voice Advisory 709

Display Process ing 1140 --
Total 4017

Field Definition Statements Included 514

Net Ope rat ing Instructions 3493

up to 100 operator-designated "controlled" or "AVA"
aircraft, called reference tracks in Figure 12, and
compares the future position of each during the look­
ahead period with the future positions of all live and
simulated aircraft and also to the static position of
all terrain obstacles. Any detected conflicts cause
conflict tags in the track word format to be set, making
the tracks available for conflict display processing. A
turn detection program not shown opens up the head­
ing uncertainty for turning tracks.

Display processing (Figure 13) is a complex asso­
ciative program which provides a variety· of manage­
by-exception display options and automatically moves
operator-assigned alpha numeric identification display
data blocks associated with displayed aircraft so as to

. prevent overlap of data blocks for aircraft in close
proximity to one another on the display screen. Sector
control, hand off, and quick-look processing is pro­
vided.

All programs listed in Table II were successfully
demonstrated at three different locations in three
successive weeks, using live radar data from the
Suitland radar at each location. The associative pro­
grams were operated directly out of the bulk core and
page 0 portions of control memory since there was no
requirement, in view of the low 400 aircraft density

SECOND PASS RESOLVE
(ONCE PER AMBIGUOUS

TRACK)

U?DATE TRACK FIRMNESS
(ONCE PER 5 SEC.)

*

*

*

*

*ONE REPORT AGAINST ALL TRACKS
-ALL TRACKS

SMOorH TRACK
POSITION AND VELOCITY

(ONCE PER 10 SEC.)

PREDICT TRACKS NEXT
REPORTING POSITIONS

(ONCE PER 5 SEC.)

Figure IO-Live target tracking

involved, for the higher speed instruction accesses
available from the page memories. At intervals during
the demonstration all programs were demonstrated at
a speed-up of 20 times real time with the exception
of the live data and A VA programs which, being
real-time, cannot be speeded up. Timing data for the
individual program segments will be available in the
final report. The entire program executed in less th3ill
200 milliseconds per 2 second radar sector scan or in
less than 10 percent of real time. All programming
effort was completed in 4% months with approxi­
mately 3 man-years of effort. This was the first and
as of this writing the only actual demonstration of a
production associative processor in a live signal en­
vironment known to the author. It was completed in
June, 1972. Other actual applications currently in the
programming process at Goodyear involve sonar,
electronic warfare and large scale data management
systems. These will be reported as results are achieved.

COST EFFECTIVENESS

Associative processor cost effectiveness can be ex.;.
pressed in elementary terms as shown in Figure 14

STARAN 239

where performance is shown in terms of millions of
instructions per second for the ADF and EQC in­
structions using two different operand lengths, and
cost effectiveness is measured in terms of instructions
per second per hardware dollar. This form of presenta­
tion was taken from Bell. ~

Another cost effectiveness measure is to compare
projected hardware and software costs of an associa­
tive configuration and an all-conventional design for
the same new system requirements, where the asso­
ciative configuration may include a conventional
computer. Only a few attempts at this approach have
been made to date and none have been confirmed
through experience. One classified example, using a
customer defined cost effectiveness formula, yielded a
total system cost effectiveness ratio of 1.6 in favor of
the associative configuration.

Of the two methods, the first is least useful because
there is no way of estimating from these data how
much of the associative computing capability can be
used in an actual application. The second method is

tn = time left in leg
13 = turning rate

Vt =acceleration rate

CALCULATE NEW

ie, Y.MODIFIED
BY fil, OR Vc

Figure II-Tracking simulation

NO

240 Fall Joint Computer Conference, 1972

COO'ARE
ALL INTERCEPrS

TIMES AND
LOOK~AHEAD

PERIOD

YES

Figure 12-Conflict prediction

Figure 13-Display processing

more meaningful but is exceedingly expensive to use
since it implies a significant engineering effort to
derive processing algorithms, system flow charts,
instruction counts, and timing estimates for both
the conventional and the· associative approach. The
weakest element in this approach lies in the conven­
tional approach software estimate which historically
has been subject to overruns of major dimensions.

2000

1500

1000
0
Z
0 500
U
ILl

~
<O~

X
VJ

8 100
1-<
U
Sl 50
1-<
VJ

~

10 ~~~ __ ~ _____ ~ ____________________ ~

1000

~ 500

g
o
~
u
~ 100
VJ
Z
9 50
1-<
U

Sl
1-<

~
10

2 4 16 32

ARRA Y MODULES

PERFORMANCE

-~ ~~

.".--~ ",-

.....-
L-' i-"""

-.....-
~~

2 4 16 32

ARRA Y MODULES

COST EFFECTIVENESS

EQC-16-BIT

EQC-32-BlT

ADF-16-BIT

ADF-32-BIT

EQC-16-BIT

EQC-32-BIT

ADF-16-BIT

ADF-32-BIT

Figure 14-Array performance and cost effectiveness

A third method is to compare functional perform­
ance, hardware and software cost, growth capability
and growth related costs, reliability, service and other
pertinent aspects of two working examples of com­
peting approaches to the same class of system applica­
tion. Although it is a reliable method, it is not available
at this time since no operational system of any kind
has been implemented with an associative processor.
The closest approach to it is the ATC demonstration
described above but there is no similar conventional
example to be found anywhere which includes the
urgently needed large scale conflict detection process-

ing included in the STARAN demonstration. On the
other hand, an experienced ATC data processing
system designer can appreciate the rapid solution
time, small instruction count and low programming
cost achieved with the STARAN for the troublesome
high density tracking and display processing functions,
but others not so well acquainted with ATC data
processing problems may not find these data mean­
ingful. This method also includes the benchmark test
which is coming into regular use by the federal govern­
ment in competitive large scale procurements of
standard commercial equipment. Here again, however,
due to the associative processor's recent arrival on
the scene, no comparative performance data are yet
available.

A fourth method, least useful in resolving the equip­
ment selection and system design problems involved
in a specific near term application, is based upon
theoretical machine design considerations such as gate
count ratios, logic to memory ratios and hardware
efficiency or duty cycle ratios for conceptual machines
which have not been reduced to practice during the
typical seven year development cycle for new com­
puter architecture.

Thus, until near term potentially cost effective
associative processor applications are accomplished in
operational environments, comparative cost effective­
ness analyses of proposed associative versus con­
ventional solutions will continue to be suspect. The
next 12 to 18 months should produce a substantial
improvement in the availability of reliable cost and
performance data for associative processor applica­
tions.

SUMMARY

Although several manufacturers are developing asso­
ciative processor equipment, the first version to be
produced in a production configuration was introduced
in May of 1972 by Goodyear Aerospace Corporation
following FAA on-site tests in 1971 at Knoxville,
Tennessee of a USAF -owned engineering model built
and demonstrated by Goodyear in 1969.

The processor provides full content addressability
and array arithmetic capability within "main frame"
memory coupled with a unique capability for wide
bandwidth (over 3000 megabits/sec for a 4-array
STARAN) input-output data transfers to mass data
stores. The associative programming language, APPLE,

STARAN 241

provides a flexible and convenient assembler for pro­
gramming array arithmetic and search algorithms
without the complex and costly indexing, nested loop
and data manipulation constructions required in
conventional computer programming.

The associative processor may be viewed as a soft­
ware-programmable super-peripheral, or special pur­
pose subsidiary processor, for attachment to any
general purpose conventional computer system via
standard channel attachment. In this role the super­
peripheral is assigned parallel oriented problem seg- .
ments and data bases which would otherwise, through
excess operating system software overhead, tend to
choke the conventional machine.

Although first applications of the associative pro­
cessor are of the real time, dedicated, command and
control type, the extension to large scale data base
management, on-line management information systems
with immediate response to complex multiple-key
queries, and large scale matrix computations await
only user decision and ingenuity to accomplish now
that production hardware and software has become
available at the 370/145 price level.

The cost effectiveness of associative processing has
yet to be proven in operational systems, but test
results from initial users should accumulate rapidly
now that associative processing is no longer only· an
interesting concept in the literature.

REFERENCES

1 A E SLADE H 0 McMAHON
The cryotron catalog memory system
Proc 1957 FJCC Vol 10 pp 115-120

2 L C FULMER W C MEILANDER
A modular plated wire associative processor
Proc IEEE Computer Group Conference June 1970

3 J A RUDOLPH L C FULMER
W C MEILANDER
The coming of age of the associative processor
Electronics February 15 1971 pp 91-96

4 J MINKER
A bibliography of associative or content-addressable memory
system: 1956-1971
Auerbach Corporation 121 N Broad Street Philadelphia Pa
19107 June 15 1971

5 N J STILLMAN
Associative processing and computer graphics-A feasibility
study
USAF Report RADC-TR-72-57 April 1972

6 C G BELL R CHEN S REGE
Effect of technology on near term computer structures
Computer March-April 1972 pp 29-38

SIFT-Software Implemented Fault Tolerance

by JOHN H. WENS LEY

Stanford Research Institute
Menlo Park, California

INTRODUCTION

Many computer applications have stringent require­
ments for continued correct operation of the com­
puter in the presence of internal faults. The subject
of design of such highly reliable computers has been
extensively studied,I1-14 and numerous techniques have
been developed to achieve this high reliability. Such
computers are termed "fault tolerant"; examples of
applications are found in the aerospace industry,
communication systems, and computer networks.
Several designs of such systems have been proposed2 •5 •

8.11.12.13 and some have been implemented. In general,
these designs contain extensive hard-wired logic for
such functions as fault masking, comparison, switch­
ing, and encoding-decoding.

This 'paper describes a new approach. to the design
of a fault-tolerant computer, with strong emphasis on
software techniques to achieve fault tolerance and
corresponding deemphasis on special hardware units.
One characteristic of the particular software approach
taken is that erroneous results are not detected im­
mediately after they occur, but rather at the Gonclu­
sion of the processing of a task. However, the errors
are not permitted to propagate. .

The particular design discussed here is tailored to
the use of computers for control functions in an ad­
vanced technology transport aircraft; this application
determines the scale of the proposed system. Al­
though extension to other applications might change
the size or speed of the system (or its units), the basic
concepts have sufficient generality to cover many
applications.

In designing the system, a basic consideration is
that the advent of large-scale-integrated (LSI) cir­
cuits implies that any reconfiguration or discarding
of equipment should be carried out at the unit level
(CPUs or memoryblo,cks) rather than at the com­
ponent level (gates or registers). In addition, eco-

243

nomic use of LSI demands that the number of dif­
ferent types of units be minimized, with high replica­
tion of each type.

Fault-tolerant computer systems vary greatly in
reliability requirements. A typical requirement in
space applications is for a probability between 95
percent and 99 percent that computing capability will
exist after 5 to 10 years of operation. This implies a
mean time between failure (MTBF) from 100 to 1000
years. * In the control of an aircraft, to which this
design was aimed, the requirement was for a prob­
ability of failure less than 10-8 during a 10-hour op­
erational period. This translates to a MTBF of 104

years, i.e., 10 to 100 times more stringent than the
above. The consequence of failure (possible loss of
human lives and economic loss) is, in this application,
extremely high and justifies the use of extensive redun­
dancy in the computer system where cost is, even with
redundancy, a small proportion of total aircraft cost.
The computing load for this application is such that
the computer must have approximately 16K words of
memory and be capable of better than 0.5 MIPS. **
Assuming LSI circuitry with a chip failure probabil­
ity of 10-6 per hour, the overall system design must
assume correct functional behavior in the presence of
multiple chip failures, which can be expected in a
computer system containing several hundred LSI

. chips.
Weare concerned with faults in the two major

subsystems, i.e., the processor and the memory. With
reasonable predictions concerning LSI development
in the next few years, analysis shows that the pro­
cessor will require approximately 10 percent of the
chips required for the memory. Therefore, we regard

* This statement does not imply that a single computer will
survive for 100 to 1000 years, but that n such computers will,
after y years, have suffered n·y/IOO or n·y/l000 failures.
** Millions of instructions per second.

244 Fall Joint Computer Conference, 1972

replication of the processor as an economic checking
and fault-masking technique. Protection of the mem­
ory function can be carried out either by replication
or coding or by a combination of both. This paper
describes a system using memory replication, but the
basic concepts are compatible with alternative meth­
ods for protecting the memory.

The important features of the system can be imple­
mented by a range of techniques going from hardware,
through microprogram, through system software, to
application software. The computer system described
in this paper places heavy emphasis on the use of
software to carry out fault detection and correction
procedures. The fault-tolerant procedures can be
made transparent to the application programmer by
suitable design of the support software such as com­
pilers or assemblers. A system in which such functions
are achieved by suitably designed hardware (or micro­
program) is also possible.

A central feature of the described system is the
prevention of fault propagation by the use of read­
only connections between processing modules. Another
important feature is the avoidance of any need for a
"lock-step" operation of replicated units, and a reduc­
tion in the frequency of fault checking. This results
from the strategy of only checking when the state of
the controlled (aircraft) system changes rather than at
each change of state of the computer. An implementa­
tion in which more of the fault-tolerant features were
in hardware would be faster in operation at the ex­
pense of flexibility of change that is given by the
software implementation as described. The system as
presented gives the designer the freedom to tailor the
system to the application by the following important
t.rade-off possibilities:

• An increase of speed by placing more of the fault­
tolerant functions in hardware or microprograms.

• Flexibility for varying the amount of protection
given to different application programs by using
software fault-tolerant techniques.

• Ability to change the fault-tolerant strategies as
new technologies emerge with new reliability
characteristics.

BACKGROUND

Existing designs of fault-tolerant computing systems
use a variety of redundancy techniques to achieve
fault tolerance. These techniques include, for example,
special codes for error detection and correction, and
the replication of units with means for detecting

whether or not several units carrying out the same
operation are in agreement.

The JPL STAR computer2 uses several redundant
codes at different parts of the system, as well as special­
purpose hardware to perform checking and rollback.
The approach taken by Hopkinsll does not include the
extensive use of redundant codes but relies heavily
on replicated CPUs, busses, and memories, with
special units to check for agreement between units.
These and other systems are designed to detect errors
soon after they have occurred-usually before the state
of the CPU s has been irreversibly changed or a memory
cell has been overwritten. These systems require that
any replicated units must stay in close step with each
other, usually at the instruction level (so-called lock
step). When detected, a faulty unit in these systems is
removed from the system (e.g., by switching or re­
moving power). If no provision is made to return a
once faulty unit to service when it returns to correct
operation, a severe cost penalty is incurred in the
event of transient errors.

The system we describe has many properties that,
in total, distinguish it from other fault-tolerant sys­
tems.

• Replicated units do not operate in lock-step
mode, but are only loosely synchronized. The
communication between CPU s is asynchronous,
thereby removing the need for an ultrareliable
system clock.

• Agreement between replicated units is verified
only at the completion of program segments
(tasks).

• Faulty units are not necessarily removed but can
either be ignored or assigned to tasks having no
overall effect.

• Transient faults do not necessarily cause perma­
nent removal of the faulty units. Furthermore,
the looseness of synchronization among sets of
tasks makes it possible to enhance immunity
from transients, by providing that redundant
versions of a computation may be done at dif­
ferent moments in time.

• The degree of fault tolerance can be different for
different tasks being performed, and can be
different at different times for the same task.

• No special hardware is used to carry out fault
detection or correction.

• Communication between CPUs is minimized so
that low bandwidth busses can be used, thereby
facilitating physical separation of modules in
environments where physical damage is a hazard.

• The design concept is independent of the way in

which the units are built, i.e., no specialization of
CPU or memory design is required for fault
tolerance, thereby allowing the choice to be based
on other properties, e.g., speed, availability.

• The total computing power of the system can be
varied by using units of different speed or by
changing the number of units.

SYSTEM DESIGN

The system (Figure 1) consists of a number of
modules, each composed of a memory and a process­
ing unit. The individual processing units within the
modules are connected to the corresponding memory
units with wide bandwidth busses. The intermodule
bus organization (Bl,B2,Ba)* is designed to allow a
processor to read from any memory but not to write
into other memory units. The intermodule bus is
expected to have a much lower bandwidth than an
intramodule bus.

The input/output (I/O) system, discussed in a
later section, is assumed to be connected to the busses
B1, B 2, and Ba. The input/output system shown in
Figure 1 consists of all the noncomputing units, e.g.,
transducers, actuators, and sensors. The part of the
total input/output that is carried out by program, e.g.,
formatting or code conversion, is handled in the same
manner as any other task, i.e., is replicated in several
processors.

The system is viewed as being regular in that no
module is a priori assigned a special role. All com­
putations that require high reliability are carried out
in several modules. We assume for the purpose of this
description that critical tasks are processed in three
units.

The computations that must be c,arried out are
broken into a number of tasks in such a way that no
task requires more computing power than can be
supplied by one processor. The tasks are given the
designations, A, B, C ... ; the processors are numbered
1, 2, 3 Each processor is capable of being multi­
programmed over a number of tasks, as illustrated in
Figure 2.

The control of the computing system is carried out
by an executive system that can be segmented by
function into two parts:

(1) Local Executive: functions that apply to each

* The bus logic envisioned does not use voting. The number
three is chosen for convenience of discussion.

Software Implemented Fault Tolerance 245

I/O SYSTEM

TA-71 0522-220

Figure I-System configuration

processor (e.g., dispatching,* reporting errors,
loading new task programs).

(2) System Executive: functions that are global to
the system (e.g., allocation and scheduling of
work load, reconfiguring).

A complete set of the software functions of Class 1
is present in each processor; those in Class 2 are car­
ried out in a sufficient number of processors to provide
the degree of fault tolerance required. The functions
are realized by programs that have the same task
structure as all other programs.

The normal operating mode for a processor carrying
out a task is to follow the flow of control shown in
Figure 3. Data required for the task are assumed to
have been computed by several processors (including

* Dispatching. is the executive function that initiates a new task
at the completion of the previous one.

246 Fall Joint Computer Conference, 1972

PROCESSORS

r--------------A

2 3 4 5 6 ••• n

A X X X

B X X X

C X

D X X X

E X X X

TASKS F X X X

G X X X

I-! X X X

I X X X

J X X X X X X

.
N TA-71 0522-221

Figure 2-An example of task/processor allocation

possibly the same one carrying out the task). A check
is made to see if the data are available in all proces­
sors. If not, the fact is noted in the memory of the
module and the dispatcher program within the module
is entered to determine the next task to be processed.
The next processing is the reading of input data from
the several processors where copies exist. A validation
is now carried out, typically by a two-out-of-three
vote. If any of the copies of the input data are found
not to agree, then this fact is noted for later processing
by the executive. If all the copies are different, the
fact is noted and control moves to the dispatcher
program. The computation of the task is now carried
out, the results are left in the memory of the module,
and note is made (in the module) of the fact that the
task is computed.

Certain important principles apply in the above
scheme:

• No processor writes into the memory of another
module.

• Input data in a module are not destroyed during
the computation : If the computation is repetitive,

the results of one cycle that may be used as input
for the next cycle are placed in a different loca­
tion in memory. Similarly, because the input data
within one module may be needed later by another
processor carrying out the same task, the input
data must not be destroyed until all cooperating
processors have read, validated, and used the
data. This may require that the data be preserved
over several iterations if they are used by another
task that is delayed behind the first .

• All conditions (e.g., errors, task complete) are
left as notes to be read later by the system execu­
tive.

• The dispatcher program, which exists in each
module, maintains a queue of tasks to be com­
puted. The data for this queue are read from the
memories of the modules that are running the
executive. The flow of control of the dispatcher is

GATHER INPUT
DATA

COMPUTE

PLACE
RESULTS

MARK TASK AS
COMPLETED

DISPATCHER

NOTE NON­
AVAI LABI LlTY Dispatcher

NOTE 1_
L--__ E_R_R_O_R_S_----J~ Dispatcher

T A-71 0522 -222

Figure 3-Typical task flow

itself similar to that shown in Figure 3, except at
the end, when the control is transferred to the task
that is at the head of the queue.

• The dispatcher in each processor checks from
time to time to see if the system executive has
changed the queue of tasks for that processor. A
single bit (per processor) is set in the system
executive tables to indicate a change of the queue.
If this bit is not set, the dispatcher waits some
time (e.g., 1 msec.) before querying it again,
thereby preventing continuous interrogation and
consequent heavy intermodule bus traffic.

The above scheme has a degree of fault tolerance
without special hardware requirements on the memory
or processor units. In particular, an erroneous calcula­
tion carried out by a module does not destroy the
validity of the total system, because results are re­
j ected by the next calculation.

The general strategy outlined above places certain
constraints on hardware and software components.
These constraints are discussed below.

INPUT /OUTPUT

The input/output subsystem must be designed and
operated with the same fault tolerance as the central
processing complex. Different modes of operation are
possible, depending on the devices that are connected
to and controlled by the system. The favored principle
is to use replication wherever possible. Varying capa­
bilities of fault tolerance in the central computing
system can be achieved by using varying replication
and by voting at all times when valid data are required
(e.g., at the start of a task). The results of a calcula­
tion will exist in several (usually three) copies and
eventually a vote must be taken. A vote that is re­
quired to allow another task calculation is carried out
in multiple modules; however, if the vote is for output,
then the output system or output unit must conduct
the final vote.

There are circumstances where the nature of the
input/ output unit assists fault tolerance through
replication, as in the following cases:

• Certain input systems (sensors) can be replicated;
each sensor is then individually read (and voted
on) by all modules requiring the input.

• Certain output devices can be built in a way that
employs a "natural" kind of voting process in
the final output medium. For example, a CRT
display could be refreshed with each frame de-

Software Implemented Fault Tolerance 247

rived from a different module. Data on which
all modules agreed would be displayed brightly;
other data would be more faint. Assuming that
faults persist only for short periods, this would
result in a temporary flicker for a few frames
before the executive removed the malfunctioning
module from the calculation. In the application
to which the design is aimed, there are other
output devices, .e.g., flap controls possessing
similar "natural" voting capabilities.

In the event that the device is not in one of the above
classes, another "final voter" must be designed that
inherently possesses the required reliability. This
consideration is independent of the architecture chosen
for the central computing system.

We note that the architecture described here can
operate in a mode whereby the replicated versions of
output data (or the replicated data from input sensors)
can be processed by any of the processing modules;
hence, no modules need be specially designed for this
function.

BUS DESIGN

The bus system (Bl' B2, Ba as in Figure 1) used for
communication between modules must be designed to
be fault tolerant. We remind readers that the bus
system is used only to allow the processor of one
module to read from the memory of a different module.
The design need not be such that all bus traffic is
checked (as in most other fault-tolerant architectures);
however, it should allow a processor the choice of
different busses in the event that a bus has failed.

A structure based on a four-port memory module is
shown in Figure 1. In this structure, ~ach module
would have connection between its units (processor
and memory). The bus structure, B1, B2, Ba, would
enable a processor to choose different paths in reading
data from the memory units of different modules. It
would be appropriate to connect the I/O system to
this bus structure. In the event that a four-port mem­
ory unit such as shown in Figure 1 is not available
(or not suitable from other standpoints), then the
structure can be achieved by attaching a single-port
memory to all busses using conventional techniques.

A processor that needs to read from the memory of a
different module must seize control of a bus. Logic
associated with a bus must ensure that only one
processor has control of a bus at any time. In addition,
the bus must be allocated to a processor for only a
finite time, thereby preventing a faulty processor

248 Fall Joint Computer Conference, 1972

from seizing a bus permanently. An internal clock in
each bus can control the period for which the pro­
cessor in question dominates a bus. A failure in this
control logic only causes the loss of that bus. It remains
to be shown that no situations can occur where the
failure of one unit can cause incorrect action of several
other units, i.e., we require a design so that faults
remain localized.

The interconnection of the units has only one pur­
pose-to enable any processor to read data from any
memory using any bus. The interconnection system
does not allow a processor to write into other memo­
ries. A separate connection is assumed for a processor
to write into its own memory.

In summary, the following sequence of action is
carried out in reading data word (w) from memory
(m) to processor (p) via bus (b).

(1) Processor p places b, m, and w in registers and
signals all busses with a DATA REQUEST.

(2) All nonbusy busses scan all processor DATA
REQUEST lines (continuously).

(3) If a data request line is on, and b equals the
bus number, the bus goes into BUSY state
and stops scanning the processors. The requested
bus has now been selected by the processor.

(4) The selected bus transmits m, w, and DATA
REQUEST from the processor registers to all
memory modules. •

(5) All nonbusy memory modules scan all busses
for a DATA REQUEST line that is on, and
then compares the m on that bus with its own
number.

(6) If a match is found, the memory goes into
BUSY state and ceases scanning the busses.
The w on the bus is placed in. the memory
address register and a read request issued to
the memory. The memory is now selected.

(7) When the word is read by the memory, it is
placed on the data lines of the bus and a DATA
READY line is turned on.

(8) The DATA READY and data are transmitted
to the requesting processor. When the data have
been received by the processor, the DATA
REQUEST line from that processor is turned
off.

(9) Action 8 above will cause the BUSY states
(actions 3 and 6) to be dropped, and the bus
and memory to resume scanning for other
requests.

In the above sequence, each unit that requests

action of another unit makes a request (e.g., DATA
REQUEST). The granting of the request is made by
the requestee. This arrangement, for example, will
prevent a processor from requesting all the busses
simultaneously as the busses will only respond if the
bus request (b) agrees with their bus number. There­
fore, it would require failure of all of the busses to
completely disable the bus structure.

In addition to the above, it is assumed that each
unit has logic associated with it that prevents it from
being seized indefinitely. This logic, in effect, says "If
I have been BUSY for greater than a time interval
~, then the particular connection will be broken and
scanning will be resumed for other units requiring
action." It is possible to incorporate in this logic the
capability to ignore requests from the offending re­
questor in the future, thereby removing that unit
from affecting further system operation. The time
interval, A, will be chosen to be just greater than the
greatest time of any correct action request.

The word address (w) that is transmitted to tlie
memory module can be subject to any transformation
that is convenient in the design of the processor or

Other Memory Units
,--__ -'A~ __ _

II
I I

.------)---

PROCESSOR 1

Other.Processors

Figure 4-Processor/bus/memory connection

Other
Busses

memory, i.e., it can include indirect addressing, index­
ing, base registers, paging, or any convenient combina­
tion of these. In addition, it is possible to incorporate
a cache (in the IBM 360/85 sense) in the processor
design.

The scheme outlined above obviates the need to
provide a BURST MODE type of transmission as
each word that is transferred can follow the sequence
given. In the event that several words are required,
the processor successively requests each word and
the bus is seized and the word is delivered. If other
processors require the use of the bus during the period
of the multiple word transfer, a form of cycle stealing
will take place as the bus scans the other units and
honors the request before resuming scanning.

A suitable structure for the processor/bus/memory
connection is shown in Figure 4.

THE SYSTEM EXECUTIVE

The system executive is concerned only with alloca­
tion of resources. All other special functions typically
associated with an operating system (e.g., I/O control)
would be treated as parts of the application program
set.

It is expected that, in steady state, the executive
would employ a simple scheduling algorithm to allo­
cate resources. Exceptions to this would occur under
two conditions:

(1) Change of task set to be computed
(2) Error conditions-either transient or perma­

nent.

In both of the above cases it becomes necessary to
reallocate resources. This task would not have to be
carried out with high speed because, in the application
considered, condition 1 above will be known in ad­
vance; condition 2 can be delayed for a short time
because of the fault-tolerant procedure of replication
and voting, which is carried out by the processors.

The executive system carries out any required
synchronization. For example, the calculation required
for advanced attitude and flutter control in certain
aircraft must be carried out every four milliseconds.
This calculation entails reading some sensors and then
computing the new state variables using the old state
variables and the input data. All modules assigned
to this task have queues in their dispatcher task. The
executive places a message in its memory for these
processors to update their queues, whereupon the next
calculation of this task is carried out by the several

Software Implemented Fault Tolerance 249

Enter

DETERMINE IF

PLACE ON
TASK LIST

ANY RESOURCES I ... ----~
LOST (GAINED)

ALLOCATE TASKS
TO RESOURCES

Exit

Enter

""-------'- E x it

UPDATE QUEUES
FOR TASKS IN

TIME SLICE

Exit

Figure 5-Executive

Allocation

Scheduling

TA-71 0522-224

processors. When tasks are assigned to processors, the
executive must designate the other cooperating pro­
c.essors so that all data required may be obtained.
For the executive to carry out this synchronization,
it must have a time reference that can be read by the
processors or that causes an interrupt.

The calculations carried out by the executive are
handled in exactly the same manner as other calcula­
tions (see Figure 3). A number of processors cooperate
on this task, thereby providing fault tolerance when
computing the executive. All processors within the
system must know the designations of the several
processors that are assigned to the executive. These
data are held in the memory associated with the dis­
patcher that requires input data from the executive.

The flow of control for that part of the executive

250 Fall Joint Computer Conference, 1972

concerned with allocation and scheduling is shown in
Figure 5. This flow will be embedded as the actual
calculation as shown in the fourth ("Compute") box
of Figure 3. The allocation function is used to deter­
mine which tasks are to be computed and by which
modules. It will be invoked relatively infrequently as
it is required only when allocation changes are to be
made. The scheduling function determines the time
period during which any calculation is carried out.

FAULT-TOLERANCE PROCEDURES

By suitable design of the executive, the system
architecture can carry out different fault-tolerance
procedures for different requirements. The assumed
fault-detection method is by comparison of multiple
copies of data. This comparison is carried out by
software imbedded in a system routine-a copy of
which is present in all processors.

The first step in the computation of any task is to
input the data required to carry out the task. This

c:;::J'
No

SUCCESS?

No

Exit

STEP TO NEXT
BUS

No

ALL
BUSSES
TRIED?

Exit

TA-71 0522-225

Figure 6-Input communication subroutine

data will exist in the memory of three computing
modules. We will use the phrase "Input Data Set"
(IDS) to denote the set of words required to carry out
the calculation of a task. It is envisioned that all
tasks requiring data will obtain it by calling a single
subroutine. This subroutine is the only code (outside
the executive) that is concerned with detecting errors;
correcting them, in some cases; and in all cases, re­
porting errors to the executive. By the use of a single
subroutine for error detection, avoidance, and report­
ing, the application programmer is relieved of the
concern for this aspect of the system. This subroutine
is shown in flow chart form in Figure 6. Its functional
specification is explained in terms of the input pa­
rameters, output parameters, and the actions carried
out.

Input parameters

IDS NUMBER

IDS SIZE

BUFFER

PROC LIST

Output parameters
FAILURE FLAG

ERROR FLAG

ERROR VECTOR

Action

(The identification of which
input data set is to be input.)
(The number of words to be
input.)
(The address of the buffer in
which the words are to be
placed.)
(The address of a list of pro­
cessor numbers from which to
input.)

. (A boolean output variable,
set = 1 if the input could not
be accomplished.)
(A boolean output variable,
set = 1 if input was successful
but an error was detected.)
(The specification of the IDS,
word position, bus and memory
involved in an erroneous input.)

Read an input data set (IDS NUMBER) consisting
of IDS SIZE words from the processor memories
specified by PROC LIST. If. all versions of each word
obtained from the different processor memories agree,
the data are placed in the memory at address BUFFER,
the ERROR and FAILURE FLAG are set to 0, and
a return is made to the calling program. If all versions
of a word do not agree but a majority agreement
exists, the data are placed in the BUFFER, the
ERROR FLAG is set to 1, and the details of the

(presumed) erroneous input are placed in memory to
be read later by the executive. If no agreement can
be found, the ERROR and FAILURE FLAGS are
set to 1, the data are not placed in the BUFFER, and
a return is made. If no action can be accomplished
(e.g., because of a faulty bus system) the units that
are faulty are noted, and a return is made. The sub­
routine will attempt to use different busses for each
word transferred. If no response is obtained from an
input request, the subroutine steps to the next higher
bus.

Fault detection by software voting is compatible
with hardware fault-detection techniques such as
parity schemes. Such hardware, if it exists in memo~
ries, busses or processors, can be used to assist detec­
tion and diagnosis of faults. The primary advantage
of incorporation of hardware checking is to allow
faster checking in the event that an application requires
faster correction of fault conditions than can be
achieved by software.

An important benefit in using software techniques
for fault detection and tolerance is that freedom is
retained to change the degree of fault tolerance, either
because experience gives data on which better methods
can be based, or because the different applications
require different degrees of fault tolerance, i.e., some
are more critical than others.

If threefold replication is used throughout the sys­
tem, a single faulty unit will result in one of the repli­
cated processes computing a wrong result. The use of
the wrong result in subsequent calculations will be
avoided by the fact that other (correct) copies of the
data will exist in other modules and when used will, by
voting, enable a processor to distinguish the correct
data from that which is erroneous.

Consider now the case of double faults existing
simultaneously. We must distinguish two cases, uncor­
related and correlated faults. By correlated faults, we
mean two faults that cause the computation of two
equal but incorrect results. Clearly, two correlated
'faults cannot be tolerated if the fault-tolerance proce­
dure consists merely of voting among three versions
of all results. The probability of such correlated faults
will be extremely low and for most applications is
acceptable. However, in the system as described, we
can achieve greater reliability in the event that the
application is so critical that this low probability IS

still unacceptable. Two strategies are:

(1) Use threefold replication for all critical applica­
tions, and in the event of any disagreement,
do not use the results until yet further pro­
cessors have carried out a repetition of the

Software Implemented Fault T<?lerance 251

calculation, . for example use two more pro­
cessors (making a total of five) and only act if
three or more agree.

(2) Use fivefold (or greater) replication* of tasks
for all critical applications.

Both of the above strategies will prevent double
correlated errors from causing the use of a wrong
result in subsequent programs or output. The cost
penalty in the above strategies implies that they will
only be used for extremely critical applications, where
the cost of extra computing equipment is small com­
pared with the penalty for failure, e.g., in aircraft and.
space missions.

In the case of double uncorrelated faults, we need
only consider the case of simultaneous faults. Double
faults that occur separated by a time sufficient for the
executive to have carried out corrective action after
the first fault do not need to be regarded as different
than two instances of single faults, which can be
tolerated.

Two simultaneous but uncorrelated faults will have
the possible effect of producing two different incorrect
results from a calculation. These two results will be
compared with the one correct result produced by the
nonfaulty unit in a threefold replication scheme. Before
the result is used in any subsequent calculation (or
output), the presence of three differing results will be
detected and the executive will initiate greater replica­
tion in other processors until sufficient agreement can
be found to distinguish the correct from the incorrect
result:

In considering the effect of multiple faults in the
system, an improvement in reliability is achieved by
the fact that the multiple processors are not operating
in a lock-step mode. A short term, widespread transient
in the system hardware (e.g., power supply or bus
system) will not necessarily cause errors in the same
application programs in the processors, thereby in­
creasing the probability of being able to detect and
correct the errors from the transient.

The executive of the system must itself be fault
tolerant. This is achieved by the same techniques as
for application programs. Each of the replicated copies
of the executive will use data from itself and the
other copies. In the event of errors in one of the execu­
tives, the other copies will not use the data computed
by it, thereby keeping their results valid. The cor­
rectly functioning copies will initiate a new copy of the
executive in another processor (which will entail

* This requires availability of a sufficient number of the various
units (processors, memories, busses).

252 Fall Joint Computer Conference, 1972

copying the program to that processor) and will signal
the malfunctioning processor to discontinue processing
the executive. In addition on inspection of the data
in the correct copies of the executive all processors will
cease referencing the data in the incorrect copy,
thereby preventing a system breakdown in the event
that the malfunctioning processor continues processing
the executive even though requested to discontinue.

The fault-tolerant procedures outlined above can
be summarized as follows:

• Given at least triple replication, all single faults
can be tolerated, and all uncorrelated double
faults can be detected.

• Given greater resources (memories, busses, and
processors), multiple uncorrelated or correlated
faults can be tolerated.

It is expected that, in the event of a permanent
fault detected, a unit will be relieved of any active
part in subsequent calculation. Therefore, the ca­
pacity of the system will be reduced; however, until
a large fraction of the system is faulty, the fault­
tolerance procedures can be continued without jeop­
ardy. It is expected that with the use of LSI circuitry,
the different units will be replicated manyfold (e.g.,
10 of each unit); for less critical applications, fewer
units will suffice. The removal of faulty units will be
accomplished by allocating them to null tasks in the
case of processors, and by not referencing them in
the case of memories. The overall effect of these
strategies is to achieve a graceful degradation either
of computer capacity or fault tolerance, whichever is
desired in the particular application.

CONCLUSIONS

A system architecture has been presented that achieves
great flexibility in fault-tolerance procedures. The
salient points of the design objectives that are achieved
are:

• Fault tolerance can be varied so that for some
tasks it can be arbitrarily high, using suitable
replication and reconfiguration strategies; for
other tasks, the fault tolerance can be less.

• No special design requirements are placed on the
processing units or memories, thereby enabling
different designs to achieve different computer
power.

The basic feature of the system is that high level
fault detection, avoidance, and correction functions

are achieved by software procedures rather than by
special hardware. The increased computer load caused
by the software fault tolerant techniques has not been
assessed fully at this time, but it is expected to repre­
sent a reasonable cost for the benefits gained.

The system is currently in the design stage with
many problems still to be solved. Some of these prob­
lems are also present in other fault-tolerant architec­
tures. Typical among these problems is that of finding
ways to fragment the memory so that only a part
rather than a whole memory unit needs to be recon­
figured. Another problem concerns finding methods
of checking units of the system that are not regularly
used. Reconfiguration software (or hardware in other
architectures) will only be invoked infrequently and
may itself have been subject to damage during its
period of quiescence. In the system as described, this
reconfiguration is carried out by a program whose
correctness could be verified from time to time by
inspection carried out by a program that reads and
compares the multiple copies.

REFERENCES

1 A A VIZIENIS
Design methods for fault-tolerant navigation computers
Technical Report 32-1409 Jet Propulsion Laboratory
Pasadena California October 1969

2 A A VIZIENIS et al
The STAR (Self-Testing and Repairing) computer-An
investigation of the theory and practice of fault-tolerant
computer design
IEEE Trans Vol C-20 No 11 pp 1312-1321 November 1971

3 A A VIZIENIS
Arithmetic error codes: Cost and effectiveness studies for
application in digital system design
Proceedings of Symposium on Fault Tolerant Computing
Pasadena California March 1971

4 W G BOURICIUS et al
Investigations in the design of an automatically repaired
computer
Digest of the First Annual IEEE Computer Conference
Chicago Illinois September 1967

5 W C CARTER W G BOURICIUS
A survey of fault tolerant computer architecture and its
evaluation
Computer Vol 4 No 1 pp 9-16 January 1971

6 W C CARTER et al
Logic design for dynamic and interactive recovery
Proceeding of Symposium on Fault Tolerant Computing
Pasadena California March 1971

7 W C CARTER P R SCHNEIDER
Design of dynamically checked computers
Proceedings of IFIPS ·1968 Congress
Edinburgh Scotland August 1968

8 R SENTNER
Presentation of advanced avionic digital computer baseline
definition

Naval Air Systems Command Washington D C September
1969

9 J GOLDBERG K N LEVITT R A SHORT
Techniques for the realization of ultra-reliable spaceborne
computers
Final Report Phase 1 Contract N AS12-33 SRI Project 5580
Stanford Research Institute Menlo Park California
September 1966

10 J GOLDBERG et al
Techniques for the realization of ultra-reliable spaceborne
computers
Final Report Contract N AS12-33 SRI Project 5580 Stanford
Research Institute Menlo Park California June 1969

11 A L HOPKINS JR

Software Implemented Fault Tolerance 253

A fault tolerant information processing concept for space
vehicles
IEEE Trans Vol C-20 No 11 pp 1394-1403 November 1971

12 L J KOCZELA
A three-failure-tolerant computer system
IEEE Trans Vol C-20 No 11 pp 1389-1393 November 1971

13 G Y WANG
An in-house experimental aerospace multiprocessor-EXAM
ERC Memo KC-T-031 NASA Electronics Research Center
Cambridge Massachusetts September 1967

14 G Y WANG
System design of a multiprocessor organization
Memorandum RC-T -179 NASA Electronics Research
Center Cambridge Massachusetts 1969

TRIDENT -A new maintenance weapon

by R. M. FITZSIMONS

IBM Maintenance Technology Center
Research Triangle Park, North Carolina

Everyone is familiar with maintenance. It is a neces­
sary requirement for almost everything we have, from
spacecraft and automobiles, to the heels on your shoes.
The maintenance that this paper is concerned with is
that of business machines and their associated products.
These devices are the means to the end required for
your business and other endeavors.

Business machine maintenance in" the recent decade
has become more and more important to the user, the
manufacturer, and of course the maintainer. For
example, this is a paper on business machine main­
tenance. A few years ago this subject would have had"
a difficult time even being a sub-topic during your
coffee break. Another example is the IBM facility in
Raleigh, N.C. which treats maintenance as a tech­
nology in itself.

In spite of this new found attention, business ma­
chine maintenance is little different in principle than
any other maintenance service. There are two principal
factors affecting the maintenance task. The first, and
the most familiar one is that of the product to be main­
tained. Product maintenance requirements are based
on what the device is, how hard we use it, how much
we pay for it, how well we treat it, what it is made of,
who made it, etc. This is the maintenance factor that
is intrinsic to the product itself. Certainly, the service
component of the product" has been with it from its
earliest design days. Within IBM, this principle of
service is very well covered by the maintenance func­
tion being involved early in the product development
cycle. Examples of this type of maintenance planning
are familiar to you in the form of service aids such as
the flight engineer's console on a commercial jet
liner, the oil pressure light on your automobile, or the
stop on error switch on various components of your
business machine.

The other key factor of service is the maintenance
delivery system. This is a facet of service that is always
present but very rarely discussed. When examined
closely, this principle of service shows that maln-

255

tenance is also a classical study in logistics. Whether
discussing the spacecraft or the business machine, the
problem is getting the right man to the right place, with
the right data and the right part, at the right time. There
are five "rights" to that preceding equation and all of
them must fit "right on" for a successful maintenance
task.

In the last ten years, things have been changing. Up
until then, three of the "rights" were variable and two
of them were· fixed. For example, the three variable
"rights" were and still are, the right man, the right
data and the right part. The fixed "rights" were the
right place and the right time.

The equipment user of the past always knew where
the right place was. This has changed. In the complex
teleprocessing systems of today, how often can anyone
pick the right place on the first try?

The equipment user of the past always knew the
right time. It probably was immediately because he
could not use it. In the system of today, the user must
now decide, if it is immediately. It could be immediately
and someone fixes the machine while the user also runs
it. It could be immediately if someone diagnoses the
problem while the user runs it and it is fixed later. Or
it may be the equipment problem will be diagnosed and
fixed at a time that will be convenient for all con­
cerned.

Thus, the logistics problem is not a simple one. It
is not only very complex, but constantly growing in
complexity. Not only is the complexity of the logistics
problem significant, but so is the magnitude. The
number of times this logistic system is exercised is
quite impressive. The magnitude must be expressed
in gee whiz numbers like, "It is my estimate that the
maintenance logistics systems used to support the
business machine industry in the United States is put
to the test in excess of one million' times per month,
and that is probably being conservative".

The effectiveness of this logistic system in delivering
the goods is also clearly recognized because, "Most of

256 Fall Joint Computer Conference, 1972

the time all of the previously identified five rights are
done correctly." However, most of the time is no longer
enough and "always," while it may never be, is cer­
tainly a rightful quest. It is only when the maintenance
logistic system fails to deliver its first level of support
that anyone acknowledges its existence and usually
only then to condemn it. It must be repeated that a
logistics system involves not only the maintainer, but
the user. Remember, "where" and "when" are now
variables.

There has always been a backup or second, level
support to the first level support system; it has many
identities. However, it is familiar to most as "the
specialist," the "factory man," or the "the guy coming
in from out of town." In any case, at IBM this backup
is part of an even more complex maintenance logistics
system, because:

• There are fewer second level support people and
they are more widely distributed.

• Second level support people face more difficult
travel problems since they must go longer distances
on unplanned activities.

• The second level support person may already be
on another assignment and it would be difficult,
if not impossible, to arrange an alternate support
path.

• It is difficult if not impossible to have the second
level support person bring with him extra data
or information that he has collected at his home
base.

• The time of day and the day of the week have a
great bearing on how quickly and efficiently second
level support can be brought to bear.

While these second level support problems are being
resolved, the original problem has changed from the
average or typical maintenance call to a long call.
Second level support has a very high efficiency level.
It can be said that "Most of the specialists fix most
of the calls most of the time." This sequence can be
repeated one or two more times depending on the
problem and the service organization. However, each
iteration and each sequence adds additional length
to the call, especially as seen by the user.

The objective of any service organization is to col­
lapse calls in the shortest possible time. This obj ective
becomes a delicate balance between the maintenance
characteristics of the unit and the maintenance logistics
system of the service function. With new products,
this balance must be reached as soon as possible. To
do this, some of the items to be considered are the rate
of a specialists learning curve, the initial distribution
of the product, quality of the pre-shipment qualifica-

tion, the initial stocking of the parts logistics system,
engineering and sales change activity, and the com­
plexity of operating system support.

There are solutions to the second level logistics
problem. The easiest, of course, is to have all of the
first level support be specialists. This is like saying,
in music, that we need all composers instead of some
composers and lots of arrangers. Maintenance does not
require a composer or specialist all of the time, but
when it needs one, the need is immediate.

The potential value added to a service organization
by specialists is very great, and must be well controlled
or the resource is wasted. Popular notion is that if a
specialist could take or assist on every call, there would
be a tremendous reduction in the length of calls. This
just is not so. As stated before, during the first level
of support, most of the men fix most of the calls most
of the time. There is no value added by a specialist if
the on-site maintenance package has already isolated
the problem to a Field Replaceable Unit. There is no
value added by the specialist if the tape drive motor
is burned out and the only decision that can be made
is to replace it.

The specialist must be used only on those calls where
he can make use of his ability. The expense of a second
and third support level is great and the service func­
tion must always balance the need against the cost.
Otherwise, too much support eX,ists when not needed,
or not enough support when needed.

So, the proposition, which was to use only specialists,
was not really a good answer. What seems a better
answer is to build a logistics system that not only
insures the right part is available, but that the right
specialist and the right data is available at the right
time. This new logistics system must function to the
same or higher degree of accuracy than that which is
built into a parts system. Parts logistics systems have
been with us for some time; human and data logistics
systems are something else.

One thing is for sure. One system is tough to control,
two are mightly difficult, three may be nearly impos­
sible. There is a great deal to look at when attempting
to define such a complex system. However, as in any
such effort, some part of the system will be completely
new, but most of it will be built on previous experiences
or facilities.

As a normal first step in system design, there must
be a name for the system. For the purpose of this
paper, the name "TRIDENT" was chosen. Since
there are three major sections to this system, it seemed
fair to name it after the three-pronged spear of Neptune,
God of the Sea. Since "TRIDENT" must also be an
acronym for something, let's say it stands for TRIple
DEfender of New Technologies.

In building "TRIDENT," we can use existing parts
logistics techniques. The other two delivery systems
related to specialists and data are going to be the
tough ones. The next easiest system to build seems to
be the data system. However, very little is known
about technical data. For example, what is its life
cycle? More important, what is its half life cycle by
user? What are the different index requirements re­
quired by the developer and the maintainer? How can
one identify which data "must know" versus "nice
to know."

The thing to do is get started and create a data
system that will not only produce results, but will also
provide the experience base and information necessary
to complete the second step of "TRIDENT." In
building this part of the system there is another "given"
parameter that can be used. The first level support team
does fix most of the problems most of the time with data
that are already on site. The new logistics system will
not try to replace this data, but will attempt to sup­
plement it when necessary.

The goal, then, is to be able to deliver data when the
first level of support needs it. Initially, to whom is it
given? Enough is known about the distribution prob­
lems of data to decide to deliver it to those who will
always be involved on the tough calls-the second level
support team. In this way, early costs are reduced
while getting the best level of return on investment.
To send the data out to everyone is of great cost,
especially when not all can make use of it, therefore,
give it only to those few who have a great need.

What does this data look like? Most of it starts as
precautionary or preventive information. It says,
"Warning, safety change. Make the following modi­
fications immediately." Another message may be,
"Do not put this engineering change on machine Type
A with Feature X unless you do the following." Or,
"If you experience intermittent problems on Function
J, check the following items." And even, "We are
having trouble keeping Item Q from wearing. If you
have this problem, call XYZ immediately."

There will be a lot of this type of information, there­
fore, good abstracting techniques will help reduce user
reading, time. This enables the user to read the text
only if the abstracts interest him. Deliver the data
daily to the users home base, also classify it in some
way so that he has only to look at data concerned with
his specialty. This creates a well informed specialist
who has a good idea of the national picture of his
product. You have boosted the learning curve by ex­
posing maintenance personnel to the national picture
of problems on his machine or specialty.

Now, the second level support man is getting armed
on a daily basis with new information. He is better

TRIDENT-A New Maintenance Weapon 257

able to render on-site assistance. At least, he has a
pretty good idea if someone else has either solved the
problem or is already working on the solution to it.
But there is still a difficulty here. When dispatching a
specialist to an on-site call, he is moved away from his
new found data base. He is now running on memory
again. Agreed, this is better than it was before, but
maybe there is also an even better way.

It does not take long to find out what is really wanted
for a second level support technical data base. Output
is wanted on a graphics device, with hard copy as an
alternative. The user must be able to scan read large
quantities of data to find what is wanted. All of the
data scanned must relate to the problem. Also, the data
that can solve a problem may be found under many
headings in many different places. It may also be
hidden in the text of data that is not even indexed
under the required specialty or machine type. The
technical data base must be searched not only by title
and abstract, but also it must be searchable by each
word in the text. The search must be fast. Certainly
the search to identify what items must be reviewed
should be consistently done in under ten seconds.
Also, the stepping or paging through of the data while
scan reading is in process must certainly consistently
be achieved in under three or four seconds.

Another item that will set our TRIDENT design
is the advantage of keeping the data base with the
specialist. There are two ways to do this. One is to
insure availability of graphics devices having access
to the data base wherever the s'pecialist is. The other
is to keep the specialist and his data base access device
fixed and move the difficult calls to him.

N either alternative is easy to do but the second has
the most going for it. If the call can be moved to a
specialist, a major part of the third logistics problem
is solved. Concentrations of second level support
personnel can now be made. Skill backup and total
coverage around the clock can be provided. Second
level travel time can now be used for problem solving
time, thereby increasing specialist efficiency. A problem
solving environment can be maintained at all times.
Also, all of this can be done without making any major
technology breakthrough.

A call can be moved to a specialist in two mays. The
most familiar is by voice connection. This one makes
excellent use of the specialist's experience and his
second level support data base. The first level of sup­
port man can identify the problem. The verbal ex­
change will soon identify a search argument for the
data base. Answers will be developed and hopefully
a high hit rate of problem solving capability will be
achieved.

If the voice sequence fails, there is one more way of

258 Fall Joint Computer Conference, 1972

moving the call to the second level of support. That
is via a teleprocessing connection between the equip­
mEmt experiencing the problem and the second level
support location. But this is not applicable to all types
of equipment. Initially, where is a good starting point?
The best place is with teleprocessing devices that can
use the switched telephone network. Where else?
Certainly, switched network teleprocessing capability
can be added to other business machine equipment
so that it can be manipulated by a specialist from a
remote location. Some of the considerations that go
into the selection of the devices that will have this new
type of support are as follows:

• One connection must allow access to more than
one unit or system to reduce cost.

• The device that has this connection must be
capable of running an on-site maintenance pack­
age, even while the equipment that it is running
on, is malfunctioning.

• The connection must be able to operate in anyone
of the maintenance environments selected by the
user-concurrent, or dedicated. It must also offer
significant growth advantages for new uses to
insure it can make use of new applications without
maj or new costs.

The choice is not too difficult, based on the following
reasoning:

• The connection should- be to a central processor so
that more than one device can be supported by
the single connection.

• The connection should be capable of connecting to
mUltiple processors if they are in a single location.

• The connection should be to a large enough
processor so that a sophisticated on-site main­
tenance package can be used.

• The connection should be into processor complexes
that offer both maintenance environments.

• The connection should be into processor complexes
that will offer new applications growth.

In summarizing all of these items, what is .really
desired is to connect into computer based systems that
will insure long term usage.

Having completed the general design parameters of
the third prong on our "TRIDENT" project, it is
known that it will not be 100 percent effective in solving
the second level personnel logistics problem. Dis­
patching men to the problem site to resolve some of
the tough ones is still needed but every experience both
good and bad will be valuable. As was pointed out in

the beginning of the paper there are two principal
factors to maintenance, the intrinsic maintenance
factor and the logistics factor. The business machine
can be maintained without a "TRIDENT" system.
The mission of the "TRIDENT" system is to increase
the effectiveness of the maintenance delivery system
and reduce the 'length of the call as seen by the business
machine user.

IBM has a "TRIDENT" in place ,today. In the
Field Engineering Division of IBM it is known as the
Parts Inventory Management System, the Field Sup­
port System, and a Remote Maintenance Support
System made up of the Teleprocessing Test Center
and RETAIN /370.

The Field Engineering Division's Parts Inventory
Management System (PIMS) is based in IBM's
Distribution Center in Mechanicsburg, Pennsylvania.
PIMS uses a System/360 Model 65 teleprocessing
system to maintain both the parts flow and the admin­
istrative data required to insure a highly effective
maintenance parts posture. This system makes use of
the IBM corporate teleprocessing network as its prime
branch office communications path.

The Field Engineering Division's Field Support
System (FSS) operates out of the Division's].\!anage­
ment Information System Center in Sterling Forest,
New York. FSS uses a System/360 Model 75 connected
to hard copy terminals located in Division Headquarters
in White Plains, N ew York and in branch offices and
plant sites. FSS hosts two major applications. The
first is a technical information distribution system.
This is the application that keeps field specialists
aware, on a daily basis, of the latest technical infor­
mation in his area of expertise. The technical infor­
mation is provided in both abstract and text form.
After reviewing technical abstracts the specialist can
retrieve full text information as required.

The second application on the Field Support System
is called the Field Instruction System (Figure 1). FIS
is a coast-to-coast computer-based instruction system
that provides self-study training for IBM customer
engineers with the Field Engineering Division, which
installs and services information handling systems and
equipment.

The availability of computer-assisted instruction
in every branch office has two benefits:

• It reduces the time that customer engineers other­
wise would have to spend away from their office
while training at an education center, thereby
increasing the 'availability of key resources at the
point of application .

• And consequently reduces the cost of education
while achieving the course obj ectives.

The branching capability and storage capacity of
the system permit the student to:

• Master a new topic at a personalized pace.
• Skip over topics already mastered through ex­

perience or previous training.
• Receive help upon request from sequences pre­

pared to clarify difficult points in the course.
• Test his new knowledge.

The student's interaction with the system and its
flexibility in meeting different student needs increases
his acceptance of this form of training, and prepares
him to perform his service skills effectively.

Today, as one customer engineer studies through the
Field Instruction System, he will be sharing the com­
puter with classmates from l\-:Iaine to California. The
other students could be studying the same course or
any of the other courses stored in the computer.

Figure 1-Field Instruction System-A coast-to-coast computer­
based instruction system provides self-study training for IBM

customer engineers servicing data processing equipment.

TRIDENT-A New l\1aintenance Weapon 259

Figure 2-Retain/370-An IBM customer engineer has im­
mediate access to a remote source of maintenance information
for fast service to IBM System/370 customers through RETAIN /
370 (Remote Technical Assistance and Information Network/
370). It helps minimize the duration of interruptions to customer
operations due to problems with IBM equipment or program­
ming. An IBM customer engineer can obtain information from
a specialist at a strategically located Field Technical Support
Center, thus saving time by reducing the need for the specialist

to travel to the customer site.

The courses, as written and programmed into the
computer, simulate the interaction which might take
place in a conventional classroom between a student
and his instructors, and supplement education ac­
tivities at the division's education centers throughout
the nation.

IBM customer engineers have immediate access to
a remote source of maintenance information called

. RETAIN/370, (Remote Technical Assistance and
Information N etwork/370) which combines technical
support with comprehensive computer files of main­
tenance information. It helps minimize the duration
of interruptions to customer operations due to problems
with IBM equipment or programming. It saves time
by reducing the need for specialists to travel to the
customer site, and by enabling customer engineers to
quickly obtain information on a wide variety of prob­
lems and solutions.

RETAIN /370 is used by the IBM customer engineer
when a problem cannot be defined or resolved with
on-site diagnostic techniques within a short period of
time (Figure 2). To access RETAIN/370, the customer
engineer contacts his technical support center via the
dial-up network and describes the problem. The
specialist then searches the data base for fixes that

. relate to similar problems, or together, the customer
engineer" and the specialist may use the data link to
run maintenance programs. The output can be dis-

260 Fall Joint Computer Conference, 1972

Figure 3-Retain/870-An IBM service specialist at a strate­
gically located Field Technical Support Center uses RETAIN /
370 (Remote Technical Assistance and Information Network/
370), a teleprocessing network, and the power of a computer in
Raleigh, N.C., to diagnose malfunctions remotely. The specialist,
working with the customer engineer at a customer location, can
search a data base for solutions, or together, the customer engi­
neer and the specialist may use a data link to run maintenance
programs. The output can be displayed both on the customer's

System/370 and on the specialist's display termainl.

played both on the customer's System/370 console
and on the IBM 2915 display terminals in the Division's
Technical Support Centers in N ew York, Chicago,
and Los Angeles (Figure 3). Problems and corrections
discovered are fed back to the RETAIN /370 data base
for future reference. In this way, resolutions of new
problems can be made available within minutes to IBM
customer engineers working on System/370's through­
out the country.

Tp.e system consists of three major components: the
customer installation, the Field Technical Support
Centers and the RETAIN /370 support center in
Raleigh. The focal point of the system, though, is the
customer installation and the customer engineer on
location who performs the actual maintenance.

The customer account includes the customer engineer,
the customer's System/370, diagnostics and other
standard Field Engineering Division maintenance tools
such as oscilloscopes, meters, maintenance manuals,
etc. Also included at the customer account is a specially
designed IBM Field Engineering tool, the 2955 data
adapter unit. This unit provides a data link between
the customer's System/370 and· the RETAIN /370
system. This data adapter allows a specialist, together
with the on-site customer engineer, to initiate and
control maintenance tests in the customer system, and
view transmitted test results and other maintenance
data remotely.

The specialist in a Field Technical Support Center
is equipped with a display terminal, a printer, a data
phone and a microfiche viewer, all of which provide
rapid access to maintenance information. The support
centers are also equipped with machine logic diagrams
and reference manuals, program listings and other
normal maintenance publications.

The third major component of the system is the
RETAIN /370 Center in Raleigh, North Carolina. It
utilizes a System/360 Model 65 with teleprocessing
links to Field Technical Support Centers as well as to
Domestic IBM laboratory sites. A centralized data
base and a data link are the heart of RETAIN /370.

Included in the data base are such standard service
aids as:

• An index to service pUblications covering theory
of operation and maintenance manuals.

• An Engineering Change Announcement index.
• An index of service aids providing reference to

microfiche text and service aid abstracts.
• An index to programming documentation.

The data base also contains special information files,
such as:

• Symptom/Fix file, a temporary data storage built
from experience data provided by customer en­
gineers, and support personnel.

• Incident Log, a running log of statistical and
technical information developed during the reso­
lution of problems.

• Specialist Log, used by each specialist for notes of
technical interest.

RET AIN /370 provides two data searching and re­
trieval methods: one interpretive, and the other incre­
mental.

The interpretive method is used when the existence
or location of specific maintenance information is not
known. With this method, the data base can be searched
by using a series of key words entered by the specialist
from information provided by the customer engineer.

The incremental retrieval method uses progressive
index levels, such as the master index, which lists all
machines by unit type. When a unit type is entered,
a sub-index lists related information categories. A
selection from this page produces a list of abstracts on
the selected category. When an abstract is selected the
full text of the selected record is shown.

The data link feature of RETAIN /370 transmits the
results of diagnostic programs operating in the cus­
tomer's System/370 to the Field Technical Support
Center. Then the customer engineer and specialist can

examine the same information to further diagnose the
customer's problem.

After obtaining customer approval to use the data
link, the customer engineer uses the 2955 data adapter
unit and changes from voice to data mode. The results
of the diagnostic programs can be simultaneously re­
viewed by the customer engineer and the specialist at
the Technical Support Center. Where security is a
concern, all data transmitted can be stored or printed
for customer inspection.

The RETAINj370 support system is available 24
hours a day, 7 days a week.

IBM customer engineers servicing teleprocessing
equipment anywhere in the country can telephone the
Teleprocessing Test Center in Raleigh, North Carolina.
They use on-line diagnostic tests similar to ones that
are available to run in the customer's system to track
down difficulties in teleprocessing terminals and other
communications equipment. The customer engineer
can also confer with a test center specialist.

In operation since October 1969, the center has
proved to be a fast, efficient service aid. It provides
the customer engineer with remote diagnostic data and
verifies IBM teleprocessing equipment operation­
usually within minutes-without interrupting the
customer's system. In effect the Teleprocessing Test
Center is a substitute host system for a teleprocessing
terminal.

Figure 4-Teleprocessing test center-A customer engineer serv­
icing IBM teleprocessing equipment anywhere in the country
can telephone IBM's Teleprocessing Test Center in Raleigh,
N.C. at any· time. He uses diagnostic tests to track down dif­
ficulties in teleprocessing terminals and other communications
equipment. He also can confer with a test center specialist in

Raleigh for further assistance.

TRIDENT-A New Maintenance Weapon 261

Figure 5-Teleprocessing test center-A service specialist at
IBM's Teleprocessing Test Center in Raleigh, N.C., confers
with an IBM customer engineer at a customer location to track

down difficulties in IBM teleprocessing equipment.

Using the regular telephone network, the customer
engineer calls the test center from the customer's tele­
processing machine (Figure 4). After dialing and signing
on with a special number the center's computer runs
a general diagnostic test. A specific test tailored to a
particular problem also can be requested. The diag­
nostics test the customer's terminal and control equip­
ment with a series of exercises. The results of the
exercises are sent to the customer engineer for his
analysis.

If during the testing, the customer engineer needs
more information, he can press the "talk" button on
the data set and confer with a test center specialist.
This action flashes a signal to the display terminal
alerting a specialist that assistance is required. From
his display terminal, the TP specialist can monitor the
diagnostic tests being ,run by the customer engineer
(Figure 5). The experienced specialist can often recog­
nize the difference, for example, between a properly
operating terminal and one that isn't, by merely listen­
ing to the signal.

Besides handling trouble calls, the test center reduces
installatiorl time of new teleprocessing systems. As
each machine arrives, the customer engineer can install
and check it, whether or not other parts of the system
are installed.

A small portable diagnostic device also allows IBM
customer engineers to test IBM's teleprocessing equip­
ment that do not normally attach to the switched
network.

This portable device, the 1200 Baud Terminal Diag­
nostic Analyzer and Tester (1200 TDAT) is especially
useful to teleprocessing installations using dedicated
lines because it makes available the facilities of the

262 Fall Joint Computer Conference, 1972

Figure 6-1200 Baud terminal diagnostic analyzer and tester-A
small portable diagnostic device allows IBM customer engineers
to test virtually all of IBM's teleprocessing equipment. This
portable device, a 1200 Baud Terminal Diagnostic Analyzer
and Tester, enables customer engineers across the country to
test teleprocessing equipment via telephone through IBM's

Teleprocessing Test Center in Raleigh, N.C.

Teleprocessing Test Center. Previously, only tele­
processing installations with access to the telephone
dial network could connect to the TP Test Center
(Figure 6).

TDAT features an acoustic coupler, tape recorder,
and a modem that allows connection through leased,
or dedicated telephone lines, from a teleprocessing
terminal at one location to another at a remote loca tion.

Besides the acoustic coupler feature, the portable
testing instrument can do the following:

• Simulate a data set, another teleprocessing ter­
minal or even a remote central computer by being
able to play recorded data into a terminal.

• Monitor a teleprocessing system, and when an
error occurs, stop and store data leading up to,
and including, the failure for analysis.

By recording data as it is transmitted from or to a
terminal, the Terminal Diagnostic Analyzer and
Tester in effect verifies transmitted data. The tape
recorder also can be used as an exerciser to service a
terminal with a malfunction. In this way, a customer's
central processing unit need not be tied up exercising
the terminal.

IBM has demonstrated that the power of data pro­
cessing equipment can be successfully applied to solving
the logistics problems of maintenance.

In conclusion, it can be stated that IBM, and there- ,
fore IBM's customers, have benefited from the Field
Engineering Division's endeavors based on two con­
cepts. The first is the concept that maintenance is a
technology in and of itself and, therefore, just as with
other technologies, is amenable to investment for in­
novation.

The second item is the concept that successful main­
tenance involves the effective solution of a total system
problem in logistics. By clearly defining the problem,
the application of innovative effort is being accom­
plished in an optimal fashion.

Computer system maintainahility
at the Lawrence Livermore Lahoratory*

by JOHN M. BURK and J. EDWARD SCHOONOVER

University of California
Livermore, California

INTRODUCTION

Since LLL's computer complex, or network, is in
operation 24 hours a day, 7 days a week, maintenance
procedures and controls have been or are in the process
of being developed which minimize disruption of user
service. The challenge of developing such tools and
procedures is intensified by the diversity of hardware
within LLL's system-CDC, IBM, DEC, Ampex,
Lockheed General Precision, * and LLL-and by the
number a~d type of users on-site-1,000-plus scientific
and administrative users. Although designed for a
time-sharing system (designated at LLL as the
Octopus), many of the tools and procedures apply to a
stand-alone system as well since the integrity of each
user. (host) computer to function as an independent
entity has been preserved. Tools and procedures de­
scribed include on-line and off-line diagnostic software.
In addition, fail-soft procedures (recovery procedures
effecting minimal system interruption) developed at
LLL are described. In conclusion, the diagnostic tools
and procedures are evaluated and findings from
samplings of system availability are presented ..

This paper presents not a theoretical approach to the
problem of computer system maintainability, but r~ther
the evolutionary techniques extant at Lawrence LIver­
more Laboratory.

OVERVIEW OF LLL'S COMPUTER NETWORK
AND ADMINISTRATIVE POLICIES

Description of network hardware

LLL's computer network presently has five user, or
host, computers; namely, three CDC 7600's (Serial NDs.

* Work performed under the auspices of the U.S. Atomic Energy
Commission.
* Reference toa company or product name does not imply
approval or recommendation of the product by t~e ? niversity
of California or the U.S. Atomic Energy CommIsSIon to the
exclusion of others that may be suitable.

263

1,2, and 17), a CDC STAR-100 (Serial No .. 1), and a
CDC 6600 (Serial No. 13). A letter identificatIOn (R, S,
T A and L) has been used to designate each machine , ,
(Figure 1).

The CDC 6600 has a 128K-word memory, ten
PPU's (peripheral processing units), three disks with
approximately 1.3 billion bits, eight tape drives~ a card
reader, a printer, a punch, and a DD80 35mm mICrofilm
recorder and display scope.

Each CDC 7600 has a 64K SCM (Small-Core
Memory), 512K LCM (Large-Core Me~o:y), ~en
PPU's two disks with approximately 10-bIllIon bIts,
a 160-r'mllion bit drum, eight tape drives, a card reader,
and a printer.

The CDC STAR-100 has a 512K-word core memory,
five input/output (I/O) stations, two paging dr~ms
(approximately three times core memory!, two dISks
(7600 equivalent), four 9-track tape drIves, a card
reader and an on-line printer.

The' control, or hub, computer consists of two DEC
PDP-IO processors and their shared 256K-word memory
(Figure 2). It is directly connected to the host computers
by high-speed (12 MHz) interfaces to transport data
between the host computers and the shared data base
which consists of a trillion-bit IBM Photostore, a 3.2
billion-bit IBM data cell, and eight 707 -million-bit
CDC 844 disk packs. The hub computer also has
dedicated a 880-million-bit General Precision Librascope
disk which is used as an intermediate storage and
buffering device. A PDP-IO processor also contr?ls t~e
TMDS (Television Monitor Display System) WhIC~ ~Ia
a 16-channel, 128-position switch connects 128 teleVIsIOn
monitors, each of which can have additional monitors
serially attached. A color capability also has been
implemented.

Four DEC PDP-8's serve as concentrators and
control the Teletype (TTY) sub-network. Each PDP-8
may have 128 interactive teletype terminals attached
and may be connected to two host computers. A PDP-8

264 Fall Joint Computer Conference, 1972

PDP-lO

6 Evans and Southerland
Graphics complex

PDP-10 File Transport and
Stora e Network

IBM Photostore

General Precision Disk

? CDC 844 Disk Pack

o Television Monitor
Display System

o Series PDP-8 Teletype Network

6 40' Teletypes expandable to 128

200 Series PDP-8 Teletype
Network

~ 128 Teletypes

400 Series PDP-8 Teletype
Network

6 128 Teletypes

600 Series PDP-8 Teletype
Network

~ 128 Teletypes

PDP-11/20 Based
Remote Job Entry Te rm inal
Network

6 12 card readers /line printers
expandable to tapes" cassetts

PDP-11 /4 5 Based
Graphics Terminal Network

6 40 terminals expandable to 128

'PDP-l1 /4 5 Based (Developmental)
Graphics Terminal Network

6 8 terminals expandable to 128

PDP-11/20 ID Computer

c:::J-4.

CJ

CJ

7600 R 7600 S 7600 T STAR A 6600 L

I II II II 1 I I
I J.. 1 1 1 - - -

.-dynamically assignable data-channel connections.

Figure 1-0ctopus distributed network

to PDP-8 connection allows the teletype sub-network to
function independently of the PDP-10 hub computer.
A PDP-11/20 ID computer is connected to the PDP-8's;
its primary duty is to act upon and control individual
user accessibility within our security framework
(Figure 3).

Two Princeton Electronics graphic terminal sub-net­
works are used for remote visual graphical interactivity.
They have a 256-expended-character-set capability.

An additional sub-network of RJET's (Remote Job
Entry Terminals) provide for I/O at remote locations of
the Laboratory. At present, each terminal consists of a

Figure 2-File transport and shared data base network

TTY, 600-lpm printer, and 400-cpm card reader;
however, they can be expanded to include magnetic
tape and tape cassettes.

A user mode within the hub computer system allows
the use of one PDP-lO processor to drive the Evans and
Sutherland, LDS-l computer and its associated inter­
active graphics terminals.

Administrative policies and procedures

User access accountability

All network accesses, whether it be day or night,
individual user or computer operator, are via TTY
remote terminals. An identification message must be
transmitted which identifies the host computer being
addressed, the user, the user's division, and, if required,
security level accessibility. Additional operator and
division user numbers are required during production
periods under operator control. (Job mix, priority,
interactivity, and maintenance procedures are control­
lable by the operator.)

Figure 3-The teletypewriter sub-network

Computer System Maintainability 265

The executive systems-designated STAR on the
CDC STAR-100, FROST on the CDC 6600's, FLOE on
the CDC 7600's, and HYDRA on the PDP-lO-verify
the ID messages and establish appropriate linkage. In
addition, the executive systems verify time allocation by
machine per day, night, and weekend; authorized users
within each divisional account; and the percentage level
each user may draw upon its division's total time
allocation for each period.

LLL's executive systems are written and maintained
in-house. While it may seem that much effort is spent
"inventing the wheel," at least that wheel precisely fits
the vehicle for which it is intended. The time delays
normally associated with adding new system features or
fixing old ones are minimal, and the constraint of
compatibility with the rest of the world does not exist
other than at compiler and assembler levels. The ability
to tailor-make an executive system architecture has
facilitated the implementation of LLL's maintenance
and fail-soft procedures.

Disselllination of network perforlllance to users

All TMDS terminals, when otherwise not in use,
display a dynamic system status which is continually
up-dated by automatic system messages and by opera­
tor-initiated information messages. Automatically, the
PDP-lO (hub computer) periodically pulses each of the
components attached to it and displays their status on
the TMDS monitors. For instance, if a user is running
direct from a TTY to a host computer via a live and
healthy PDP-8 and if the interface connecting that
PDP-8 to the PDP-lO is not functioning, that linkage
would be reported as failing. Each "Operator Informa­
tion" (OP INFO) message initiated by the operator or
automatically by the system is placed in a buffer and
sent to all TTY's, in addition to being displayed on the
TMDS. TTY messages forewarning the user of system
interruption, tape backlog, and system dead starts, for
example, are helpful in reducing user frustration
(sometimes).

Another communication medium used is the "Octo­
gram," a daily news release which keeps the user
up-to-date on day-by-day activity. The "Octopus,
Communique" is a more detailed and permanent
documentation medium sent to all computer users.
These communiques describe system modifications,
additional sub-routine or utility routine functions and
other information of a permanent form prior to its
release in a formal document or manual.

Bi-weekly C.I.E. (Computer Information Exchange)
meetings enable further communication. On alternate
weeks, Computation staff members meet with repre-

266 Fall Joint Computer Conference, 1972

sentatives from LLL's major computer user divisions
and departments to discuss methods which, hopefully,
will result in procedures that will satisfy their needs.

Fault analysis. and liaison

First level investigation and determination of comput­
er malfunctions is undertaken by the Systems Opera­
tions Section (SOS) of LLL's Computation Department.
This section acts as a focal point and collection agency
of facts and determines appropriate remedial action.
SOS assists the operating staff, system programmers and
the various engineering maintenance personnel (IBM­
Data Cell/Photostore; CDC-Host Computer; LLL­
Hub Complex) on an on-call, 24 hours-a-day basis.

In addition, an operator on each shift is appointed to
keep in close touch with the Systems Operations
Section, and each engineering group responsible to the
time-sharing system also has an appointed liaison.
Consequently, explicit formal channels exist for rapid
communication.

MAINTENANCE TOOLS AND TECHNIQUES
USED

Host computer diagnostic software

On-line software autom.atically scheduled

A subset of manufacturer's standard diagnostic
software for the CDC 6600 and CDC 7600 is used to
check functional units, memories, arithmetic precision,
and random operand performance. Since these routines
are automatically scheduled by the executive system
and run aspart of the normal operational job mix, they
are subj ect to all the operating system idiosyncrasies of
scheduling, loading, and timing and provide in a
real-time sense a meaningful measure of hardware
status.

The CDC 6600 routines run every 30 min for 20 sec
each. The CDC 7600 routines run every 15 min for 1 sec
each. Errors cause the offended routine to be restarted
at twice its current time limit. The restart process has
been programmed to continue until the error is no longer
noted (error designated as intermittent) or machine is
extensively diagnostically· pre-empted (solid). Errors
noted are sent to the operator's output TTY station, and
pertinent memory dumps are hardcopied for the cus­
tomer engineer. If the diagnostic failures are intermit­
tent, maintenance decisions become a value judgment;
that is, if the frequency of the error is low, immediate
maintenance action may be deferred.

On-line rem.ote execution software

On demand or desire, diagnostic software may be
executed from remote stations without noticeably
perturbing the operational job mix. This remote execu­
tion may be initiated by any user; however, it is usually
done only by systems or maintenance personnel. An
extensive open-ended job set is available which has been
designed to exercise the mainframe and central process­
ing unit (CPU) as well as peripheral hardware.

Off-line diagnostic software

Maintenance actions may require the suspension of
all user services. If the suspension can be scheduled and
does not involve write destruction of disk or memory
system tables, the operational job mix can be saved to
disk and automatically restarted after the maintenance
action is complete. Manufacturer's standard diagnostic
software is available.

Hub computer diagnostic software

On-line software autom.atically scheduled

The following diagnostic tests are automatically
scheduled and executed by the executive system:

(1) Every 30 sec, 1 page of random data (512 36-bit
words) is written to the G-P Librascope disk,
read back, and compared. The disk controller
hardware VERIFY function is also checked, and
pertinent error comments are output to the
operator's console TTY station.

(2) Every fifth data burst (maximum 64K 60-bit
words) out of the hub computer to any device is
read back and compared. Pertinent error com­
ments are output to the operator's console TTY
station.

(3) Every 30 sec the status ("hung" or "responding") .
of the IBM Data Cell is sampled. Pertinent
error comments are output to the operator's
console TTY station.

(4) Every time the IBM Photostore is referenced, its
status ("up and available," "disconnected," "in
recovery," etc.) is recorded on the TMDS, and
pertinent error comments are output to the
operator's console TTY station.

(5) Each time the TMDS display is updated (3.5
sec), the hub computer sends a message to each
host computer and to each PDP-S. If there is no
reply, this fact is noted by the hub computer. If

the device fails to reply three times in a row, the
status is recorded on the TMDS as follows:
"DOWN" for the nonresponding PDP-8 and
"N /R" for the nonresponding host; date and
time of status report are also included.

(6) Every error detected by the hub computer when
reading or writing on the G-P disk, Data Cell,
and ~hotostore is trapped and analyzed. A 15-
line message, which includes the device, time of
error, type of error, status of all control registers,
and number of retries, is output to the engineer's
TTY station. These printouts become a perma­
nent log of all I/O errors detected by the hub
computer. Persistent errors (catastrophies) in­
voke an automatic recovery procedure involving
the hub computer executive system reload.
Error comments are made, and three bells are
sent to all TTY stations signalling the event.
Every attempt is made to insure the integrity and
automatic completion of the hub's job queue.

On-line remote execution software

Diagnostic routines designed to evaluate network
components may be executed from a remote station by
systems or maintenance personnel. These routines are
time-shared in the hub computer.

(1) Specialized tests include:

• Photostore controller tests
• disk pack tests
• data acquisition system tests
Each tests the specified devices under simulated
operation conditions since the device itself must
be off-line. The routines send control messages,
set or read status registers, and check data
transmission using any of the various sub­
channels available.

. (2) Inter-machine tests
A complex of six routines is used to exercise and
evaluate all possible communication paths within
the file transport network. These routines deter­
mine the status of control functions, communica­
tion links, clocks, and interfaces between the hub
computer and the designated host or remote
terminal. (Interfaces include multiplexors, selec­
tors, adapters, file channels, and line units.)
When required for the test, a PDP-8 and a host
PPU or remote terminal are dedicated to the
diagnostic tests and unavailable to the opera­
tional network.

Computer System Maintainability 267

Off-line diagnostic software

In a stand-alone mode, an additional series of
diagnostic programs exist which include operational
tests for: .

• console TTY
• tape reader/punch
• CPU instructions
• priority interrupt hardware
• data transfers
• memory protection and relocation
• processor timing
• I/O bus
• internal clock
• G-P disk-saturation
• memories-LLL, Ampex, Lockheed
• Data Cell

These tests are of two classes: (1) those which send
control messages and verify responses, and (2) those
which test data transmission paths by sending patterned
data, having the device echo the data back via hardware
control, and then comparing with the original data. All
these tests can run in either a single-step or continuous
mode.

Fail-soft procedures

Fail-soft procedures are considered to be those
recovery processes which allow a resource flexibility and
rapid automatic error recovery.

Commands enabling resource flexibility and
sharing

Circumstances arise when it is desirable to have
within the system an easy method of managing hard­
ware resources. In developing this fail-soft capability, a
comprehensive set of commands has evolved.

Commands available include:

PALL HSP

D NMMM

Send all printer output to
tape for off-line processing
on the high-speed printer.
The printer can now go
down for maintenance.
N is a disk unit· number 1
through 4. MMM is
either "In" or "Out."
This will allow or pre­
vent, respectively, the

268 Fall Joint Computer Conference, 1972

creation of new files on
disk N. If "Out" existing
files remain accessible and
disk N can be scheduled
down for maintenance.

SP NNNNNN IN TEXT Allows only privileged
user number NNNNNN
access to the host. All
users' programs are saved
on disk, and all attached
TTY stations are logged
Dut. The TEXT is sent to
all users attempting to log
in to the host.

For a complete list of commands refer to the
Appendix.

These commands are initiated from the operator's
input console TTY station and communicate with the
executive system or with any active user's remote
TTY. The commands provide a necessary resource
flexibility in that no hardware device is permanently
dedicated. Within the framework of these commands,
the operator can provide back-up capabilities for I/O
devices such as drums, on-line printers, and on-line
punch. He may also elect to restrict the creation of all
disk files to a specified disk unit or to prevent the usage
of specific disks and/or tape units.

This management of tapes, disks, drum, printers, and
other resources is desirable not only for back-up
purposes, but also to make maintenance activities
easier. The operator may take any specified device

, off-line for maintenance without disturbing the job
queue or interrupting service to the active users. These
devices may also be returned to service without inter­
ruption to the active user. In addition to the ability to
manage peripheral hardware resources, there are com­
mands that terminate the time-sharing process and
restrict use of the system. This capability is particularly
convenient when a suspect hardware failure develops
that requires the host system to be dedicated to the
task of error detection or machine maintenance. When
this requirement exists, the operator disconnects all
codes that are active in memory and requeues them on
disk. The integrity of these codes is assured since there
is an option within the command set to re-initialize
the job queue. Similar techniques to manipulate devices
attached to the hub computer are available to a privi­
leged set of users.

Additional hardware flexibility is achieved by re­
source sharing: File transport channels can be used as
secondary back-up routes for transmitting Teletype
message packets when a PDP-8-to-host machine link is

lost. Card readers and tape transports may also be
shared by more than one host computer.

Dead Starts

The philosophy of dead starts has always been to
minimize the consequences resulting from the dead
start. The dead start options which have evolved
represent LLL's progress in realizing that goal. Although
circumstances requiring manual intervention and the
consequent dead start vary, every effort is made to use
the option inflicting the least hardship on the user. At
the "softest" level, all disk files are preserved and disk
queue jobs eligible for loading are automatically re­
started. Unless the SP NNNNNN IN command was
used before the machine failed, all j<?bs residing in
memory are disconnected and removed from the
operational job queue. At the "hardest" level all files
are lost· all jobs are disconnected; and a recent tape
copy of the public (permanent) files is restored to disk.

The dead start commands which follow are initiated
from the engineer's console keyboard/display scope:

DS Preserves all disk files and the disk queue. All
in-memory jobs are disconnected.

DSD Identical to DS plus a pertinent memory dump
is hard copied for the system's programmers.

DSR Preserves all private files and the disk job queue.
All in-memory jobs are disconnected. Public files
are restored.

DSU Preserves most disk files; all jobs are discon­
nected. The disk file catalog (index) tables are
restored from drum. Since the file index to drum
save is a periodic function (2 min) some
temporary (private) disk files may be lost.

DSN Preserves public files. All private files are lost,
and all jobs are disconnected.

DSB All public and private files are lost, and all jobs
are disconnected. Public files are restored.
For the preceding dead start options, all execu­
tive system reloads are initiated from the drum.

DSC Transfers the executive system from tape to
drum' a DSC must be followed by the appro-,
priate dead start option.

A utomatic recovery for memory parity errors

An automatic recovery procedure for intermittent
memory parity errors has been implemented within
LLL's 7600 executive system (FLOE). This fail-soft
technique requires no operator intervention, maximizes
user availability, and allows for the prescheduling of

memory maintenance actions. In the case of a memory
error in a user code area, only that code is affected. All
other jobs proceed normally and without interruption.
The affected code is disconnected and removed from the
operational job mix. Errors occurring in executive
system memory areas require a reload (dead start) from
drum of the affected system coding or tables. This
procedure requires less than 1 min. The integrity of the
operational job mix is subject to the particular dead
start option, DS or DSU, instituted. The automatic
recovery procedure does allow for a deferment of
maintenance actions to a time period less visible to the
user. This ability to schedule emergency maintenance
periods has maximized system availability during prime
usage periods.

Fault possibilities and dead start options are as
follows:

Memory Error In

Resident executive system coding
Resident executive system tables
Resident user program

Option Instituted

DS
DSU
None*

The operating system determines the intermittency
of the memory parity error by four-patterned reads and
writes of the affected memory area(s). If the error does
not reappear, automatic recovery is initiated and
normal time-sharing resumes. A pertinent diagnostic
comment describing the error is output to the customer
engineer's TTY station and the operator's console TTY
station. An entry is made in the event-file, and a fatal
error status is returned to the offended user's program
if the error occurred within a user's program.

It is a standard operating procedure to require
emergency maintenance (EM) if the same recoverable
parity error occurs twice within 2 hr. The SP
NNNNNN IN command would be used to allow for the
automatic restart of the operational job mix at the
completion of the maintenance action.

Dynamic disk flaw tables

Before a CDC 7600 disk file is declared available for
general use, a static table of flaws is generated. These
flaws represent areas of the disk that contain hard faults
(solid read parity). These data are incorporated into the
appropriate operating system tables during a DSN or
DSB dead start option and remain a permanent part of
the systems flaw table data base. Flawed areas, one disk

* The faulted user program is disconnected.

Computer System lVlaintainability 269

sector (512 60-bit words) in length, are not available for
assignment to a program requesting disk space.

During normal time-sharing periods, the system flaw
table data base is dynamically maintained. After
thirty-two consecutive disk read failures, an entry is
made in the file catalog index of the offended disk file,
and an appropriate error status is returned to the
program. No further system action is taken, and the
disposition of the offended file is entirely under the
control of the executing user program. When the
program releases (destroys) the offended file, executive
system action is required to ascertain the solidity of the

. flaw.
If the executive system cannot perform an error-free

read of the disk sector containing the flaw, the flaw
table data base is dynamically expanded. A diagnostic
comment detailing the error is output to the operator's
console display scope and the event-file. The dynamic
flaw table entries are maintained over all dead starts not
requiring the loss of private files (see dead start section).

Ideally, no static flaw tables need to be maintained;
however, user frustration levels have been dramatically
reduced by not requiring the continued re-discovery of
known hard flaws. The transference of flaw entries from
the dynamic to the static table is done periodically when
it is determined an area of disk has indeed developed a
hard fault.

Magnetic tape integrity

Insuring the integrity of magnetic tapes and
associated tape transport hardware continues to be a
maj or maintenance problem. User frustration levels
reach all time highs when recorded information cannot
be reliably retrieved. Since tapes seem destined to be
with us for a considerable period of time, a major effort
has been made to alleviate the problem.

All manufacturers suggested hardware modifications
have been made. Vendor maintenance has been
increased. All physical tapes are certified before release.
All operators are educated in proper tape handling
procedures. Tape transport heads and vacuum columns
are cleaned periodically (once per hr).

Assuming perfect tapes and functional hardware, tape
integrity is now assured. In a real world sense, however,
extensive write recovery software procedures had to be

. implemented. The primary assumption is that if a tape
can be written with no error indication, it can be read
error free. Therefore, during the write operation, only
bad parity records must be verified as having been
rewritten correctly, i.e., the rewritten record and
associated record gap and erased area must be error-free
readable.

270 Fall Joint Computer Conference, 1972

Utilizing this recovery has reduced our non-recover­
able error rate to less than 0.01 percent from as high as
10 percent.

An extensive remote time-shared tape testing pro­
gram is also available on the host computers. This test
allows the simultaneous evaluation of tape transport
hardware, software drivers, and physical tapes in the
real-time environment.

Stand alone ability

The integrity of each host computer to function as an
independent entity has been preserved. In the advent of
a failure in the PDP-8/PDP-I0 Teletype network, the
ability to communicate with a host would be com­
pletely removed. While that portion of the host's
operation job mix requiring no Teletype interaction
would continue to run, no new jobs could be entered in
the system.

To prevent the host from becoming "idle," a
Teletype Simulator (TTYSIM) version of the Liver­
more time-sharing system can be loaded. This system
relies entirely on a console keyboard/display unit as the
interactive input and output media. Other than the fact
that system operation is now completely operator
controlled, no restrictions or limitations are imposed on
the operational job mix.

Current preventive maintenance policy

If it were feasible to have total hardware redundancy,
on-line maintenance would not be required since all
component repair time would be off-line, and hence
invisible to the user. This, however, is not the case;
therefore, maintenance policies and procedures must be
established which attempt to insure minimum network
degradation while maximizing total system availability.

Two diametrically opposed maintenance policies have
been periodically tried and systematically discarded:
(1) schedule large amounts of maintenance, and (2)
schedule no maintenance.

Scheduling extensive maintenance periods did not
work. Not only was the device or component off-line and
unavailable for extended periods, but faults requiring an
unacceptable number of unscheduled maintenance
periods continued to occur.

Scheduling no maintenance periods only compounded
the unscheduled maintenance problem and indeed
resulted in significantly decreasing overall total system
availability. By not allowing any scheduled or preven­
tive maintenance periods marginal logic cannot be
detected and replaced, nor can maintenance actions

JASONDJFMAMJJ ASONDJ FMAMJ JASOND JFM

1969 1970 1971

Figure 4-History of 7600 maintenance actions

designed to increase total system reliability be per­
formed.

The amount of PM time allowed is continually under
review, and whenever the hardware shows an increased
reliability, the PM periods are reduced.

Table 1 shows LLL's current preventive maintenance
schedule and represents at best the current trade-off
between the above maintenance philosophies.

Network availability during the prime usage periods

> «

r~~:::~::~
~ 19~1 F M A M J J A SON D 19J72 F M A M J J

0 'l: ~ I
Q.

~

I I I I
85 J F M A M A S 0 N D J F M A M J J

1971 1972

Figure 5-Percent of total machine availability

Computer System Maintainability 271

TABLE I-Current Scheduled Maintenance

Machine Monday Tuesday Wednesday Thursday Friday Interval

Network hub x x x x 4:00-8:00
CDC 6600 a 4:00-8:00
CDC 7600 x x b 4:30-8:00
CDC 7600 x x b 4:30-8:00
CDC 7600 x x b 4:30-8:00

a CDC 6600 taken on alternate Mondays.
b Any two CDC 7600's may be taken, but not all three at the same time.

is maximized by conducting scheduled maintenance at
a time least visible to the user (0400-0800 hours) and by
selecting subsets of components to be down con­
currently.

For comparison, the scheduled or. preventive mainte­
nance (PM) and unscheduled or emergency maintenance
(EM) history for the CDC 7600 R (serial No.1) and
CDC 7600 S (serial No.2) host computers is illustrated
in Figure 4. These maintenance actions required the
host computers to be off-line and therefore completely
unavailable to the user. Figure 5 shows the average total'
percentage availability for the CDC 7600 Rand S host
co~puters, the CDC 6600 L (serial No. 13) and CDC
7600 M (serial No. 31) host computers and the total
percentage availability for the PDP-10 hub or control
computer. The percentages are arrived as follows:

Hours in Month-(PM + EM)
Hours in Month

EVALUATION OF DIAGNOSTIC
MAINTENANCE TOOLS AND
PROCEDURES

The diagnostic maintenance tools do provide for
rapid, positive identification and isolation when the
component or device failure is solid. However, experi-

7600 R 7600 S 6600 L 6600 M

PDP-IO

File transport network D--+-...... --+-----+----~----+--

IBM Data Cell

IBM Photostore D ~H--+---+---~---+-

General Precision disk D-+~-+---+---+---+--

400 series PDP-8 TTY network D~-.-+-

200 series PDP-8 TTY network 0

... ~-.---+------<l>--

600 series PDP-8 TTY network 0-. --+-----'-------<1.-----1.-

Figure 6-Host computers on-line during sampling period

ence has indicated that most failures tend to be inter­
mittent in nature and difficult to identify and isolate.
Even though great amounts of time and money can be
spent attempting to isolate intermittent failures, it has
not been demonstrated at LLL that intermittent failures
become significantly less intermittent when extensive
off-line diagnostic periods are used. For this reason, it is
concluded that it is better to catalog an intermittent
error for administrative analysis, recover as softly as
possible, and promptly return the device or component
to full productivity rather than insist on the immediate
off-line isolation of the problem.

Samplings (Figure 6) of system availability taken
hourly Monday through Friday from 0800-1630 hours
from November 1970 through April 1972 demonstrate
the following:

Total System Availability
(all devices on line)

Partial System Availability
(Useful work being accomplished
by at least one host)

ACKNOWLEDGMENTS

Percent
75*

100*

The authors express their appreciation to LLL's
Donald L. von Buskirk, Richard E. Potter, Robert G.
Werner, and Pete Nickolas for their contributions to
this paper.

REFERENCES

1 D L PEHRSON
An engineering view of the LRL Octopus computer network
Lawrence Livermore Laboratory Rept. UCID-51754 1970

2 Livermore time-sharing system manual M-026
Lawrence Livermore Laboratory 1972

3 K H PRYOR et al
Status of major hardwar(} additions to Octopus
Lawrence Livermore Laboratory Rept UCID-30036 1972

* Power failures affecting the entire network are not included in
these figures.

272 Fall Joint Computer Conference, 1972

APPENDIX

Commands available include:
Printer / Punch
P ALL PI

PALL P2

PALL HSP

P KILL PI
or P2 or
PUNCH

P2 HSP

P NORMAL

Disk
DNMMM

DP N MMM

Drum
P DRUM

DOWN

Send all printer output to on-line
printer No. 1. Printer 2 can now go
down for maintenance.
Send all printer output to on-line
printer No.2. Printer 1 can now go
down for maintenance.
Send all printer output to tape for
off-line processing. Both on-line printers
can now go down for maintenance.
Ab6rts processing of current printer /
punch files on indicated device.

Send all printer No. 2 output to tape
for off-line processing. Printer 2 can
now go down for maintenance.
Restores operating status of printer
output devices.

N is a disk "unit number 1 through 4.
MMM is either "IN" or "OUT." This
will allow or prevent, respectively, the
creation of new files on disk N. If
"OUT," existing files remain accessible
and disk N can be scheduled for
maintenance.
As described for the D option, but will
also purge disk N of all existing files.
All files on disk N are destroyed and
are no longer accessible.

Transfers system tables from the drum
to memory and rewrites these tables to
a disk file. All subsequent attempts to
access the drum will be redirected to
the disk. This provides backup capabil-

P DRU1VI UP

Tape
CN

FN

EP

XN

Execution
SP

NNNNNN
IN TEXT

SP
NNNNNN
OUT

S TEXT

R
Broadcasts
I STORE

TEXT

I ERASE
I BROAD

TEXT

ity for the drum and allows the drum
to be taken down for maintenance.
Restores normal operating status of the
drum. System tables that have been
stored on disk during the drum down
period are transferred from disk to
memory and rewritten to the drum.

Tape unit N is physically not available
to the system.
Tape unit N is physically available to
the system.
A tape error status is returned to
program P.
Severs logical connection between tape
unit N and problem program.

Allows only privileged user number
NNNNNN access to the system. All
users programs are saved on disk, and
all users remote TTY stations are
logged out. The TEXT is sent to all
users attempting to log in.
Removes privileged user number
NNNNNN and automatically restarts
previously running programs and re­
stores normal time-sharing.
Prohibits any additional log in. TEXT
is sent to remote TTY stations.
Restores normal time-sharing.

Sends the TEXT to all logged in
remote TTY stations. Sends the TEXT
once to all remote TTY's at log-in
time. Sends TEXT to TMDS.
Erases the I STORE TEXT.
Broadcasts TEXT once to all remote
TTY stations and sends TEXT to
TMDS.

The retryahle processor

by GEORGE H. IVIAESTRI

Honeywell Information Systems Inc.
PhOenL1{, Arizona

INTRODUCTION

In the interest of improving readability, instruction
retry is presented generically. Technical terms unique
to the 6000 are avoided.

The intermittent failure problem

A hard failure is the result of a logic signal either
remaining permanently in a one or a zero state or of
a signal consistently switching to an improper state
(such as an AND gate behaving as an OR). In the
case of an intermittent failure, identical instructions
executed in different sequences or at different times
will not fail consistently.

Test and Diagnostic (T&D) programs are designed
to diagnose solid failures and are successful at accom­
plishing their design objectives. They begin by certify­
ing a basic core of processor functions and then read
the T&D executive into memory to commence com­
prehensive testing. No function is used until it is
tested. A problem with this approach is that inter­
mittent failures can occur on functions that have
been previously certified, completely destroying the
rationale of the program.

The second, and most likely problem, is that T&D
programs seldom detect intermittent failures. To trigger
an intermittent failure, the T&D must execute a
particular sequence of instructions in an exact order,
using the proper data patterns. Also, intermittents
are often triggered by stimulus that is beyond the
control of programs; thermal variations, mechanical
vibration and power fluctuations are examples. Se­
quence sensitive intermittents can be caused by the
following: a low noise threshold in an IC, crosstalk,
slow rise or fall times of logic signals, or extra slow or
fast gates that activate a normally quiescent race
condition.

273

A study performed by the U.S.A.F.l showed that
80 percent of the electronic failures in computers are
intermittent. A second study performed by IBM2 stated
that "intermittents comprised over 90 percent of the
field failures."

Alternatives for solution

The ideal method of diagnosing an intermittent
failure is to bypass test programs and to diagnose
directly from the symptoms of the original failure.
The only reason that this method is not in common
use is that the set of failure symptoms that are avail­
able to programs is inadequate for that purpose. First,
it is necessary to know which bits are in error and
whether they failed to switch from a one to a zero
state or vice versa. Second, all control points should
be visible to the diagnostic for all cycles of the failed
instruction. A scratchpad memory or snapshot register
could save the state of control points and data in
case an error is detected.

In the case of intermittent failures, the problems
associated with using a failing processor to diagnose
its own ills will be minimal. Also, a minicomputer or a
second processor could do the data processing neces­
sary for diagnosis.

If it is not possible to diagnose from the symptoms
of the original failure, it will be necessary to run a
T&D program to gather additional information about
the failure. However, T&D programs are ineffective
against intermittent failures because they are usually
unsuccessful in detecting them. What is required then
is a method of .making an intermittent failure solid.

Stress testing is often effective in changing an inter­
mittent failure to a solid failure. Stress testing involves
setting marginal voltage and timing conditions to
amplify the effects of slow rise times, low switching
thresholds and race conditions; thermal stress is also

274 Fall Joint Computer Conference, 1972

applied for the same reasons. Mechanical vibration is
applied while the T &D is in execution to locate loose
wirewraps, defective connectors, microphonic chips or
substrates, conductive debris that is caught between
wirewrap pins, and defective printed circuit runs.

Error Detection And Correction (EDAC) codes are
particularly effective for correcting memory parity
errors, which are inherently not recoverable by in­
struction retry techniques. Algorithms have heen
developed to allow single or multiple bit failures to be
corrected. Some EDAC codes are particularly effective
for correcting memory parity errors, which are in­
herently not recoverable by instruction retry tech­
niques. Algorithms have been developed to allow single
or multiple bit failures to be corrected. Some EDAC
codes can traverse adders to correct addition errors.

A dvantages of instruction retry over other alternatives

There is no reason that an immediate branch to a
diagnostic program must exclude an instruction retry.
The detection of an error can cause an immediate
branch to a diagnostic program that will log and
analyze all available symptoms. Failure analysis
could result in the generation of a list of all logic
elements whose failure could result in the symptoms
that were recorded. The boundary between suspect
and nonsuspect logic will be called "limits."

Once limits are established, they can be analyzed
to determine if the failure has been sufficiently iso­
lated to enable a repair. If they have not, the processor
can be restored to the state that existed prior to the
failure and the instruction can be retried. If the retry
attempt is successful, the processor will remain avail­
able to the customer until the next failure. Subsequent
failures will serve to further narrow the limits by
contributing new symptoms.

Stress testing requires that the processor be dedi­
cated to T&D, which means that the processor will
not be available to the user. Instruction retry will
keep the processor available to the user as long as it
is successful; maintenance can be performed during
slack time. Also, thermal and mechanical stress can
inflict new damage.

While EDAC is an effective means of correcting
memory parity errors, it is incapable of correcting
control point errors in the processor. If a word of
data and its correction code fail to traverse a switch,
because of a control point error, both the correction
code and the data will be lost.

Since instruction retry is conversely ineffective
against memory parity errors and most effective

against control point errors, EDAC and instruction
retry will complement each other.

Obstacles to retry

A prerequisite to a successful instruction retry is
that memory locations and registers associated with
the faulted instruction must contain the same data that
they did before the instruction was started. If a reg­
ister .or memory location was changed during the
execution of the instruction, it must be restored before
retry can be attempted. Restoration will not be possible
if the contents of a memory location is added to and
replaces the contents of a register and an image of
the original register contents is not available.

Memory parity errors are detected after an error
has invalidated the contents of a memory location.
Unless memories are duplicated or EDAC is present,
memory parity errors cannot be retried.

The instruction repertoire of some processors in­
cludes instructions that cause the memory controller to
perform a destructive read of a memory location. If
an error occurs on an instruction that caused a de­
structive read, it will be necessary to restore the
cleared memory location before retry can be attempted.

A MOVE is an instruction that moves a block of
data from one area of memory to another. If a MOVE
overlays part of its source data, instruction retry will
not be possible. For example: if 100 words are moved
from location 70 to location 0, words 70 to 100 of the
source data can be overlaid.

Indirect addressing offers the programmer the
capability to address operands via a string of indirect
words that are often automatically updated every

. time they are accessed. If a .faulted instruction has
obtained its operand via such a string, every indirect
word in the string must be restored prior to retrying
the instruction. If an error occurred during an indirect
word cycle, then only the indirect words preceding the
failure must be restored.

In processors with hard-wired control logic, the
multicycle instructions repeatedly change the contents
of registers as fast as data can be cycled through the
adder. Delaying every cycle for error checking is often
an unacceptable degradation of throughput. Conse­
quently, a register could be overlaid with erroneous
data before the error can be detected.

Instruction overlap is a feature of large scale pro­
cessors that complicates identifying the failing instruc- ,
tion. Instruction overlap takes advantage of the fact
that no single instruction uses all of the processor
logic at any given instant. While one instruction is

terminating, a second instruction may be using the
adder, while a third is undergoing an address prepara­
tion cycle and a fourth is being fetched from memory.
If instruction overlap is active, the instruction counter
may be pointing to the instruction being fetched from
memory at the time an error is detected on the instruc­
tion that is in the address preparation sequence. Thus,
merely safestoring the instruction counter at the time
of failure will not serve to identify the failing instruc­
tion.

Design methodology to avoid obstacles

The destruction of data can be avoided for single
cycle instructions by not overlaying the register in the
first place. The adder sum can be buffered or merely
retained on the data lines until error checking has
finished. If an error is detected, the instruction can be
aborted before the defective data is moved into a
register.

EDAC can enable the recovery of memory parity
errors.

At the time of a fault, the state of the cycle control
flags and address register could be saved in a snap­
shot register. The contents of the snapshot register
could identify the failing cycle of a MOVE so that
software could continue moving the block of data in
place of the interrupted MOVE. This will be effective
in recovering an error on a MOVE that has overlaid
part of its source data. The snapshot register can also
serve as a diagnostic aid by saving the state of cycle
control flags at the time of an error.

One method of restoring a string of indirect words
is to obtain a pointer to the first indirect word from
the address field of the instruction. Since indirect
word updates are performed by a fixed and known
algorithm, it will be a simple matter to restore the
first word of the string to obtain a pointer to the second
and then follow the string; restoring each word to
obtain a pointer to the next.

However, several pitfalls· exist in the above method.
One is that if the error occurred on an indirect word
cycle, the recovery program must know when to
terminate its indirect word restoration activity. Other­
wise, it may restore indirect words that have not
been updated, thus inducing an error. Also, the re­
covery program must be able to determine if the
indirect word being restored has been damaged by a
parity error. Another problem is the possibility that
an indirect string may wrap back on itself, causing a
word to be updated twice. If the recovery program
merely follows the string, without knowledge of the

The Retryable Processor 275

double update, it will fail to restore part of the string
and will induce an error when the instruction is retried.

An alternative that would also allow software to
restore indirect words without inducing errors, is to
provide a scratchpad memory to save the state of
sequence control flags and memory addresses for
every cycle of an instruction. If an indirect word
string wraps back on itself, causing an indirect word
to be updated twice, it would present no problem to
the recovery program; the snapshot register will
contain two entires for that word, and it will be rolled
back twice.

Providing intermediate registers will serve to both
increase processor speed and to protect the contents
of primary registers in case of error. The secondary
registers can be placed at the inputs to the adder to
hold the operand from memory and the operand from
a primary register. The secondary registers will also
serve to decrease the execution time of multicyc1e
instructions, by providing a shorter path to the adder.
Intermediate registers will allow date manipulation
to be performed for multiplies, divides, etc., without
changing the contents of the primary registers. The
sum, product, quotient, etc., can be moved into a
primary register after error checking is complete.

Another alternative would be to save an image of
the registers every time that an instruction comes to
a normal (error-free) termination. Instruction retry
could be accomplished by refreshing the - primary
registers with data from the backup registers.

If the processor has instruction overlap capability,
it will be necessary to correct the instruction counter
when a fault is detected. Otherwise, it may not be
possible to determine which of several instructions,
that are simultaneously in execution, failed.

Another possibility is to provide an instruction
counter for each of the instructions that can be simul­
taneously executed. The instruction counter assigned
to the failing cycle can be selectively safestored.

A third possibility is to include a failure flag in the
scratchpad memory to identify the failing cycle. If
the failing cycle is identified in the scratchpad, the
instruction containing that cycle can be identified by a
program.

Tradeoffs

Figure 1 shows that the simple processor operations;
i.e., loads, stores, transfers and instruction fetches
account for 95 percent of all processor operations
(excluding address modification). Figure 2 shows that
30 percent of all processor operations are preceded by

276 Fall Joint Computer Conference, 1972

some type of address modification; of the 30 percent,
25.4 percent is simple register type modification and
4.6 percent involves indirect words. Since register
type address modification does not in itself alter
register contents, it is not a factor in determining the
retryability of a simple instruction. Consequently, if
instruction retry is implemented at all, it will be better
than 90 percent effective.

The mandatory design requirements for instruction
retry are:

(1) The failure must have been detected by hard­
ware error detection.

(2) The failing instruction must be identifiable.
(3) Instruction operands must either remain intact

or must be restorable.

The simple mechanism of holding the adder sum
output on the data lines until it 'has been determined
that an error has not occurred will prove effective
against processor/memory interface errors, for simple
instructions. If the processor does not have instruction
overlap capability, merely safestoring the instruction
address in a predetermined memory location will serve
to identify the failing instruction.

If the processor has overlap capability, then a more
sophisticated method of identifying the failing in-

Number of Operations
Number of Instructions
Instruction Fetches**
Stores
Multiplies
Divides
Transfers
Shifts
Floating Adds
Floating Multiplies
Floating Divides
Loads
Load Register, Store Register
Negate
Master Mode Entry
Execute Double, Execute
Repeats
Repeated Instructions***
Returns
Binary Coded Decimal
NOP
Retryable Operations

* Not Retryable 64,569 (2.5 percent)

2,653,856
1,661,723

938,873
367,811

1,196
933*

479,421
41,894

3,231*
2,621*

372*
743,170

1,078
450
661

4,152
5,326

53,260*
4,088
2,919
2,400

2,589,287 (97.5 percent)

** Instruction Fetches = 56.5 percent Number of Instructions
*** Repeated Instructions == Repeats times 10

Figure I-Instruction frequency analysis

ProbabiH

Probabili ty

.4

.3

.2

.1

'------1t-----+----f----4--.-.-==.~~.~

Any R

Any address modification

Address modification = R

Address modification = IT

Address modification = IR

Address modification = RI

IT IR

Totals

761,580

644,062

58,161

53,778

5,579

RI

Figure 2-Probability of address modification on processor
operations3

struction is necessary. (See "Design Methodology To
Avoid Obstacles"). Once the failing instruction is
identified, the opcode and address modification specifier
can be examined to determine if the instruction is a
candidate for an instruction retry attempt.

The addition of a snapshot register bank and other
features mentioned in the "Design Methodology"
section of this paper will allow multi-cycle instructions
and instructions utilizing indirect address modification
to be retried; This will raise the effectiveness of in­
struction retry to almost 100 percent.*

Cost of implementation

The 6000 processor features hard wired control logic
and instruction overlap. Its four instruction counters,
scratchpad register bank and intermediate registers
allow instruction retry to be better than 97 percent
successful (see Figure 1).

* 100 percent effectiveness means that instruction retry can be
unconditionally attempted.

However, none of the above features were incorpo­
rated as instruction retry aids and cannot be con­
sidered a cost of implementation. The instruction
retry effort was not started until after the processor
design was frozen.

The four instruction counters are an improvement
on the 600 line's "ICT Correction" logic. It has always
been considered good design practice to accurately
identify the location of a fault. The scratchpad register
bank was implemented in approximately 400 SSI
chips as a dump analysis and T&D aid. The inter­
mediate registers were implemented to speed pro­
cessor instruction execution.

The instruction retry feasibility study, programming
and debug efforts required one man year.

CONCLUSION

If a processor failure is detected, there are two possible
actions that can be taken. One is to abort the program
that was in the execution, to prevent propagation of
the error. The second is to retry the failing instruction
in an attempt to bypass a possible intermittent failure.
Since 80 to 90 percent of processor failures are inter­
mittent, there is an excellent chance that instruction
retry will succeed.

The advantage of retrying the instruction over
aborting the program is that a successful instruction
retry will keep the system available to the customer
while an abort takes it away from him.

As long as errors continue to be successfully re­
covered and performance is not seriously degraded,
maintenance can be deferred until a convenient time
period. The question of what comprises a serious
degradation is probably best answered by the indi­
vidual user. In a real time application, 3 or 4 percent
may be serious; while in an I/O bound batch applica­
tion, 30 or 40 percent degradation may be tolerable.

REFERENCES

1 J P ROTH
Phase I I of an architectural study for a self-repairing computer
USAF Space and Missile Sys Org Los Angeles
CA AD 825 460 18 1967

2 M BALL F HARDIE
Effects and detection of intermittent failures in digital systems
IBM No 67-825-2137 1967

The Retryable Processor 277

3 K ROSENSTEEL
An analysis of dynamic program behavior
Honeywell No ASEE # 54 1972

ACKNOWLEDGMENTS

Peter J. Scola

For originating many of the hardware changes that
enabled instruction retry to be implemented on the
Honeywell 6000 line and for obtaining the necessary
funding.

Harlow E. Frick

For assistance in implementing the Honeywell Instruc­
tion Retry Program.

APPENDIX

With the exception of the footnotes in Figure 1, Figures
1 and 2 were extracted from a report by Kenneth
Rosensteel3 entitled: "An Analysis of Dynamic Pro­
gram Behavior". Figures 1 and 2 represent the total
number of instructions executed by a mix of FOR­
TRAN, ALGOL and COBOL compilations and
executions.

In considering address modification, Figure 2 shows
the four possible modification types:

Register (R)-Indexing according to the named
register and termination of the address modi­
fication procedure.
Register Then Indirect (RI)-Indexing with
the named register, then substitution and
continuation of the modification procedure as
directed by the tag field of this indirect word.
(Indirection with pre-indexing.)
Indirect Then Register (IR)-Saving the register
designator, then substitution and continuation
of the modification procedure as directed by
the tag field of this indirect word. (Indirection
with post-indexing.)
Indirect Then Tally (IT)-Indirection, then
use of the indirect word as tally and address
with automatic incrementing and decrementing.
Any-Probability of any type of address modi­
fication.

Evaluation nets for computer system performance analysis

by G. J. NUTT*

University of Washington
Seattle, Washington

INTRODUCTION

The growing complexity of modern computer systems
has made performance evaluation results more and
more difficult to obtain. The difficulty of representation
and analysis of combination hardware/software systems
has increased with the level of sophistication used in
their design. One popular approach that has been used
for evaluating proposed computer systems is simula­
tion.l

In this paper, a method of representation is presented
that is useful in constructing a modular model, where
the level of detail may vary throughout. This method
has been designed to aid implementation of these
models, with a net effect of providing the ability to
construct flexible simulation models in a relatively small
amount of time. A graphic approach is used so that the
two dimensional structure of the machine is pictorially
available to th~ simulation designer. The graphs are
also useful for planning measurements of either a
simulation model or the machine they represent.

An evaluation net is made up of transitions inter­
connected by directed edges with locations. Each
location may contain a token. For a particular transition,
the members of the set of locations directed into the
transition are called input locations, and the members
of the set of locations directed away from the transition
are called output locations. A transition fires if the set of
input and output locations satisfies the definition of
that particular transition, causing one token to be
removed from each location of a prespecified sllbset of
the input locations and one token to be placed on each

. location of a prespecified subset of the output locations.

Example

Figure 1 (a) shows an example with two transitions.
The first transition, (the vertical line labeled al), has
two input locations, (the circles labeled bl and b2). The

* Present address: Department of Computer Science, University
of Colorado, Boulder, Colorado 80302

279

second transition, a2, has a single input location, b3, and
two output locations, bl and b4• For this example, let a
dot in a location represent a token residing on that
location. Suppose that the definitions of the two transi­
tions, al and a2, specify that they fire when all input
locations contain a token and all output locations do
not contain a token. Then in Figure 1 (a), transition al
is ready to fire. Figure 1 (b) shows the same transitions
and locations after transition al has fired. Figure 1 (c)
shows the result after firing a2. In this example, the
prespecified subsets are the complete sets of input and
output locations.

Figure 1 may be interpreted as the following situation
in a computer system. If bl contains a token, the central
processor is available. If b2 contains a token, there is a
job requesting the central processor. Thus, concurrent
occupancy of tokens on bl and b2 indicates that there is a
request for the central processor and it is available,
causing transition al to take action, (representing
central processor allocation). The time required to fire
al indicates allocation time, and is negligible. A token
on b3 represents central processor activity. The transi­
tion time for a2 reflects the length of central processor
time for the job, and on completion of firing, the central
processor again becomes available, (i.e., a token is
placed on bl) and the job has completed central pro­
cessor utilization, (i.e., a token is placed on b4).

Evaluation nets are derived from the work of Petri2

and Noe3 ; they have also been influenced by the work
of Holt,4,5 who is primarily responsible for the develop­
ment of Petri nets. The nets given in this paper· differ
from Petri nets in their' 'practicality." The path of a
token through a net is well-defined by providing a
mechanism to choose from a set of alternate paths that
the token might take. Each token in the net is distinct
and retains its identity. The token may have a vector
of attributes, (capable of taking on values), that may
be modified by the various transitions that operate on
the token. The time required for each execution of a
transition is part of the specification of the net, thus
introducing time as a measure of net performance.

280 Fall Joint Computer Conference 1972

(a)

(b)

(c)

Figure I-Transition firing

The primary predecessor of evaluation nets,3 has
provided the motivation for this development. These
predecessor nets, called modified Petri nets, were used
to describe a simulation model of a CDC 6400 in a
validation study.6 The modified Petri nets have short­
comings in the area of describing action on a specific
token, (representing a job in a computer system).
These deficiencies manifest themselves in indeterminate
path flow of the token and the lack of quantitative
properties in the network. Evaluation nets are not only
useful in describing a simulation model, but also in
constructing the model. The additions made to the
previous work allow direct interpretation of the descrip­
tion to yield a working simulation model.

THE CLASS OF EVALUATION NETS

In this section we shall describe the class of evaluation
nets in detail. We begin by defining location types and
statuses. All locations are connected to at least one

. transition. If a location is an input (output) location for
some transition and is not an output (input) for any
other transition, the location is said to be peripheral,
e.g., b2 and b4 in Figure 1. If a location is not peripheral,
it is an inner location. A location is empty if it does
not contain a token, and full if it contains a token, e.g.,
locations b1 and b2 are full and ba is empty in Figure
1 (a). If it is not known whether the location is empty or
full, the status of the location is undefined. An inner
location may change from empty to full or full to empty
only by the firing of one of the transitions to which it
is connected. The conditions for the status of a location
to be undefined will be discussed later, as will the utility
of this convention.

Transition schemata

A transition definition is given by a triple, a =
(s, t (a) , q), where s is a transition schema (or type),
t (a) is a transition time, and q is a transition procedure.
The movement of tokens from input locations to output
locations is described by the schema. The number of
output locations is limited to two, the number of input
locations is limited to three, and the number of con­
nected locations is limited to four for any given transi­
tion. If a location is empty, its status is denoted as
"0". If the location is full, the .status is denoted as
"1". The undefined status is given by the symbol,
"<P". The status of the set of locations associated with a
transition is given as an ordered p-tuple of individual
location statuses, where 2 ~ p ~ 4. The action of the
transition is exhibited by mapping the set of statuses
before any action takes place into the set of statuses
after action takes place. If a particular p-tuple is
mapped into itself, the transition effectively takes no
action for that status configuration. Otherwise, the
map defines token removal and placement during
transition firing. In the schema definition, p-tuples
mapped into themselves are omitted for brevity. For
example, a transition modeling an "AND gate with
reaction" is described by the map

J(a, b, c): (1, 1, O)~(O, 0, 1)

where the locations a and b are input locations and
location c is an output location. The interpretation of
the mapping, J, is that if location a and location bare
full and location c is empty, a metamorphisis of the

Evaluation Nets for Computer System Performance Analysis 281

X Transition

Y Transition

F Transition

X(r,a,c,d): (0,1,0,0) ~ (e,O,l,O)
(0,1,0,1) ~ (e,O,l,l)
(1,1,0,0) ~ (e,O,O,l)
(1,1,1,0) ~ (e,O,l,l)

~: "e" denotes "0" if r is an

inner location; denotes "i" (undefined)

if r is a peripheral location.
Y(r,a,b,c): (0,1,1,0) ~ (e,O,l,l)

(0,1,0,0) ~ (e,O,O,l)
(0,0,1,0) ~ (e,O,O,l)
(1,1,1,0) ~ (e,l,O,l)
(1,1,0,0) ~ (e,O,O,l)
(1,0,1,0) ~ (e,O,O,l)

F(a,c,d): (1,0,0) ~ (0,1,1)

J(a,o,c): (1,1,0) ~ (0,1,1)

T(a,c): (1,0) ~ (0,1)

. Figure 2-Transition schema graphs

location statuse£ takes place, resulting in locations
a and b becoming empty and location c becoming full.
No other p-tuple of location statuses causes an action
by the transition. In Figure 1, transition al corresponds
to this example.

Let {r, a, b} be the set of input locations and {c, d}
be the set of output locations for the following defini­
tion (see Figure 2 for graphical representation). Define
the following schema:

X(r, a, c, d):

Y(r, a, b, c):

F(a, c, d):
J(a, b, c):

T(a, c):

(0,1, 0, O)~(e, 0,1,0)
(0, 1, 0, l)~(e, 0, 1, 1)
(1,1, 0, O)~(e, 0, 0, 1)
(1, 1, 1, O)~(e, 0, 1, 1)
(0, 1, 1, 0) ~(e, 0, 1, 1)
(0, 1,0,0)~(e,0,0, 1)
(0,0, 1, O)~(e, 0, 0,1)
(1, 1, 1, O)~(e, 1,0, 1)
(1, 1, 0, O)~(e, 0, 0, 1)
(1,0, 1, O)~(e, 0, 0, 1)
(1, 0, O)~(O, 1, 1)
(1, 1, O)~(O, 0, 1)
(1, O)~(O, 1)

The symbol "e" in the range of the map, (the right hand
side of the transition schema definitions), is "0" if r is
an inner location and" <fI" otherwise. Let us characterize
the schema as graphs, where a circle represents a
location, a vertical line represents a transition, and a
hexagon represents a resolution location, (see Figure 2).
A resolution location, r, is an input location, (the
first coordinate) for a transition of type X or type Y.
Consider the description of the type X transition:
r is a resolution location and a. is a "normal" input
location. If the status of r is empty, a is full, and the
output location, c, is empty, the transition fires, re­
moving a token from location a and placing a token on
location c, (labeled by a zero in the graph of Figure 2).
The status of location d is essentially ignored for the
case of r being empty. If the resolution location is an
inner location, the transition firing leaves the status
empty. Otherwise the status is left undefined. When the
status of r is full, the transition places a token on
location d, (label€d by a one in the graph), regardless
of the status of location c. Hence, the resolution location
acts as a switch, routing tokens to one of two alternate
output locations, c or d. If it is an inner location, its
switching action is controlled by internal operation of
the net. If it is a peripheral location, switching is con­
trolled by a resolution procedure which allows influence
from tokens, as will be discussed later.

The type Y transition uses the resolution location,
r, in a slightly different way. Note that locations r, a,
and b are input locations. If location a is full and loca­
tions band c are empty, a token will be removed from
a and placed on c for r being either ° or 1. Similarly, if
location b is full and locations a and c are empty,
location b yields a token to location c for r being either
empty or full. The setting of r is critical only if locations
a and b each contain a token simultaneously. If r is set
to 1, b yields the token to c. If r is set to 0, a yields the
token to c.

The F, J, and T transitions operate whenever all
input locations are full and all output locations are
empty. Transition firing causes the removal of a token
from each input location and placement of a token on
each output location. Figure 1 illustrates the F and
the J transitions.

Each transition in an evaluation net must satisfy one
of the schemata given above. If it is necessary to model
a procedure with more than two inputs (or outputs),
transitions may be combined to produce the effect of
multiple inputs (or outputs). For example, F,igure 3
represents a procedure, (or event) for which all three
inputs must contain tokens to complete the firing of the
transition labeled a2.

The status of a location may be given symbolically

282 Fall Joint Computer Conference, 1972

Figure 3-Multiple input processes

by providing a mapping, M, of the set of locations into
the set of statuses, to, 1, <Pl. For example, if b is a
location, M(b) =0 if b is empty; M(b) =1 if b is full;
M (b) = <P if the status of b is undefined.

In the transition schema definition it was shown
how a peripheral resolution location becomes undefined.
Since no transition can fire when one of its associated
locations is undefined, a resolution procedure is required
to set the status of a peripheral resolution location to
either empty or full. The resolution procedure thus is a , ,
mechanism for communication between the environ­
ment and the net. A resolution procedure is an expres­
sion of the form

r: [Pr-~M(r): =i; P2->,M(r): =l-i]

where i is either 0 or 1, r is the label of the peripheral
resolution location, and PI, P2 are "Algolic" Boolean
expressions (predicates) which! can be evaluated to
either true or false, (Nutt7 contains a more complete
handling of these predicates). The resolution procedure
is evaluated by first evaluating Pl. If it is true, M(r)
becomes i and further evaluation of the procedure is
discontinued. Otherwise, P2 is evaluated; if it is true,
M (r) is set to 1-i. In either case the resolution pro­
cedure evaluation is discontinued after predicate P2 is
evaluated. Note that when both predicates are evaluated
as false, the marking of r remains undefined. The
procedure need not be evaluated again until one of the
arguments of the predicates changes its status. Examples
of resolution procedures are given in the next section.

Token attributes and their modification

The transition schema definitions imply that no
location may contain more than a single token at a
time, provided that an initial marking does not place
more than one token on any location. For example, the
type T transition fires only when the input location is
full and the output is empty, hence only an empty
location can receive a token. This property of evaluation

nets, (known as safety), allows each token to be dis­
tinct. Since tokens retain their identity, we shall give
them names and associate a list of n attributes with
each token, such that each attribute may take on a
value. A token, K, with n attributes is denoted as
K[n], and if location b contains K[n], we shall write
M(b) =K[n] rather than M(b) =1. The }th attribute
of the token K is denoted as K (j). At times we will
find use for tokens with no attributes, whose identity is
unimportant. We shall continue to indicate these tokens
by the symbol "I". For example, a resolution location
setting will only need to indicate empty or full status,
hence can be denoted as M(r) =0 or M(r) =1.

The attributes of a token impose a data structure on
the locations of a net. Any particular location will
always receive (and yield) tokens with a fixed number,
n, of attributes. A location, b, which holds tokens with n
attributes is denoted as ben]. Hence, more properly,
the expression of a marking should be M (b[n]) =
K[n]. As long as the context makes the dimension of b
clear, we will not insist on the more complete notation.
Conceptually, a location b[n] is composed of n "slots"
which contain the n attributes of a token residing on
the location. The values of the slots are the values of the
corresponding attributes. If the location is empty, the
values of the slots are undefined. We shall refer to the
ith slot as M(b(i», hence if M(b[n]) =K[n], the
ith attribute of K may be denoted M(b(i».

Let b[m] be an output location of transition ai and an
input location of transition aj (see Figure 4). First,
suppose that ai produces a token, K[n], to be placed on
b[m], where n~m; the resulting M(b[m]) is defined as
follows. Let g be the minimum of the integers nand m.
Then

M(b(l»: =K(l)

M(b(2»: =K(2)

M(b(g»: =K(g)

If n is greater than m, then the remaining attributes of
K[n] are lost. If n is less than m, then the values of
M (b (i)), for n+ 1 :::; i:::; m, are undefined. Next suppose
that aj removes the token on b[m]. The number of

a. a·
~ J

F-€~
Figure 4-Number of attributes

Evaluation Nets for Computer System Performance Analysis 283

attributes for that token is defined to be m; where
jlf(b(n+l)), ... ,M(b(m)) are undefined through the
placement of the token on M(b[n]).

Although the transition schema of a particular
transition defines the locations that are to receive and
yield tokens, the identities and attribute modifications
are not reflected without specifically providing for
them. For example, suppose a transition a= (s, tea), q),
has a schema, s, of J(b1[n], b2[n], b3[n]) and M(b1) =
KI[n], M(b2) =K2[n], where KI[n]~K2[n]. A transi­
tion procedure has the form

[Pl-7(ell; e12; ... ; eln) : ••• : Pk-7(ekl; ek2; ... ; ekm)]

where the Pi are predicates (l:::;;i:::;;k, k finite), as
described previously, and the eij are "Algolic" arithmetic
assignment statements, e.g.,

M(b3(4)): =M(b1(4)) +100.

A transition procedure is evaluated by the following
algorithm:

1. Set i to 1. Go to step 2.
2. If Pi is true, execute (eil; ei2; ... ; eij) and then

terminate transition procedure evaluation.
Otherwise go to step 3.

3. Set i to i+l. If i is greater than k, terminate the
transition procedure evaluation. Otherwise g<>
to step 2.

Transition firing

A transition firing may now be more formally defined
as consisting of the following phases:

pseudo enabled phase: A transition is pseudo enabled
if all locations satisfy the left hand side of a
schema except for the undefined status of a
peripheral resolution location. Since this status is
undefined, the resolution procedure must be
evaluated. (The resolution procedure cannot be
evaluated unless the transition is pseudo
enabled.)

enabled phase: A transition is enabled if all location
statuses satisfy the left hand side of a schema.
The transition then begins operation.

active phase: Transition action is in progress. The
status of all associated locations does not change.

terminate phase: The transition completes pro­
cessing, changing the status of output locations
to agree with the right hand side of the schema,
then executing the transition procedure, and
finally changing the status of the input locations
to agree with the right hand side of the schema.

The existence of an active phase in a transition firing
implies an associated time that the transition requires
to carry out its operation. An expression reflecting this
time is provided by the second coordinate of the
transition description, (s, tea), q). This specification,
t (a), may be a constant value, or it may be a function
that is evaluated, (on entering the active phase),
for the particular token(s) that enable the transition
for a specific firing. It is convenient to express t (a) for a
transition of type X or Yas an ordered pair, where the
first coordinate is t (a) if the token moves from the
location labeled "0" in a Y transition graph. and the
second coordinate is t (a) if the token moves from the
location labeled "1". In the X transitions, the first
coordinate indicates t (a) if the token moves to the
location labeled by a "0" in the graph and the second
coordinate indicates tea) if the token moves to the
location labeled with a "1".

Since tokens that enable a transition reside on the
input location(s) during the active phase, transition
time imposes a dwell time on each location. The dwell
time of a location, b, denoted d(b), is the total amount of
time any token resided on location b. The dwell time
contributed by a particular token may be greater than
the corresponding transition time for the token, since
the token may have begun residence on the location
without enabling the associated transition. The ac­
cumulation of dwell time for a location reflects the
"occupancy time" or "busy time" for that location.
Dwell times for a particular token may be summed up
to provide a measure of the time required for that
particular token to traverse the network, hence turn­
around time. In N utt, 7 measures of dwell time and their
relationship to transition times are explored further.

Definition of an evaluation net

With the above preliminaries in mind, we can now
define an evaluation net. An evaluation net is a con­
nected set of locations over the set of transition schema
and is denoted as the 4-tuple

E = (L, P, R, A) and an initial marking of the
locations, M, where

L = A finite, non-empty set of locations.
P = A set of peripheral locations, P~L.
R = A set of resolution locations, R ~L.
A = A finite, non-empty set of transition declara­

tions, {ai},
ai "= (s, t(ai), q) where s is a transition schema,

t(ai) is a transition time, and q is a transition
procedure.

284 Fall Joint Computer Conference, 1972

EXAMPLE OF AN EVALUATION NET

Let us construct a model of a very simple computer
system which uses most of the concepts presented in
the previous section. In our computer system, a job
entering the mix may either wait for a single tape drive
if it requests one, or if no tape drive is needed, proceed
directly to processing by requesting the central pro­
cessor. When processing is complete, the job relinquishes
the central processor and releases the tape drive if it
has been allocated.

In the description given below, we shall use the
symbol "T" to denote a predicate that is always true.
For the transition procedures that are implied by the
transition schema, (i.e., there is no attribute modifica­
tion and the transition merely copies the token from an
input location to the output location(s) indicated by
the schema), the procedure is indicated by a hyphen,
"-"

Tokens that represent jobs in the computer system
will be of the form K[3J, where

K(l) =The number of tape drives required,
(0 or 1).

K(2) =Time required to fetch and mount a tape.
K (3) = Central processor time.

Let E = (L, P, R, A) be the net, (see Figure 5)

R = {rl' r2, ra, r4}
P = {bl [3J, bu [3]} UR
L = {b2, b3[3J, b4[3J, bs[3J, b6[3J, b7, bs[3J,

b9[3J, blO[3J, bl1[3J, bI2[3J} UP
A = {al'~, ... , as}

al= (X(rl, bl [3J, b4[3J, b3[3J), (0,0), -)

i.e., al is a type X transition with input locations rl and
bl [3J, which copies tokens to either b3[3J or b4[3J with
no time delay.

a2= (J(~, b3[3J, bs[3J), M(b3(2)),
[T~(M(bs[3J): =M(b3[3J)J)

i.e., a2 is a type J transition whose time is determined
by the second attribute of the token on the input
location, b3[3J.

aa= (Y(r2, b4[3], bs[3J, b6[3J), (0,0), -)
a4 = (J (b6[3J, b7, bs[3J), 0, [T~(M (bs[3J) : =

M (b6[3J)) J)
as= (F(bs[3J, b9[3J, b7), M(bs(3)),

[T~M(b7) :=1])
a6= (X(r3rb9[3J, bu[3J, bIO[3J), (0,10 sec.), -)

bl : Job ready to enter mix
b2 : Tape drive is available
b

3
: Job requires tape drive

b4 : Job does not require tape drive
b5 : Tape job has drive allocated
b6 : Job requesting CP
b7 : CP is idle
be: CP is busy
b9 : Job is through with CP

blO : Tape job ready to release drive
bll : Non-tape job ready to vacate
b12 : Tape job ready to vacate
b13 : Job 1s complete
r l : Routes tape job to b

3
; Non-tape to b4

r2: Chooses job from b
5

or b4
r3: Routes tape job to blO; Non-tape to bll
r4: Chooses job from bl2 or bn

Figure 5-Graph of evaluation net

~= (F(bIO[3J, b2, bI2[3J), 0, [T~(M(b2): =1)J)
as= (Y(r4, bu [3J, bI2[3J, bI3[3J), (0,0), -)
rl: [(M(bl (l)) = l)~M(rl): = 1;

(M(bl(l)) =O)~M(rl): =OJ

i.e., rl takes on the same values as the first attribute of
the token on bl [3 J.

r2:[T~M(r2): = IJ
i.e., r2 is always marked with a one.

r3:[(M(b9(1)) =O)~M(ra): =0;
T~M(r3): =1J

r4:[T~M(r4): =IJ

Initially, letM(b2) =M(b7) =1.
A job enters the net at location bl [3J, (the arrival

rate of subsequent jobs is not specified in this example).
The existence of a token on bl [3 J pseudo enables
transition al since b3[3J and b4[3J are both empty.
Resolution procedure rl is evaluated, its marking being
determined by the first attribute of the token on b1[3J.
Suppose that M (~ (1)) = 1. Then the token is- moved to
location b3[3J, the transition time being negligible, i.e.,
teal) is zero. Since M(~) = 1 initially, transition ~ is
enabled and becomes active. The transition time for a2
is provided by the second attribute of the token on
location b3[3J (which, let us say, contains "trace data"
giving the time required to mount a tape). When this
transition time has elapsed, bs[3J receives the token
from b3[3J, (see the transition procedure for ~). The
resolution location, r2, is a "tie breaker" and in this
case always favors jobs· that have just had the tape
drive allocated to them, should two jobs be ready to
start requesting the central processor simultaneously.

Evaluation Nets for Computer System Performance Analysis 285

The remainder of the net may be interpreted in the
manner described above.

Let us suppose that the net was put into operation at
time to and was halted at time tn. The elapsed time,
tn - to, is called the system up time and is denoted T 'U'

Notice that the dwell time of location b7, d (b7), gives
the central processor idle time and corresponds to
Tu-d(bs[3]). Similarly, the resource utilization of the
tape drive is available from Tu-d(b2). If token Km[3]
enters location b1[3] at time tim and enters location
b13[3] at time tjm, the expression tjm - tim reflects the
turnaround time of the job represented as Km[3]. Let
K 1[3], K 2[3], ... ,KN [3] be N tokens that traversed
the net. Then the mean turnaround time for this mix
is given by

N

L (tjm-tim)/N
m=l

or, alternatively, may be computed by summing up the
appropriate dwell times and dividing by N.

The throughput rate may be expressed as

N jTu jobs/system up time

Suppose we exercise our model and find that it is
insufficient for our purposes, e.g., disk access is com­
pletely ignored, but has an affect on the parameters
we are measuring. We may choose to change the level of
detail of the central processor activity in the net.
Figure 6 suggests a slightly more complex net that
reflects simultaneous disk I/O with central processor
activity. We can replace transitions a4, as, and location
bs[3] of Figure 5 by the net shown in Figure 6 (the
definition of this modification can be expressed in the

b
9

: Job through with OF and disk

b14 : Job ready to use disk and OF

b
15

: Disk is idle

b16 : JOb is requesting disk

b
17

: Disk is busy

b18 : Job is through with disk

b19 : OF is busy
beO ! Job is through with OF

b2l : Job ready to relinquish OP

Figure 6-Parallel central processor and disk activity

same manner as illustrated previously, but will not be
given here). This implies that another attribute for disk
time is necessary, which determines the transition time
for an. The transition time for as would become zero,
and t(a13) is determined by trace data carried in
M (b19 (3».

SUMMARY

The class of evaluation nets has been informally
described. An evaluation net may be treated as an
interpreted marked directed graph, where transitions
correspond to vertices and the locations correspond to
directed arcs. The arcs are capable of holding a single
item of structured data at a time. The graph of the net
represents the structure of the system and indicates the
control of token flow. The transition procedures inter­
pret the action of the vertices. By operating the net,
(in a simulation manner), measures of resource utiliza­
tion, turnaround, throughput, etc., are available for
further analysis of the system. An implementation of
the nets might include some "automatic" analysis, such
as resource utilization figures. The nets are modular and
allow varying level of detail of representation. An
interactive implementation of evaluation nets might
consist of a net editor with graphic and symbolic
output. The graphic output would be used by the
designer in structural debugging and the symbolic
output could be used by an interpreter to simulate the
net. Current studies at the University of Washington
include the implementation of evaluation nets.

A more formal treatment of the nets may be found in
N utt, 7 from which this paper is abstracted. Examples
are given which model the Boolean functions of two
variables and a Turing machine. A comprehensive
evaluation net of the CDC 6400 is presented which
shows the structure of the machine and which allows
an extensive performance evaluation of the machine at
the task/resource level. This net includes models of
priority queues of arbitrary length and illustrates how
queueing algorithms may be handled. Evaluation nets
are also compared with Petri nets.

Future work, besides the implementation, includes
the study of the nets as models for computational
processes.

ACKNOWLEDGMENT

The author is grateful to Jerre D. Noe for his support
of the research and to Alan C. Shaw for his editorial
suggestions.

286 Fall Joint Computer Conference, 1972

REFERENCES

1 H CLUCAS JR
Performance evaluation and monitoring
Computing Surveys 3 No 4 pp 79-911971

2 C A PETRI
Kommunikation mit automaten
PhD dissertation University of Bonn 1962
Translated by C F Greene Jr Applied Data
Research Inc Technical Report No RADC-TR-65-377 1
supl1 1966

3 J D NOE
A Petri net description of the CDC 6400
Proceedings of ACM Workshop on System Performance
Evaluation
Harvard University pp 362-378 1971

4 A W HOLT et al
Information system theory report
Applied Data Research Inc Technical Report No
RADC-TR-68-305 1968

5 A W HOLT F COMMONER
Events and conditions
Record of the Project MAC Conference on Concurrent
Systems and Parallel Computation pp 3-52 1970

6 J D NOE G J NUTT
Validation of a trace-driven CDC 6400 simulation
SJCC Proceedings Volume 40 pp 749-757 1972

7 G J NUTT
The formulation and application of evaluation nets
PhD dissertation University of Washington Computer
Science 1972

Objectives and problems in simulating computers

by THOMAS E. BELL

The Rand Corporation
Santa Monica, California

INTRODUCTION

Because the effort required to simulate a computer
system is often very great, analysts should consider
carefully the probable value of the results prior to
embarking on it. Speciallanguages1-5 have been created
to aid the programmer in reducing the time required
to code a simulation, and analysis techniques6- 11 are
available to reduce time requirements in the later
phases of a study. Still, unexpected problems usually
arise: An effort concludes with a study only partly
completed because budgeted resources have been ex­
hausted, * or the results may be of less value than antici­
pated. If the analyst can foresee problems prior to
commencing the detailed coding phase of a study, he
can avoid many of the problems, mitigate many of the
remainder, and allow for the rest in anticipating the
payoffs of the effort.

While some of the problems encountered have unique
characteristics, a common set of them seems to keep
appearing in simulation studies of computers. Simply
knowing the total list of all common problems is no
solution to the analyst who typically goes over budget;
his difficulty is sorting out the problems that are most
relevant to his situation and ignoring the rest. Trying to
plan for the unlikely and unimportant can deflect effort
from more appropriate areas and lead to less effective
analysis than would occur if the problems were ignored
until they appeared. The objectives of the simulation
influence how the situation will be approached and
which problems will most likely lead to critical diffi­
culties.

The challenge facing the analyst is to associate the
potential problems with his objectives so that he can
anticipate his most probable pitfalls and allocate his
resources to solving these problems. He needs -a list of

* See Reference 2, page 2.

287

problems, a list of objectives, and, finally, a matrix
showing which objectives lead to which problems. With
this information he can plan his effort more effectively*
and improve the design of his simulation model.

SIMULATION PROBLEMS

Problems in simulating computer systems could be
organized into (1) choosing the language for the simula­
tion, (2) representing the real system appropriately,
(3) debugging the simulation, (4) performing experi­
ments, and (5) interpreting the results. ** This classifica­
tion scheme jumps to the analyst's mind immediately
because, chronologically, these are the steps he takes
in performing a simulation analysis. Although pro­
cedural frameworks are important and may lead to im­
proved simulations, they usually do not attempt to
identify which particular issues will be most important
for a specific simulation effort throughout the proce­
dure.

For example, the analyst, in designing his simulation,
must consider the resources available to him and how
flexible his work must be. He can choose his simulation
language by considering these and several other issues.
The underlying problems he encounters in language
choice and the other steps in a study amount to resolv-

* One of the most important advantages in the planning stage is
an ability to predict the costs and specific payoffs of an effort.
Overselling the potential payoffs of a simulation not only puts the
actual results in question, but decreases the credibility of future
simulations.
** A more useful scheme is suggested by Morris (Chairman of the
Association for Computing Machinery's Special Interest Group
on Simulation) and Mayhan in an unpublished paper:12 (1) Define
the problem; (2) select a solution method; (3) develop models;
(4) validate models; (5) simulate alternative solutions; (6) select
and implement the best alternative; and (7) validate simulation
solutions.

288 Fall Joint Computer Conference, 1972

ing them correctly. Some of the most troublesome are
the following:*

1. Resources. The amount of manpower and ma­
chine resources to perform a simulation study
may be greater than the expected value of the
study, or they may simply exceed the total re­
sources available for the effort. The desire should
always be to minimize invested resources, but
the characteristics of some simulations make this
issue more critical than in other studies. (The
total available resources may be very limited­
particularly in terms of elapsed time-and the
challenge very great.) Typically, adequate re­
sources are invested in the early phases of an ef­
fort with the later phases receiving whatever is
available. The issue of resources is mentioned
on page 150 of Reference 14.

2. Changes. Changes to improve model validity,
to produce additional output, and to reflect
modified objectives can prove a major difficulty
in some simulations, while they are relatively
trivial in others. Although some simulation ef­
forts are not complicated by unexpected changes,
quick examination of simulation code often re­
veals that changes were far more extensive than
anticipated. Inadequate appreciation of the
need for change can lead to choosing a language
that is too inflexible as well as designing code
that is too complex. The need for changes in a
model is noted on page 87 of Reference 15.

3. Boundaries. In addition to changes as described
above, a simulation analyst may find that the
boundaries defining the modeled portion of the
system change as the study progresses. He may
discover that he has attempted to simulate too
much of the system and be forced to replace
parts of the simulation with simple functions.
Alternatively, he may find that his boundaries
are too narrow, and important interactions are
not being reflected. Identifying the degree to
which boundaries will need change can alter a
simulation's design to reduce the difficulty of
boundary redefinition. Dumas16 refers to the
problem of boundaries on page 77 of his paper.

4. Costs. Cost models are often of significant utility,

* Few authors even mention the problems they have encountered
in simulating a computer system; this may explain the impression
held by some that such efforts are easy. References to sources
dealing with specific issues are given in the descriptions of the
issues. McCredie and Schlesinger13 mention nearly every one of
the issues in their paper.

particularly when the objective includes analysis
for procurement or performance improvement
decisions. Their inclusion, however, often implies
a heavier investment of resources in order to de­
termine the costs of purchasing hardware or
software. Costs of using alternative systems (in­
cluding costs of delays) often prove particularly
difficult to quantify. The importance of cost
models is noted in References 17 and 18.

5. Experimental design. Toward the end of many
simulation efforts analysts realize that exercising

J the simulation will not be a straightforward pro­
cess. At this late date, they begin to consider how
to design experiments: Are 500 hours of CPU
time adequate to determine the response surface?
Many documents deal with the problem, includ­
ing References 6 and 8-11.

6. Detail. Simulations vary in detail of implementa­
tion from those that are relatively gross (Refer­
ences 19 and 20 give examples) to those that
represent operations at the micro-instruction
level (References 21 and 22 present examples).
The level of detail can often be expressed as the
smallest increment of time explicitly recognized
in the model. If the simulation is performed in a
language like GPSS23 or CSS,24 this level is ex­
plicitly recognized in the language. However, this
indicator of minimum time increment, although
quantitative, conceals the essence of the prob­
lem, which is to decide on the extent that system
interactions are to be replicated.

7. Accuracy. Analysts should always desire to have
the ultimately achievable degree of accuracy in a
simulation as high as possible. However, the
utility of improved accuracy may be very low
and hardly worth the cost. This issue is addressed
in References 19 and 25.

8. Validation. An analyst's belief in the accuracy
of his simulation is inadequate for evaluating its
actual closeness to reality. Only a formal valida­
tion effort· can reduce the doubt that it is un­
representative of the real system. The degree of
representativeness is usually assumed to be de­
finable by the ability of the simulation to produce
a few numbers that are close to the numbers ob­
tained from reality. Other types of validity are
often important, however, including correct se­
quences of operations and correct responses to
alterations of input. The analyst must determine
the most appropriate degree of effort to be ex­
pended in validating his model. Although many
simulations of computers are never validated,
examples of validation exercises can be found in
References 19 and 25.

OBJECTIVES

The objectives of a simulation should be explicitly
stated and should be closely related to the decision en­
vironment in both terminology and emphasis. Simula­
tion for its own sake is a sterile process and economi­
cally unjustifiable. Some published papers on specific
simulations state that the author's objective was to
simulate a particular jobstream on a particular hard­
ware/software system. These papers probably reflect
the author's orientation toward the problems involved
in the simulation activity per se; the decision-environ­
ment objectives can usually be deduced from sections
titled "Findings" or "Conclusions." Five categories of
simulation objectives seem to characterize the bulk of
simulations of computer systems. These five categories
are as follows:

1. Feasibility analysis-investigating the possibil­
ity of performing a conceptualized workload on
a general class of computer systems. An example
of a feasibility analysis is presented in Reference
26.

2. Procurement decision-making-comparing one or
more computer systems with a specific workload
to decide which of several (or whether any) com­
puter systems should be procured. For example,
Bell Telephone Laboratories reports this type of
simulation application in Reference 27, and page
4 of Reference 28 provides a report of Mobil Oil
Corporation's application.

3. Design support-projecting the effects of various
design decisions and/or tracking . the develop­
ment of a system. Many simulations have design
as the objective. Examples are to be found in
References 15, 16, and 29.

4. Determining capacity-for projected systems,
determining the processing capacity of various
configurations; for existing systems, determining
the processing capacity of a load different from
the current work. Examples of what were ap­
parently simulations to determine capacity are
presented in References 30 and 31.

5. Improving system performance-increasing pro­
cessing capacity by identifying and changing
the most sensitive parts of the hardware/ soft­
ware system. This process is also known as tun­
ing, and examples can be found in References 20
25, and 32.

Decision-oriented objectives may be as hard to state
at the beginning of an effort as they are to discover in
many post-analysis papers~ Nevertheless, analysts some­
how manage to choose an approach and then develop

Objectives and Problems in Simulating Computers 289

ISSUE OBJECTIVE

Feasibility Procurement Design
Determining Improving

Capacity System

Resources

Changes

Boundaries

Costs

Experimental
Design

Detail

Accuracy

Validation

Figure I-Desired matrix

some solution to each of the issues suggested earlier.
Many of these are developed within the context of
other choices (e.g., the language to be used) involving
additional, mechanistic criteria (e.g., user-directed out­
put). One danger in using this procedure is that the
process of making other choices may seriously compro­
mise the simulation's value by directing the simulation
into unfruitful areas.

Just as importantly, the analyst may attempt to
generate a simulation that will do all possible things.
McCredie and Schlesinger* point out that attempting
simulations "capable of answering almost any reason­
able question about the system ... must be paid for by
large investments in personnel and computer time."
This is true, of course, because the analyst must solve
all the problems indicated earlier, and some of these
may have solutions for one objective that are incon­
sistent with solutions for other objectives.

Such inconsistent solutions should be detectable by
drawing a matrix of the issues and objectives with the
general solutions as entries. Figure 1 illustrates such a
matrix, but it is not completed because the objectives
are not well enough defined to permit identification of
even a general solution for each issue. For example, the
most appropriate level of detail in a study to determine
the feasibility of computer logic might be at the micro­
instruction level as it is in Rummer's study.33 At the
same time, a simulation to investigate the feasibility of
an entire system might be at so high a level that nothing
shorter than a complete job task or data transmission is
considered. (This is the case in the studies by Downs,
et a1.26 and Katz.34) Yet both simulations would have

* Pages 201-202 of Reference 13.

290 Fall Joint Computer Conference, 1972

~easibility as the objective. A different categorization
scheme is needed for objectives-one that will make it
easier to associate problems with objectives by aggre­
gating the decision environment's objectives into classes
for the simulation environment.

Alternative categorization scheme for objectives

The alternative scheme suggested in this paper does
not divide the objectives into more categories; instead,
it reduces the number and redirects them so that they
are more useful in defining answers to the issues sug­
gested above. The alternative defines three categories:
absolute projection, sensitivity analysis, and diagnostic
investigation. It may appear that all the simulations in
each of the decision-oriented five categories map easily,
as blocks, into categories in the alternative scheme of
three, but exceptions appear often enough that generali­
zations about mappings are dangerous.

Absolute projection

This category includes those simulation studies whose
objectives can be reduced to the desire to make basically
dissimilar comparisons. An example of this type of ob­
jective is a situation in which the processing capacities
of two systems under a certain load are to be compared.
The analyst wishes to determine which system should
be procured. Another example is the comparison of a
system's processing capacity with the load that it is ex­
pected to encounter. (This is usually tested opera­
tionally by determining the expected time for the simu­
lated system to process a load and comparing this time
with the maximum allowable time.) The decision under
consideration in this instance may be whether to procure
a certain system or it may be whether to perform a new
job on an existing system. A third example of a simula­
tion in this category is one in which response times are
being compared with stated requirements. If the pro­
posed system is unable to meet the requirements, then
it must be augmented.

The important characteristic in each of these ex­
amples is the necessity for evaluating an objective func­
tion in absolute terms with a high degree of absolute
accuracy. If two systems actually differ in processing
capacity by 20 percent, the simulation technique must
produce answers with absolute errors of less than 10
percent if the analyst is to be sure of choosing the better
system.

Apparent examples of absolute projection are de­
scribed in References 14, 26, and 30.

Sensitivity analysis

Simulations falling in this category emphasize similar
comparisons. While simulation studies making absolute
projections must have absolute accuracy, sensitivity
analyses require good accuracy only in (1) the areas in
which two cases are not identical and (2) the areas that
significantly interact with the nonidentic~l areas. Al­
though the simulation code may represent far more than
the portion of the system under consideration, the pri­
mary validation effort should be devoted to the central
portion, with reasonableness being the criterion for the
rest. The remainder of the simulation code is seldom
excess (and therefore an embarrassment) for several
reasons. First, it usually interacts with the central
portion in some manner in which the details are not im­
portant, but the general sorts of interaction are im­
portant. Second, other sensitivity analyses may use the
same simulation code, and building one simulation for
several analyses may be the most effiCIent procedure.
Third, the boundaries of the central portion are often
not identifiable early in the simulation effort because
the analyst is not yet familiar with all the interactions.

A decision-maker doing sensitivity analysis may re­
quire that answers have high reliability, but if he has an
alternative that improves on the default by 20 percent,
he does not need to have the absolute values of each.
His decision is based on the changed value of the objec­
tive function rather than its absolute value.

A basic characteristic of sensitivity analysis, of
course, is the comparison of slightly different alterna­
tives. For the simulation analyst this implies that his
simulation must be constructed to facilitate changes.

As an example of sensitivity analysis, an analyst
might be interested in the effects of changing hardware,
changing software, or changing scheduling schemes.
Specifically, he might want to know whether increasing
the size of buffers results in increased message through­
put. With the exception of the changes under considera­
tion, the initial and changed simulations are identical.
The analyst must ensure that the changed portion (and
the parts it interacts with) are represented accurately,
but the remainder of the simulation (probably includ­
ing disk queuing, front-end processors, file layouts, etc.)
can be less accurate. Of course, the possibility exists
that the analyst will incorrectly assume that parts of
the system are not critical when they really are, but this
is the boundary problem that an analyst always faces.
He might find comfort in having the simulation agree
with reality in correctly reporting message throughput
over a wide range of conditions, but his decision can be
made on the basis of the ratio of throughputs before and
after the increase in message size.

I
I

References 16, 18,21,22, 29, and 35 would appear to
give examples of sensitivity analysis.

Diagnostic investigation

Diagnostic investigations tend to place less emphasis
on the value of an objective function. The interest of
the analyst is to gain understanding of the detailed
manner in which the simulated system behaves. He
may be interested in examining interactions, in analyz­
ing aberrations in the real system (or, too often, those
peculiar to his simulation), or in tracing the progress of
a transaction to determine whether it goes through the
system as expected. The emphasis tends to be on per­
formance of very small parts of the system~ Graphical
analysis techniques often find application in this type
of simulation since detailed sequences of activities may
require examination.

Diagnostic investigation would appear to be the ob­
jective in References 32 and 33.

Substudy objectives

The global objectives of a simulation study may not
match the immediate objectives of an analyst at certain
points in a study. For example, an analyst performing
a sensitivity analysis study may find that he needs to
project absolute performance to determine whether his
model's gross interactions yield results that are even
remotely correct. Then he may wish to verify the de­
tails of an alternative scheduling strategy and trace its
actions through the scheduling algorithm. Only then
does he bother to perform simulation runs for the several
alternatives that he has programmed. Although his
global objective would fall in the category of sensitivity
analysis, the analyst would have performed two sub­
studies with local objectives in the other two categories
ef absolute projection and diagnostic investigation.
Dumas16 and Ceci and Dangel36 have performed these
types of substudies.

The substudy objectives in a simulation study consti­
tute a means of attaining the study's objectives and
merely reflect short term techniques. While these may
be important in performing tasks such as verification
and ensuring reasonableness, they are not the objectives
that determine the simulation's overall design and
should not confuse the analyst about the type of global
objectives he is pursuing. If the effort devoted to a sub­
study becomes large, the analyst should carefully con­
sider whether his substudy effort is relevant, his formal
global objectives should be revised, or the global objec­
tives.are simply unattainable.

Objectives and Problems in Simulating Computers 291

ASSOCIATING PROBLEMS WITH OBJECTIVES

The definitions of problems and objectives suggested
in the preceding pages have assumed that the analyst
is interested in designing his simulation before launching
into the details of language choice and coding. The as­
sertion has been implicit that these definitions could be
used in associating the problems with the objectives to
lead to better simulation designs. Figure 2 represents an
attempt to provide this type of aid. The importance of
the first five issues (resources, changes, boundaries,
costs, and experimental design) are indicated there;
the applicability of most of the entries is apparent.

For example, limitations on available resources will
be a critical problem in absolute projection studies be­
cause the entire system must be simulated to a high de­
gree of accuracy, and usually the work must be done in
a short time. On the other hand, a diagnostic investiga­
tion need only reflect particular parts of the system of
interest. Sensitivity analyses lie somewhere between
these two extremes.

Suggestions regarding the last three issues are of a
different character. Rather than indicating importance
(largely the degree of resource commitment needed),
they suggest approaches that are not necessarily indica­
tive of a particular level of effort; however, taking the
right action is critical for a simulation of any objective.

Level of detail

The most appropriate level of detail for an absolute
projection simulation is usually at quite a macro level
because the entire system must be simulated, and re­
sources are usually at a premium. At the other extreme,
a diagnostic investigation usually must be at a rela­
tively micro level in order to reflect detailed interac­
tions. A sensitivity analysis simulation, however, often
represents a combination of levels since it may repre­
sent the bulk of the system grossly and the altered part
in detail.

Accuracy

The accuracy of response time or throughput figures
in a diagnostic investigation study is usually of super­
ficial importance. The analyst is investigating the man­
ners in which one (or a few) parts of the system interact;
investigating the details of one part of a system's be­
havior does not require overall accuracy of performance
parameters. Of course, the performance should be
reasonable or the behavior will not be reasonable, but

292 Fall Joint Computer Conference, 1972

ISSUE OBJECTIVE

Absolute Sensitivity Diagnostic
Projection Analysis Investigation

Resources Critical Important Desirable

Changes Desirable Critica I Important

Boundaries Desirable Important Critica I

Costs Desirable Important Irrelevant

Experimental
Important Critical Desirable

Design

Detail Macro Moderate Micro

Critical Critica I Reasonableness Accuracy
Overall

in
Only Places

Validation Value Derivative Sequence
Comparison Comparison Checking

Figure 2-Issues vs objectives

high accuracy in performance parameters is not neces­
sary for representative interactions.

For sensitivity analysis, a simulation must closely re­
flect the differences that will be encountered between
the various alternatives under consideration. While
absolute values of performance parameters may be com­
forting, the decision problem at hand requires only the
relative difference between similar situations.

Absolute projection, of course, requires accuracy in
desired performance parameters; undue faith in absolute
projections is perhaps the most dangerous error in
simUlating computer performance.

Validation

Validation is performed. to improve the confidence
that the required type and degree of accuracy is ob­
tained in a simulation. This means that, in absolute
projection, the simulation's projection of performance
parameters must be compared with the parameters from
the real system. This value comparison is necessary if
faith is to be vested in the predicted. parameters. In
instances where a system does not exist (so no valida-

tion can be performed), the analyst should include a
caveat with any reported results to indicate that the
simulation is of undetermined accuracy.

Sensitivity analyses are often validated by comparing
the values of real performance parameters with the
predicted values over some set of conditions that are
realizable on the actual system being simulated. A pro­
jection can then be made of an unvalidated case based
on the knowledge that the predicted performance was
correct in a number of similar cases; therefore, the
changes in performance were accurately reflected and
probably will be in the new case. This approach may be
excessively expensive because it requires accuracy in
parts· of the simulation that are not to be altered. An
alternative is to compare only changes in performance
due to specific changes in the system. In this case, only
the fractional changes need be compared, so significant
savings may be possible. This less exhaustive process is
analogous to comparing derivatives rather than abso­
lute values of functions. In many eases, the analyst
only needs to determine whether it is positive, negative,
or zero.

Validation of diagnostic investigations requires even
less rigor than for sensitivity analyses. Since the empha­
sis is on examining detailed interactions, the analyst
usually only needs to ensure that the sequence of opera­
tions is correct. Even this validation can be quite time­
consuming and frustrating if the analyst is restricted to
viewing flowcharts. Powerful graphical techniques for
showing interactions are very useful here.

APPLICATION

The categorization schemes and matrix presented in
this paper are without value unless they can aid
analysts in planing analyses and designing simula­
tions. Two examples will be given to indicate how they
can be applied. One example uses a simulation that was
performed without reference to such schemes and il­
lustrates how the effort could have been aided by their
use. (The problems encountered led to developing the
schemes and matrix.) The second example presents a
situation in which the schemes were applied in order to
avoid problems that otherwise might have arisen.

Example 1: S~'mulating without reference to the matrix

This first example involves a simulation of the Video
Graphics System (VGS) performed during the imple­
mentation of software on newly designed hardware.
The system uses a central communications switching
and controlling machine-an IBM 1800-that com­
municates with a series of terminals and several service

machines. The service machines execute user code and
send digital representations of pictures to the 1800 for
conversion to analog representation in a special picture
generator controlled by the 1800. One picture generator
and three scan converters service all users (presently 28)
who employ terminals with raster scanned screens that
can be slightly modified broadcast television sets. Vari­
ous input devices, including keyboards, are added to the
sets to enable two-way communications. The objective
of the system is to supply high-powered interactive
graphics capability to many users at a moderately low
cost through time-shared use of the expensive digital­
to-picture hardware. The system as a whole is described
in Reference 37 and a description of the modeled por­
tion of the system is presented in Reference 38.

Objectives

Prior to doing any simulation coding, we spent time
learning about the system1s characteristics and develop­
ing a set of simulation objectives. We then distributed a
preliminary description of our understanding of the
system along with our proposed objectives. (The ob­
jectives were expressed as questions that needed
answers.) The characters to the left of each objective
did not appear in the original (taken from Page 80 of
Reference 38). They indicate the type of objective,
and the characters stand for the following:

A Absolute projection.
S Sensitivity analysis.
D Diagnostic investigation.

Although several additional objectives were added dur­
ing the study, the objectives listed below were retained
for its duration. Many of these objectives, however,
were not addressed due to lack of time and the belief
that the questions could not be adequately answered
with the simulation.

A 1. Under what load conditions will the system give
poor response? (It may be feasible to alter the
load by user education as well as by changing
characteristics of such software support as the
Integrated Graphics System.)

A 2. Will messages be unduly delayed in the VMH*
system in the 360s?

A 3. Will channel cycle-stealing slow the 1800 CPU
enough that input data are lost due to delays in
processing?

S 4. Will a ping-pong system decrease response time
of the VGS?

* Video Message Handler, essentially an access method.

Objectives and Problems in Simulating Computers 293

D 5. What will be the effect of the 1800 waiting at
interrupt level four while buffers are unavailable
for service machine input?

D 6. What will be the effect on the 1800 of one service
machine being unresponsive for a short period?

A 7. What portion of system capacity does a Tablet
take? (It might be profitable to disable a Tablet
that is temporarily not in use, or to use a key­
board instead of the Tablet.)

S 8. How useful would more core be in the 1800?
S 9. How useful would another 1800 be?

These objectives included four in the category of abso­
lute projection, three in sensitivity analysis, and two in
diagnostic investigation. Since we had objectives in
each of the three objective categories, we can see from
Figure 2 that we needed a simulation that was at a
macro level but also (conflicting) in micro detail. In
addition, the simulation had to have a high degree of
overall accuracy, be easy to change, have easily altered
boundaries, use few resources, and be extensively vali­
dated. While no one noted the extreme difficulty of
achieving all the objectives at the time we stated them,
our proposed categorization schemes and matrix of solu­
tions quickly reveals how difficult it would be to achieve
them all.

Diagnostic investigations

We decided to create a simulation at a low level of
detail; the basic time increment in this GPSS simulation
was 50 microseconds. It traced all normal interactions
in the 1800 and used approximate timing information
generated by multiplying the number of instructions in
a module by the average time per instruction as mea­
sured during an early run of the system. Most of the
actual work with the simulation involved diagnostic
investigations, including objectives 5 and 6. In addition
to the objectives stated before coding began, we investi­
gated cases of potential deadlock· and the platooning
that were characteristic of the system. Interactive com­
puter graphics was used extensively to aid in investi­
g~ting these situations; hardcopy graphics was used to
document the results and communicate with system
designers. Figure 3 shows a typical output, complete
with the analyst's marginal notes. This display shows,
over simulated time, the priority level of the executing
software at the top; the entire bottom of the display
presents a Gantt chart. This Gantt chart shows which
routines are in control at each moment of simulated
time. With these displays the simulation served ad- .
mirably in answering questions during diagnostic inves­
tigations.

294 Fall Joint Computer Conference, 1972

DISPLAY FROM _~~~~~ TO 11100 DI:;PLAY "ROM ___ I~~~~ TO __ ~~~~~.

~--l~~~'---~:"-R =-. !-! --__ -+---__ ,:,J_ .. -;;-_~-. --+-:-=---·· __ --~_J-_I_ .. -__.J-L-

sc.. \ 11

S~ 7, 1

-~-~-----~ili-~j+-: ---.:8:...-...1 __ 8! 'ill 8

---- 6 +--------------l---,,,......::.===--+--I -----

2
• II !II 1

1 •

2
'ill 8 1

. :
1'i11 8 11

Sd A
111

. e e
~--------------------~·f-·--~--~---~~·--~~--~--~~--~~--~

C ---

~~ fJV L Ii 1

!.

3

•

I

./
!I

llli~00~----------~11~8~OO~---------1~17.10~G70-------·---------1-18-0-0---------1-111~OLOO-

STATISTICS GAM"" CHAR" VARIABLI! ORA PH STATISTI_C_S _~_G_A_M"_"_C_H_AR_" __ --l-_V_AR_I_AB_L_I!_G....:RA __ P __ H---1 +

Figure 3-Graphical output

Sensitivity analysis

The initial sensitivity analysis objectives were ad­
dressed, but delays in validation caused us to be very
reluctant to put much faith in the results. Early use of
the real system indicated that some functions performed
by hardware should be implemented in software, and
we decided to add an objective about the utility of this
change. We found, to our surprise, that total system
utilization would be only marginally affected by' the
change. Without validation, we discounted this result
initially. The importance of the issue, however, led to a
substudy with strong characteristics of diagnostic in­
vestigation to explain the result. We discovered that
low priority attempts by the system to clean tip various
queues caused processing in the altered case (with hard­
ware implementation) but not in the initial case (with a
software implementation). Eventually, we did perform
a validation of the simulation and found that, within
the context of sensitivity analysis, the simulation had
quite adequate accuracy. (See Reference 39 for details
of this validation effort.)

Absolute projection

The largest number of objectives for this simulation
study fell into the category of absolute projection. Ob-

jective 7 (regarding the portion of system capacity
used by a single RAND Tablet) is typical of these, and
illustrates the problems of using a simulation for abso­
lute projection when it is designed to fulfill other objec­
tives too. The first problem' is that the portion of sys­
tem required by a Tablet varies with system loading.
As the load increases, the overhead to handle a Tablet
(contrary to usual system performance) decreases.
Therefore, a single number is inadequate to represent
performance in general. This characteristic of systems
(performance not being easily represented in simple
ways) appears in most systems, but, in absolute projec­
tion, stating the fact is often considered unacceptable
by people desiring simple answers.

Secondly, the absolute projections, in comparison
with measured results, tended to be optimistic by a
factor of about two. That is, reality took twice as long
as predicted by the simulation. Since projections were
based on average instruction times, we put the 1800
processor into a very restricted processing loop (83
instructions) to separate timing assumptions from inter­
action representations, computed the predicted time to
execute the instructions (using published, manufacturer
supplied timings), and measured the actual time to exe­
cute them. In a variety of instances the actual and pre­
dicted did not agree; in one of the clearest cases the
prediction was 155 microseconds and the measured time
was 220 microseconds. This last difference led us to

doubt that our bottom up approach to generating tim­
ings would ever lead to fulfilling most of the absolute
projection objectives since we did not understand some
of the interactions between hardware and software.

(One of the few objectives that were usefully ad­
dressed, even if not rigorously answered, was objective
7. The predicted system loading was so high that even
gross errors in the simulation would not lead to ac­
ceptable performance. Predicting this performance
problem helped strengthen the case for hardware imple­
mentation of some of the functions necessary for Tablet
operation.)

SUInm.ary

Many of the anticipated payoffs of the simulation
were not realized because its objectives implied incon­
sistent solutions to problems in simulation. While the
results were useful in fulfilling some objectives, a review
of the problems to be encountered in achieving the other
objectives could have allowed us to rank them and to
consider, before coding the simulation, whether its de­
sign was most appropriate in aiding the VGS designers.

Example 2: Referencing the matrix before simulating

This second example involves a ~imulation of a very
large information management system. The simulation
was undertaken during the design stage; no hardware
was yet available for running any validation tests. A
"packaged simulator" was to be used to determine the
size of hardware to be ordered. The objective clearly
fell into the absolute projection category, and yet,
validation of program descriptions could not be per­
formed. While management wished to know the precise
configuration that should be acquired, facilities were not
available for performing the necessary validations of
overall accuracy.

Diagnostic investigation

We suggested that diagnostic investigations be under­
taken to determine whether some critical portions of
software would perform as expected. The micro-level
simulations could be checked for correct sequences
and, as soon as hardware was available, the reason­
ableness of the predictions could be validated.

Absolute projection

The need for information about appropriate hard­
ware configurations was very real, so we suggested that

Objectives and Problems in Simulating Computers 295

a multi-phase strategy be pursued. During the period
when no validation was possible, important programs
could be simulated at a macro level to see whether ob­
vious design problems existed. (If the simulation pre­
dicted 100 hours to run each of ten daily programs, even
the most skeptical analyst would question the design.
A number of such instances were discovered and cor­
rected.) The important element of this phase was to
devote heavy effort only to cases where problems clearly
exceeded the potential errors in the simulation. Con­
currently, techniques for describing programs were
checked by employing them on software being run on an
existing system. This effort led to changes in the de­
scriptions of software for use in simulations. Later,
preliminary validation could be performed using data
made available from configurations used in testing.
Since analysts had already completed initial simula­
tions of the programs, validation and revision could be
accomplished in the short time between availability of
initial data and the required hardware ordering date.

SUInInary

Suggestions about a more appropriate procedure for
this example could clearly be made without our schemes
and matrix. In practice, however, they often are for­
gotten in the rush to implement something and show
results. Further, opinion about the difficulty of a specific
task is a weak tool to use in convincing people who are
unfamiliar with simulation's limitations or under heavy
pressure to "get on with the job." The categorization
schemes and matrix of solutions are convenient tech­
niques for indicating the requirements to achieve a
certain objective in comparison with other potential
objectives.

RECOMMENDATIONS

We have found the application of this approach use­
ful in planning and designing our own simulations and
in helping other analysts to improve theirs. It proves
particularly useful in predicting how much effort is
appropriate for validation exercises and what form such
validation should take. While an experienced simula­
tion analyst may feel that it expresses little that he does
not already know, too many analysts fail to apply their
knowledge rigorously in the early stages of a simulation
effort.

We suggest that analysts force themselves to state
objectives clearly-and in writing-at the beginning of
a simulation effort. They should then consider whether
all their objectives are realizable when using the sug­
gested solutions to the problems listed in the matrix of

296 Fall Joint Computer Conference, 1972

Figure 2. Only after assuring themselves that the effort
can result in fulfilling the objectives should they design
the simulation. Finally, they should consider whether
the achievement of the objectives will justify the cost
required to implement and validate the simulation.

REFERENCES

1 L J COHEN
S3 The system and software simulator
Digest of the Second Conference on Applications of
Simulation ACM et al New York December 1968 pp
282-285

2 N R NIELSEN
ECSS: An extendable computer system simulator
The Rand Corporation RM-6132-NASA February 1970

3 J N BAIRSTOW
A review of system evaluation packages
Computer Decisions Vol 2 No 6 June 1970 p 20

4 W C THOMPSON
The application of simulation in computer system design and
optimization
Digest of the Second Conference on Applications of
Simulation ACM et al New York December 1968 pp
286-290

5 G K HUTCHINSON J N MAGUIRE
Computer systems design and qnalysis through simulation
Proceedings AFIPS 1965 Fall Joint Computer Conference
Part 1 pp 161-167

6 G S FISHMAN
Estimating reliability in simulation experiments
Digest of the Second Conference on Applications of
Simulation ACM et al New York December 1968 pp 6-10

7 T E BELL
Computer graphics jor simulation problem-solving
Third Conference on Applications of Simulation ACM et al
New York December 1969 pp 47-56 (Also available as
RM-6112 The Rand Corporation December 1969)

8 D P GAVER JR
Statistical methods for improving simulation efficiency
Third Conference on Applications of Simulation ACM et al
N ew York December 1969 pp 38-46

9 T H NAYLOR K WERTZ T H WONNACOTT
Methods for analyzing data from computer simulation
experiments
Communications of the ACM Vol 10 No 11 November 1967
pp 703-710

10 G S FISHMAN
Problems in the statistical analysis of computer simulation
experiments: the comparison of means and the length of sample
records
The Rand Corporation RM-4880-PR February 1967

11 G A MIHRAM
An efficient procedure for locating the optimalsimular response
Fourth Conference on Applications of Simulation ACM et al
New York December 1970 pp 154-161

12 M F MORRIS A J MAYHAN
Simulation as a process
Simuletter Vol 4 No 1 October 1972 pp 10-15

13 J W McCREDIE S J SCHLESINGER
A modular simulation of TSS/360
Fourth Conference on Applications of Simulation ACM et al
New York December 1970 pp 201-206

14 H A ANDERSON
Simulation of the time-varying load on future remote-access
immediate-response computer systems
Third Conference on Applications of Simulation ACM et al
New York December 1969 pp 142-164

15 A L FRANK
The use of simulation in the design of information systems
Digest of the Second Conference on Applications of
Simulation ACM et al New York December 1968 pp 87-88

16 K DUMAS
The effects of program segmentation on job completion times in
a multiprocessor computing system
Digest of the Second Conference on Applications of
Simulation ACM et al New York December 1968 pp 77-78

17 S R CLARK T A ROURKE
A simulation study of cost of delays in computer systems
Fourth Conference on Applications of Simulation ACM et al
New York December 1970 pp 195-200

18 N R NIELSEN
An analysis of some time-sharing techniques
Communications of the ACM Vol 14 No 2 February 1971
pp 79-90

19 J D NOE G J NUTT
Validation of a trace-driven CDC 6400 simulation
Proceedings AFIPS 1972 Spring Joint Computer Conference
Vol 40 1972 pp 749-757

20 J H KATZ
Simulation of a multiprocessor computer system
Proceedings AFIPS 1966 Spring Joint Computer Conference
Vol 28 pp 127-157

21 S C CATANIA
The effects of input/output activity on the average instruction
time of a real-time computer system
Third Conference on Applications of Simulation ACM et al
New York December 1969 pp 105-113

22 S E McAULAY
J obstream simulation using a channel multiprogramming
feature
Fourth Conference on Applications of Simulation ACM et al
New York December 1970 pp 190-194

23 General purpose simulation system/360 user's manual
H20-0326 International Business Machines Corporation
White Plains New York 1967

24 Computer system simulator II (CSS II) general information
manual
GH20-0874 International Business Machines Corporation
White Plains New York 1970

25 P E BARKER H K WATSON
Calibrating the simulation model of the IBM system/360 time
sharing system
Third Conference on Applications of Simulation ACM et al
New York December 1969 pp 130-137

26 H R DOWNS N R NIELSEN E T WATANABE
Simulation of the ILLIAC IV-B6500 real-time computing
system
Fourth Conference on Applications of Simulation ACM et al
New York 1970 pp 207-212

27 J M JENKINS R G MAHER
Uses of simulation in the design of large scale information
systems
Digest of the Second Conference on Applications of
Simulation ACM et al New York December 1968 pp 85-86

28 R A CANNING
Data processing planning via simulation
EDP Analyzer Vol 6 No 4 April 1968 13 pp

29 M H MAcDOUGALL
Simulation of an ECS-based operating system
Proceedings AFIPS 1967 Spring Joint Computer Conference
Vol 30 pp 735-741

30 L C SANDERS
A Monte Carlo process for determining response times for
tactical systems
Digest of the Second Conference on Applications of
Simulation ACM et al New York December 1968 pp 79-84

31 W I STANLEY H F HERTEL
Statistics gathering and simulation for the Apollo real-time
operating system
IBM Systems Journal Vol 7 No 2 1967 pp 85-102

32 M M LEHMAN J L ROSENFELD
Performance of a simulated multiprogramming system
Proceedings AFIPS 1968 Fall Joint Computer Conference
Vol 33 Part 2 pp 1431-1442

33 D I RUMMER
FORTRAN simulation of digital logic
Digest of the Second Conference on Applications of
Simulation ACM et al New York December 1968 pp
297-305

34 J H KATZ
An experimental model of system/360

Objectives and Problems in Simulating Computers 297

Communications of the ACM Vol 10 No 11 November 1967
pp 694-702

35 S L REHMANN S G GANGWERE JR
A simulation study of resource management in a time-sharing
system
Proceedings AFIPS 1968 Fall Joint Computer Conference
Vol 33 Part 2 pp 1411-1430

36 R J CECI G W DANGEL
On-line system simulation
Digest of the Second Conference on Applications of
Simulation ACM et al New York December 1968 pp 89-93

37 K W UNCAPHER
The Rand video graphics system-an approach to a general
user-computer graphics communication system
The Rand Corporation R-753-ARPA April 1971

38 T E BELL
Modeling the video graphics system: procedure and model
description
The Rand Corporation R-519-PR December 1970

39 T E BELL
Computer performance analysis: minicomputer-based
hardware monitoring
The Rand Corporation R-696-PR June 1972

A methodology for computer model building

by A. DECEGAMA

The National Cash Register Company
San Diego, California

INTRODUCTION

System performance evaluation techniques are of vital
importance in the system design process. As depicted
schematically in Figure 1, the selection of the design
variables is generally accomplished by an iterative
process in which the evaluation of the system cost and
performance plays a crucial part.

Simulation and mathematical modelling constitute
the two basic approaches to computer system per­
formance evaluation. Simulation models can be built
to study almost any system with a very fine degree of
detail, but they may require an inordinate amount of
time for the determination of the system performance.
On the other hand, mathematical models, while being
more limited in scope, are much faster than simulation
models and consequently, much more economical to
apply. This fact gives mathematical models a decisive
advantage. When they can be built, mathematical
~odels of complex systems with large numbers of design
variables can be used to optimize the designs; whereas,
the number of simulation runs required to accomplish
the same task would be so high that the simulation
approach to computer system optimization is totally
impractical.

But good and realistic mathematical models of com­
puter systems are difficult to develop. The real world is
far too complex to be described faithfully with a series
of equations. Therefore, approximations requiring
extensive testing, guided by a deep understanding of the
stochastic processes involved, must be made in order to
formulate a model that, while capturing the essence of
the problem at hand, is mathematically and computa­
tionally feasible.

Furthermore, mathematical models of computer
systems are costly to develop because their verification
requires in turn the development and application of
very detailed simulation models that are as close to the

299

real systems as possible. The cost involved in a project
of this type may well run into the hundreds of thousands
of dollars, due to the number and lengths of the simula­
tion runs involved, which require large and fast
machines.

These two stumbling blocks: the difficulty of building
a good model and the cost of verifying it, are the main
reasons why good mathematical models of computer
systems are practically nonexistent.

This paper presents a methodology to build mathe­
matical models of multiprogramming systems that can
greatly reduce the time and cost involved in developing
models for specific systems.

THE CPU INTERRUPT PROCESS IN
MULTIPROGRAMMING SYSTEMS

The occurrence of CPU interrupts in a multiprogram­
ming system is the result of the superposition of many
random and independent events (paging, I/O file
accesses, ends of programs, time-slicing, spooling, etc.)
that are caused by the concurrent processing of different
programs. This situation is illustrated in Figure 2 which
represents the succession· in time of the interrupts
produced by five programs residing simultaneously in
main memory. Programs 1 and 2 are assumed to be of
priority 1 (the highest), program 3 of priority 2 and
programs 4 and 5 of priority 3.

The Pooled Output Theoreml states that the dis­
tribution of the CPU inter-interrupt times (Ti) would
be asymptotically exponential, as the number of
programs in main memory increases,· if the individual
inter-interrupt times within any priority i, T ii• were
independent.

The individual T ii are the result of a sum of random
variables:

300 Fall Joint Computer Conference, 1972

where

Tio=I/O response time/interrupt (includes both
waiting and service time)

T wi = CPU waiting time for programs of priority i
T ui = CPU service time between consecutive inter­

rupts for programs of priority i
To = CPU interrupt overhead

It can be seen that there is some interdependence
between the different Tii due to the I/O and CPU
waiting times involved. But, since in a system properly
designed the CPU and I/O service times should be
much longer than the corresponding waiting times, such
interaction may not be strong enough to constitute a
significant deviation from the condition of independent
Tu.

Also, since the trend toward the exponential density
is very rapid with an increasing number of programs
in memory, it would appear that a finite number of
programs being multiprogrammed provide conditions
that may sufficiently approach those for which the

ENVIRONMENT
(Tasks)

.....

~r

CONSTRAINTS
(Technology,

Costs)

!
SELECT10N OF DESJGN

Variables

.,

SYSTEM PERFORMANCE EVALUATION

PERFORMANCE SATISFACTORY ? ~N..;..;;O~-....!~ ..

~YES

Figure I-Schematic representation of the system design process

Tu,
PROGRAM'I

PROGRAM 2

PROGRAM 3

PROGRAM 4

PROGRAM 5

ABSOUJTE TIME

, I

: l"'le----Til ---+-I---...... ~/
I Tul T? Tlo I T wI T ui T 9
I I I I I 1 14-
" I I I I
I I 1'< Ti2 I ;V I

: : I TU21To Tio TW 2! Tu2 T6 :
I I I I I I I

: ~ I I I: " I I :~.
I I I I I I I I
I I I I I I I I
1 I I I I I I
I I I I I
I T I I I I , i, , ~ J.

T u i = CPU t im<z b<ztw<z<zn cons<zcutlv<z interrupts for
programs of priority I

To = CPU int<zrrupt overh<zad
Tio" 1/0 response tim<z per interrupt
Twi= CPU waiting time for programs of priority i
Tii = Time b<ztween consecutivtl CPU inttzrrupts

for programs of priority i

Figure 2-Times between consecutive CPU interrupts (T,)
caused by the programs residing in memory in a multiprogram­

ming environment

Pooled Output Theorem is applicable. This situation is
reinforced by the fact that, in addition to the interrupts
caused by the programs residing in main memory at
any given time, the CPU must also be interrupted for
the control of the input and output (spooling) pro­
cesses. Since the input and output processes are truly
independent, their superimposition with the interrupt
process due to the programs being simultaneously
served in main memory results in an even faster trend
toward the exponential density for the overall system
interrupts.

If the applicability of the Pooled Output Theorem
can be verified, it can have important implications for
the development of mathematical models of multi­
programming systems, since their formulation basically
consists of the analysis of complex stochastic service
systems in which several queueing processes take place
simultaneously. Such queueing processes can be
analyzed mathematically only if the inter arrival times
between consecutive service requests to each of the
different system elements (CPU, disk, drum, etc.) are
exponentially distributed. This can only happen if the
CPU interrupts constitute a Poisson process.

,
I

i
,"

STATISTICAL ANALYSIS OF THE
INTER-INTERRUPT TIlV[ES IN
l\1ULTIPROGRAl\1l\lING SYSTEl\1S

A SIl\1SCRIPT Simulation Program was developed
with the purpose of investigating the intrinsic stochastic
characteristics of the interrupt process in multi­
programming systems.

The design of the simulation model was sufficiently
flexible to permit the study of the effect of diverse
environment and system characteristics in the inter­
interrupt times.

The variables that could be varied between simulation
runs and their corresponding ranges of variation are
shown in Table I.

The forms of the distribution functions of the CPU
and I/O service times and inter arrival times could also
be changed. In addition, the CPU and I/O service
disciplines could be defined at the beginning of a run
to be either First-Come-First-Served (FCFS) or by
priorities. In the latter case, a choice could be specified
between Pre-Emptive Resume and Non-Pre-Emptive
disciplines.

A Simulation run ended after 10,000 interrupts had
been generated. The output of each simulation run
consisted of statistics for equipment utilization and
queue lengths and distribution functions for CPU
holding times1 I/O service times, waiting times and . . ' lnter-mterrupt times. The individual inter-interrupt
times corresponding to the last 1,001 interrupts (1,000
values) were written on a tape. It was assumed that this
sample was representative of the steady-state of the
simulated system.

After each simulation run, a statistical analysis of the

TABLE I-Variables Changed Between Simulation Runs to
Investigate The Interrupt Process in Multiprogramming Systems

Variable

No. programs being multiprogrammed
No. priorities
Type of I/O devices
Distribution of I/O service times
Distribution of CPU service times

between consecutive I/O interrupts
CPU Q'uantum size

Distribution of program inter-arrival
times

No. CPU interrupts for input/program
No. CPU interrupts for output/program

(spooling)

Range

4-10
1-3

Drum-Disk':'Tape
10-100 msec (avg)
5-10,000 msec (avg)

50-500 msec (00 in
the cases where
there was no quan­
tum interrupt)

.3-10 sees. (avg)

5-100 (avg)
5-100 (avg)

A Methodology for Computer Model Building 301

values generated on the simulation output tape was
performed.

The statistical analysis consisted of the following
tests:

1. Tests to ascertain the stationarity of the series
of inter-interrupt times (no time trend).

2. Tests to detect serial correlation between succes­
sive inter-interrupt times (if the inter-interrupt
times are stationary with no serial correlation ,
they constitute a renewal process. The Poisson
process with its exponentially distributed inter­
event times is a special type of renewal process) .

3. Distribution-free tests of goodness of fit for the
Poisson process:
(a) One-sided Kolmogorov-Smirnov Statistic
(b) Two-sided Kolmogorov-Smirnov Statistic
(c) Anderson-Darling Statistic

4. Specific tests of the Poisson Hypothesis against
renewal hypotheses:

l\1oran Statistic (most powerful test against
a renewal alternative in which the intervals
have a Gamma density)

5. Tests to measure deviations from the exponential
distribution:
(a) Maximum deviation from the exponential

distribution with the same average as the
studied series.

(b) Coefficient of variation (the quotient of the
standard deviation and the average which is
equal to 1 for the exponential distribution) .

Even though it may appear that the number of tests
is excessive, this statistical analysis is actually a con­
densed version of more extensive existing procedures.2

Such procedures usually require a large number of tests
for the Poisson hypothesis due to the lack of a single
test with satisfactory consistency and power against a
wide range of alternatives. The indicated tests are
assumed to provide sufficient complementarity, so that
the conclusions drawn can be applied with a reasonable
degree of confidence.

Alternate tests for exponentiality based on chi-square
methods3 were contemplated but were not applied due
to their low power.

The rationale behind the indicated procedure is that
if the simulator generated data appear to be consistent
with an assumed underlying exponential distribution at
a given significance level, then the deviation between the
actual underlying distribution and the assumed ex­
ponential distribution with the same average value
should be tolerable. The tests to measure the deviations

302 Fall Joint Computer Conference, 1972

Trend
statistic

1.96 _______________ §oloJ>.!grIi!!s~'l.c~ J!'!.~ _______ _
-1.9 N= No. programs being multiprogrammed

1.0

o~------~------~------~------~------~

Figure 3-Trend of inter-interrupt times vs coefficient of varia­
tion of basic CPU + I/O cycle

from the exponential distribution are intended to
determine the validity of this rationale.

The main results obtained by simulation followed by
the statistical analysis are shown in Figures 3 through
6. The statistics in those figures are presented as a
function of N, the number of programs being multi­
programmed and C v, the coefficient of variation of the
corresponding program service cycles, defined as the
sum of the CPU service time plus the 110 service time
between consecutive interrupts for an individual
program.

It was observed during the course of this investigation
that the closeness of the CPU interrupt process to a
Poisson process in a multiprogramming system is just a
function of these two parameters alone. In other words,
for a given value of N, all combinations of program and
system characteristics resulting in the same values for
C v give similar values for each statistic considered.
Thus, C v is a convenient parameter to identify different

Serial
Correlat ion

statistic

1.~§ _ _ ______________ §.°lo.§!9.!lificance level

1.9 N= No. programs being-~-ultip-;~gr~~~-ed-----

1.0

o~------~--____ ~ ______ ~ ______ ~ ______ ~C~v
.5 1.5 2 2.5

Figure 4-Serial correlation vs coefficient of variation of basic
CPU +1/0 cycle

KS
1.6~~ _ _ ___________ __ t/!~9..".!.f~l!nE~ Le'y~!. _____ _

1.~.?~ _________________ ~~~Qn.!f.!.c!'!c..e_~~~ ______ _

1.000

.500

N .. 4

N=7
N=10

N. No. programs being multlprogrammed

~+-----~~----~----~~ ____ ~~ ____ ~ __ Cv
0.5 1.5 2 2.5

Figure 5-Two-sided Kolmogorov-Smirnov statistic vs coefficient
of variation of basic CPU +1/0 cycle

multiprogramming environments from the standpoint
of the interrupt characteristics of individual programs.

As was to be expected from the Pooled Output
Theorem and the properties of the Poisson process, the
higher the number of programs being multiprogrammed
and the closer C v is to 1, the stronger the indications are
that the CPU inter-interrupt times are exponentially
distributed.

The points of Figures 3 through 6 represent average
values of each statistic considered. The values of a given

Max.
deviation

0/0

N = No. programs being multiprogrammed
30

20

10

N=7

N=10

-; ______ ~ ____ ~ ______ ~ ____ ~ ______ ~ ______ Cv

.5 1.5 2 2.5

Figure 6-Maximum deviation C%) from exponential density vs
coefficient of variation of basic CPU + I/O cycle (frequency

interval 10%)

statistic characterized by the same Nand C v are closely
clustered around the indicated average point. Thus, it
can be said, based on experimental evidence, that only
two parameters, Nand C v, are needed to determine
whether the exponential hypothesis can be applied in
any given multiprogramming situation.

The conclusions that can be drawn from the simula­
tions and statistical analyses are:

1. The interrupt process in a multiprogramming
system constitutes most probably a renewal
process (Figures 3 and 4 show clearly the
stationarity and very low serial correlation of
the process).

2. The deviation of the interrupt process in a
multiprogramming system from the Poisson
process is a function of the number of programs
being multiprogrammed and the coefficient of
variation of the CPU-I/O service cycle ex­
clusively (Figures 5 and 6 show trends that are
typical of all the computed statistics).

3. There was no outright rejection of the Poisson
hypothesis at the 5 percent significance level.
This was true even for the Moran Statistic which
is a most powerful test. The implication is then
that the assumption of an underlying exponential
distribution is not inconsistent with the observed
inter-interrupt times.

4. The maximum deviation from the exponential
distribution that has been observed (Figure 6)
in any sample appears to be tolerable. This is
borne out by the results obtained with computer
models based on the exponential hypothesis. As
later indicated, the application to the models of
queueing theory expressions requiring exact
exponential distributions yielded only small
errors in all the cases considered.

5. The range of applicability of the exponential
hypothesis is at least

N~4
.5:::;Cv::;2.5

This range comprises all the studied cases which
included most practical multiprogramming
situations.

MODELING IMPLICATIONS

The basic fact that the occurrence of interrupts in a
multiprogramming system constitutes a Poisson-like
process for a wide range of programming and system
characteristics is the keystone for a powerful technique
of computer model building.

A Methodology for Computer Model Building 303

In any system where the inter-interrupt times are
exponentially distributed, the interarrival times of
service requests to the different I/O devices are also
exponentially distributed. This is due to the fact that
selecting events at random with a given probability p
from a Poisson process results in another Poisson
process. If the density function of the times between
events in the original process is Ae-)'t, the corresponding
density function in the derived process has the same
form but with parameter AP instead of A. In a given
system the probabilities of requiring access to the
different I/O devices can be calculated as a function of
measured program and system characteristics.4

If the interarrival times to the I/O devices are
exponentially distributed, then the average and variance
of the I/O response time from each device can be
determined by standard Queueing Theory formulas as
a function of the average interarrival time and the first
three moments of the corresponding service time. 4 No
knowledge is required of the actual forms of the service
time distributions for a majority of service disciplines.
The first three moments of the service times are easily
ealcnlated4 from the measured first three moments
of the amount of data to be transferred and the access
and transfer characteristics of the different I/O devices.

The possibility of calculating accurately the average
and variance of the I/O response time per interrupt
leads directly to a methodology to develop realistic
mathematical models of multiprogramming systems.

MODEL BUILDING METHODOLOGY

The main objective of any mathematical model of a
computer system is the determination of the system
performance for any configuration and programming
environment.

The key to the determination of a system's per­
formance is the calculation of the first two moments of
the service time/program for the given hardware,
software and programming characteristics. This makes
possible the computation of the two fundamental
measures of system performance: throughput or the
quantity of service provided per unit time and the
average response time per program that indicates the
quality of the service.

The system throughput is equal to the program
arrival rate, if it can be sustained by the system. This is
determined by comparing the average number of pro­
grams that can be concurrently serviced with the actual
average number of programs that must be multi­
programmed.

The number of programs that the system can serve

304 Fall Joint Computer Conference, 1972

simultaneously is either a fixed constant or it is a func­
tion of the memory and program sizes and the storage
allocation algorithm.

On the other hand, the average number of programs
that must be processed concurrently is equal to the
quotient of the average service time per program and
the average program inter arrival time. If this value is
not less than the number of programs that can be multi­
programmed, then the assumed program arrival rate
cannot be sustained and it must be reduced.

With respect to the average response time per pro­
gram, it can be calculated as a function of the average
program interarrival time and the first two moments of
the service time per program only if the program inter­
arrival times are exponentially distributed. The reason
for this is that the response time per program is the sum
of the service time and the time waiting in the queue of
programs trying to enter main memory to begin service.
lV[athematical expressions for the average value of the
waiting time only exist for the case of exponentially
distributed program inter arrival times when the service
time distribution is of general form.

This limitation is not as serious as it may seem. In
addition to . system performance prediction, the most
important application of a mathematical model of a
computer system is as a basic component in a system
optimization program. If the target function for
optimization is the maximization of throughput, the
form of the program interarrival time distribution is not
important. If the target function is the minimization of
the average response time, its calculation is not needed~
This can be seen by considering that the phenomenon of
waiting is a direct consequence of the variances of the
arrival and service processes. The variance of the
program interarrival times is uncontrollable but the
variance of the service times can be minimized to
achieve the least possible value of the average waiting
time.

Thus, the determination of the first two moments of
the service time/program as a function of the system
and programming environment characteristics con­
stitutesthe basic calculations of the mathematical
model of a computing system.

Service time/program

The service time/program can be expressed as

T8=Tep+TIo
where

T8 = Service time/program
Tep= CPU time/program (service time plus waiting

time)

T Io = I/O time/program (service time plus waiting
time)

Consequently, the average and variance of the service
time/program are calculated by

and

respectively.
Tep is in turn equal to the sum of a numberof com­

ponents:

where

Tpw=Time waiting for CPU service/program
Tpe=CPU execution time/program
T po = CPU overhead time/program

The average and variance of Tep are then given by

and

I/O time/program

TIo is equal to the sum of a random number of random
variables:

k Ni

TIo = :E :E T j

j=1 1

where

k=number of I/O devices in the system
Nj=number of interrupts/program resulting in

access to devices of type j
Tj=Response time for devices of typej

The average value of TIo is calculated by

k

E[TIoJ = :E E[NjJE[TjJ
j=1

and the variance by

k

Var [TIoJ= :E (E[NjJ Var [TjJ+ Var [NjJE2[TjJ)
j=1

according to standard Probability Theory expressions
for the sum of a random number of random variables. 5

As has been explained, the average and variance of

I'
,I'

T j can be determined only because the service request
interarrival times are quasiexponentially distributed.

With respect to Nj, its average and variance can be
calculated by applying the indicated expressions for the
sum of a random number of random variables to the
program execution time, i.e.,

where

Tij=CPU time between events (execution of
jump instructions, data references, file
references, etc.) that may result in an I/O
interrupt to access a device of type j

Pij=Probability of actually accessing a device
of typej

and where the actual CPU time between interrupts is
again the sum of a random number of random variables.
The random variables are the Tij and their random
number between interrupts has a negative binomial
distribution with average

I-Pi; . I-Pij
-- and varIance

Pi; Pil

Solving for E[Nj] and Var [Nj]

E[Tpe]Pij
E[Nj]= E[Tij](l-Pij)

[
E[Tpe]Pij

Var [N;] = Var [Tpe]- E[Tij](I-Pij)

E2[Tij])]. Pil
+ Pil (I-Pij) (I-Pij)2E2(Tij)

E[Tpe] and Var [T pe] as well as E[Tij] and Var [Tij]
must be measured for each environmental program mix.
P ij should be calculated as a function of system archi-

A Methodology for Computer Model Building 305

tectural features such as cache memories design param­
eters and system resource management features such as
paging algorithms and buffering schemes, etc. The
computations can become very involved4 and they are
beyond the scope and length of this paper. Suffice it to
say that a number of good models exist6,7,8,9,lo that can
be applied to compute the different Pij.

CP U time/program

With respect to the remaining components of Tcp not
yet determined, the average and variance of T po, the
interrupt overhead per program, and T pw, the tim€
waiting for CPU service per program, are calculated by
considering that T po and T pw are sums of random
numbers of random variables:

k

E[T po] = E[Toi] L: E[Nj]
j=1

k k

Var [Tpo] = Var[Toi] L:E[NJJ+E2[Toi] L:Var[NJJ
j=1 j=1

k

E[Tpw]=E[TwB] L: E[N;]
j=1

k k

Var[Tpw]= Var[TW8] L:E[Nj]+E2[Tws] L:Var[Nj]
j=1 j=1

where

Toi = CPU overhead/interrupt
T WB = Time waiting for CPU service between con­

secutive CPU services

The average and variance of Toi must be measured.
The average and variance of T W8 must be calculated.
This is accomplished by considering the CPU as a
stochastic service system similar to the I/O devices.

The process of requesting CPU service is analogous
to the CPU interrupt process and is also Poisson-like
(Figure 2). In other words, the interarrival times of
CPU service requests can be considered to be ex­
ponentially distributed with the same average as the
inter-interrupt times. Simulation shows that this
approximation is also very close to reality. 4

In addition to the average time between CPU service
requests, the first moment of the CPU holding times is
required. It is simply

and, since the different Tij are truly independent, it is

306 Fall Joint Computer Conference, 1972

reasonable to expect that the CPU holding times
resulting from their superposition have a density
function that tends toward the exponential density as
k increases. Simulation shows4 that in systems with
several levels of secondary storage, the approximation is
as close as that for the inter-interrupt times. Under
those conditions, the variance of the CPU holding
times is just equal to the average squared. Also, the
CPU waiting times are exponentially distributed if the
inter arrival and holding times are both exponentially
distributed and consequently Var [Tws]=E2[Tw8].
E[T W8] is calculated by standard Queueing Theory
expressions depending on the service discipline as a
function of the average inter-interrupt time and the
average CPU holding time.

System interrupt rate

The calculation of the average inter-interrupt time
completes the backwards presentation of the basic
steps that must be taken to build a model (when
building an actual model of a system, development
proceeds step by step from interrupt rate toward the
computation of performance) .

The average inter-interrupt time is given by

where Ucp represents the CPU utilization factor which
is calculated by

where Q8 indicates the system throughput in programs
per unit time.

Equipment utilization constraints

In addition to the indicated calculations to build a
system's model, a set of constraints must be simul­
taneously satisfied in order for the system to be able to
maintain the desired rate of throughput. These are the
constraints for equipment utilization: CPU, Main
IvIemory and I/O devices that must be all less than one.
How to compute the CPU utilization factor has already
been indicated. The main memory utilization can be
computed as

where

Ns = average number of programs that can reside in
main memory and receive service simul­
taneously (multiprogrammed)

The 1/0 device utilization is simply the quotient of
the average service time and the average service
request interarrival time.

The preceding outline of the steps to be taken to
build a model of a multiprogramming system can be
applied to interrelate system variables (hardware and
software), programming variables and resource manage­
ment variables. (A list of typical environmental, system
and controllable variables has been published else­
where.4 •16)

Thus, a model built by applying the described
methodology will relate intimately all these variables in
a set of equations that constitute the mathematical
expressions of the basic interrelationships of the system.
Therefore, the resulting model can be used for optimiza­
tion purposes, since the effect of the change of anyone
variable on system performance can be readily cal­
~ulated by the model.

MODULAR DESIGN

The described model building approach is susceptible
to modular implementation. As depicted in Figure 7,
the determination of the system interrupt rate is the
focal point of this methodology. The steps to be taken
to determine it as a function of the system configuration
and characteristics and how to use it to obtain the
system performance have already been outlined. The
point to be made here is that many specialized com­
putations that can be modelled separately are also
required to build a complete model of a computer
system.

Figure 7-Basic model building methodology and modular
design

For instance, a Paging l\10del and a Storage Alloca­
tion Model are needed to determine the probability
that a paging interrupt will occur when a memory
address is generated by the CPU.

A System Configuration Model is required to specify
the hierarchy of memories in the system and Buffering
l\10dels are required to determine the number and size
of the I/O buffer areas and the probabilities of actually
having to perform an I/O operation when a READ or
WRITE instruction is executed. If the CPU service is
quantized, a Quantum Interrupt Model is necessary to
obtain the actual average CPU time between interrupts.

Also, it must be kept in mind that the CPU times
between consecutive events of the same type that may
result in an interrupt and that are assumed to be
known, have either been measured in the system under
study or in some other system. In the latter case, several
more models may be needed to determine the corre­
sponding CPU times based on the characteristics of the
new system. In the first place, a CPU Model that can
compare different CPU and memory designs and
instruction sets and determine the relative CPU powers
to process a given type of task is required to convert
the CPU time measurements to the new system. Since
the interference with other CPU's and I/O l\10dules
may slow down the CPU and lengthen the CPU times
required for a given task, a CPU-I/O module Inter­
ference l\:lodel must also be applied. In addition, if the
system under study has a cache memory, a Cache
Model is needed to determine the impact of the cache
on the program processing speed of the CPU. And, if
possible hardware/software trade~offs are being studied,
another model is required to establish their effect on the
interrupt rate and the distribution of I/O accesses.

In addition to the indicated models, a variety of I/O
service models for different types of devices and service
disciplines are also needed to be able to apply the basic
lVlodel Building Methodology depicted schematically
in Figure 7 to a variety of situations.

Thus, a substantial number of functional models are
necessary to implement a complete model of a multi­
programming system. The degree of detail of the
functional models determines the complexity of the
overall system model and its accuracy. Priorities of
programs can be considered, and distinctions of pro­
cessing requirements between compilations and execu­
tions or code and data types of information can be
made.4 The linking of the functional models that
results in a unified system model is provided by those
parameters and variables that are common to one or
more functions. For instance, some of the variables Df
the Storage Allocation Model (page size, number of
pages allowed in memory, program sizes) that influence

A Methodology for Computer Model Building 307

system performance are also required in combination
with the System Configuration l\10del to determine the
structure of the hierarchy of memories in the system.

But this interdependence alone is not sufficient to
make the overall system model feasible. Without the
knowledge that the system interrupt rate constitutes a
Poisson process, the entire model structure would
collapse. A basic link between the functional modules
would be missing. Then, what makes this Model Build­
ing Methodology very powerful is the fact that the
individual functional models can be developed and
verified independently from one another. Thus, a given
functional model can be built by applying new mathe­
matical developments, by experimenting with simula­
tions or by regression analysis. The important point is
that the problem of developing a complex model of the
overall system has been considerably simplified and
reduced to manageable proportions.

VERIFICATION

l\1athematical models of multiprogramming systems
developed by applying the described methodology have
been verified by comparing their predictions with the
results of a very detailed simulation model of multi­
programming systems. The simulation model has been
written in GPSS and it has great flexibility to simulate
different system configurations, service disciplines and
control policies. In order to give an indication of how
closely the results of the two models follow one another,
Table II presents the calculated by a mathematical
model and the measured by simulation values for
optimum performance of some of the important param­
eters that correspond to some of the systems to which
the models have been applied. The systems investigated
had three levels of storage (main memory, bulk memory
(ECS), disk). Their environments are indicated in
Table II.

The industrial environment consists of three priorities
of programs: conversational, real-time and batch. In
the university environment there are three priorities of
programs also, but instead of the real-time system there
is a computer aided instructional system requiring on
the average, more CPU time but less memory space than
the real-time system.

An optimization procedure based on the mathe­
matical model and using Direct Search Techniquesll

was applied in all cases. Table II shows clearly the value
of mathematical models to predict system performance.
The eloseness of the results of the mathematical and
simulation models seems to indicate that good models
have been developed.

308 Fall Joint Computer Conference, 1972

TABLE II-Comparison of Results of the Mathematical and Simulation Models

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6

First moment
of CPU time Average inter-

between inter- arrival time to Average service Average serv- Average service
rupts for prior- disk controller CPU utili- time for priority ice time for time for priority

CASE ity 3 (msec.) (msec) zation 1 (msec) priority 2 (sec) 3 (sec)

1 Calc. Meas. Calc. Meas~ Calc.

University environ- 5.79 5.25 147 165 .44
ment; programs
and data accessed
in main memory.

2
University environ- 181.7 184.1 127 151 .722

ment; user pro-
grams and data
accessed directly
in ECS (Extended
Core Storage).

3
University environ- 19.46 18.6 108 121.5 .54

ment; priorities 1
and 2 accessed in
main memory;
code and data of
priority 3 ac-
cessed directly
in ECS.

4
Business environ- 10.1 11.5 129 151 .362

ment; programs
and data accessed
in main memory.

5
Business environ- 186.14 187.6 96.16 107 .548

ment; programs
and data accessed
in ECS (user
programs).

The general problem of verification of simulation
models has been extensively discussed in the litera­
ture.12.13.14.15 It has been said15 that "in view of the
difficulty which arises in attempting to agree upon a set
of criteria for establishing when a model is verified,
efforts should concentrate on the· degree of confirmation
of a model rather than whether or not the model has
been verified." It is felt that all the numerous models
that have been built according to the methodology

Meas. Calc. Meas. Calc. Meas. Calc. Meas.

.444 507.6 464.1 42.9 41.57 188.3 190

.73 575.1 559.8 47.66 50.16 272.33 277.38

.544 207.1 189.87 27.7 25.4 306.39 311.54

.366 221.15 210.2 2.21 2.19 154 153.67

.551 393 374 2.71 2.45 166.33 174.24

presented in this paper have been confirmed to a high
degree.

CAPABILITIES

~1athematical models of computer systems relate all
the important parameters and variables of the hard­
ware, software and environment to the indexes of

performance and cost by means of computations that
can be carried out very quickly. Consequently, they
provide a flexible and efficient way for the study, design
and control of computer systems. Some typical applica­
tions of models developed along the lines discussed in
this paper are:

Optimum hardware configurations for given applications

/: The cost/performance gains that can be obtained by
I

I
I'i"I system optimization can be significant. Improvements

of up to 30 percent of the cost/performance index were
observed4 in the optimization of systems whose con-

I' troll able variables were initially chosen by an intuitive
I,' process of educated guess.

I:,

Cost-performance evaluations for hardware-software
trade-offs

A mathematical model of a multi programmed busi­
ness computer has already been applied to study the
improvement in system performance that can be
obtained by a Firmware Sort-Processor.16

Evaluation of new system architectures based on advanced
technologies

A mathematical model of a cache has been used in
conjunction with an overall system modeP7 to reveal
some interesting facts about the effectiveness of cache
memories to improve system performance.

Adaptive operating system design

If the 'programming environment of a system and its
hardware availability can be measured dynamically,
then it is possible in principle to have some kind of

, control over the allocation of resources and the sched­
uling of tasks so that a high level of performance is

I maintained under dynamically changing conditions.
The ability of a mathematical model of a system to
predict its performance for any combination of environ-

:, mental parameters and controllable variables makes it
the focal point of an algorithm for system performance
optimization. It is suggested that such an algorithm
can provide an operating system of conventional design
with an effective mechanism for decision making.

IVIEASUREl\1ENTS

The environmental measurements that must be made
for the application of mathematical models of multi-

A Methodology for Computer Model Building 309

programming systems are: measurements of times
between certain events that may result in an interrupt,
measurements of amounts of space required, measure­
ments of distances between data or instruction ad­
dresses referenced by the programs and frequencies of
usage of the different elements of system and user
programs.

The cost of gathering and analyzing the required
data should be offset by the improvements in per­
formance and cost savings that can be achieved through
the application of mathematical models.

SUMMARY

A new methodology to design mathematical models of
computer systems has been introduced. The hypothesis
of exponential inter-interrupt times is the cornerstone
of this new approach to computer model building. The
range of validity of this hypothesis has been specified.
It is demonstrated that a diversity of models can be
built based on this concept and on a modular functional
approach to model development. The main computa­
tional steps to be followed in order to link together
partial functional modules and build an overall system
model have been specified. Simulation has shown the
validity of the exponential hypothesis in many multi­
programming situations and the basic soundness of
models developed by applying the defined methodology.
Some typical applications for which mathematical
models are particularly suited have been indicated.

AGKNOWLEDGl\1ENTS

The encouragement and constructive criticism provided
by IVIr. Harut Barsamian of the NCR-DPD Research
Department is sincerely appreciated.

The author is also grateful to Mrs. Lori Lehman and
JVlrs. lVlary Ann Garrison for their contributions in
typing the paper.

REFERENCES

1 D R COX P A LEWIS
The statistical analysis of series of events
John Wiley & Sons Inc New York 1966

2 P W W LEWIS T C KELLY
A computer program for the statistical analysis of series of
events
IBM Research Report RJ 362 November 121965

3 E M SCHEUER
Testing grouped data for exponentiality
RAND Memorandum RM 5692 PR August 1968

310 Fall Joint Computer Conference, 1972

4 A DECEGAMA
Performance optimization of multiprogramming systems
Doctoral Dissertation Computer Science Department
Carnegie Mellon University Pittsburgh Pa April 1970

5 W FELLER
An introduction to probability theory and its applications
Vol I John Wiley & Sons Inc New York 1968

6 P J DENNING
The working set model for program behavior
Communications of the ACM May 1968

7 E GELENBE J C A BOEKHORST
J L W KESSELS
Minimizing wasted space in partitioned segmentation
Proceedings of the Symposium on Computers and Automata
Polytechnic Institute of Brooklyn New York April 1971

8 E G COFFMAN JR T A RYAN
A study of storage partitioning using a mathematical model
of locality
Communications of the ACM March 1972

9 P J DENNING
Properties of the working set model
Communications of the ACM March 1972

10 A WOOLF
Analysis and optimization of multiprogrammed computer
systems using storage hierarchies

University of Michigan Technical Report RADC TR 71165
August 1971

11 C F WOOD
Recent developments in direct search techniques
Research Report 62 159 522 Rl Westinghouse Research
Laboratories Pittsburgh Pa.

12 D K TOCHER
The art of simulation
The English Universities Press Ltd 1963

13 General purpose simulation system 360 user s manual
IBM Publication H20 0326 0 January 1968

14 T H NAYLOR K WERTZ T WONNACOTT
Some methods for analyzing data generated by computer
simulation experiments
National Meeting of the Institute of Management Sciences
Boston April 1967

15 T H NAYLOR J M FINGER
Verification of computer simulation models
Management Science October 1967

16 H BARSAMIAN A DECEGAMA
Evaluation of hardware firmware software trade offs with
mathematical modeling
AFIPS 1971 SJCC Proceedings

17 H BARSAMIAN A DECEGAMA
Some design considerations of cache memories
IEEE Compcon 1972 Proceedings San Francisco

LOGOS and the software engineer*

by C. W. ROSE

Case Western Reserve University
Cleveland, Ohio

INTRODUCTION

Most of us consider a well-engineered product to be
one which is structurally sound; which communicates
with its environment in a predictable, well-disciplined
manner; which has been thoroughly tested; and which is
reliable and easily maintained. In any engineering field,
the structural philosophy, design disciplines, and check­
out methods which yield such a product are called
"good engineering practices." Software engineering is
the application of good engineering practice to the de­
sign, implementation and final checkout of large pro­
grams. The result of effective software engineering

I should be:
,I

(1) The production of a correct program (certifiable)
(2) The availability of means of efficiently deter­

mining the correctness of a program (certifica­
tion)

(3) The ability to modify a program so that recerti­
fication is possible. l

The goal is to organize complexities, master multitude,
and avoid its bastard chaos as effectively as possible.2

However, unlike many types of engineers, the soft­
ware engineer has had few tools, either for implementa­
tion or analysis, with which to accomplish his task.

Many of the problems in operating systems which
occurred during the mid-sixties can be traced to an in­
ability to enforce the design disciplines indicated by
good engineering practices, or to determine after the
fact that they had been applied. In some cases the
faults appeared years after the system was in the field.
Higher level implementation languages for software re­
move many trivial coding errors and deal effectively

* This work was supported in part by the Advanced Research
Projects Agency of the Department of Defense and was monitored
by the Department of the Army under Contract No. AMSEL­
PP-Cn122(CAE).

311

with the problem of storage allocation; however, they
do little in reducing the major problem of complexity­
inter-module communication, software/hardware inter­
face conflicts, and mishandling of real and apparent
concurrency within the hardware/software system.
This is more obvious. when one remembers that most
large design efforts are multiperson, and that software
modules and hardware designed by many people must
communicate properly at the many interfaces.

The hardware designer is somewhat better off since
he can call upon switching algebras, flow table analysis3

and register transfer languages4 ,5 to aid him in the de­
sign. Unfortunately, these tools are not amenable to the
design and analysis of very large systems, and the de­
signer soon learns to modularize his system and to
apply his techniques to several modules of manageable
size. It is at the interfaces of these modules though,
that problems equivalent to those in software arise.

The net result of this inability to systematically deal
large scale complexities has been the late delivery of
expensive and buggy computer systems. This is not to
suggest that the several successful structural approaches
to systematic operating system design6,7 are insignifi­
cant, but rather that the difficulty of enforcing their
requisite structural and communication disciplines be­
comes very great as the size of the target system in­
creases.

Hardware engineers encountered this problem of
complexity very early in terms of implementation, and
responded by developing computer-aided design (CAD)
systems for logic diagram production, package place­
ment, wire routing and mask generation, and simulation
and test generation.s Many other engineering disciplines
have also turned to the computer to help deal with the
complexities of large systems.9 It is ironic, however,
that the computer, which has great analytic capability,
doesn't often forget details, and can enforce structural
and communications disciplines by syntactical analysis,
has not, to date, been applied to the conceptual and
detailed design of computer systems.

312 Fall Joint Computer Conference, 1972

Project LOGOS was begun in 1968 at Case Western
Reserve University to exploit these capabilities by cre­
ating a computer-aided design environment for both
the hardware and software of large-scale computer sys­
tems. An integrated hardware/software design system
was chosen because mismatches at that particular inter­
face in a computer system are the most costly and time­
consuming to correct. The goals of LOGOS can be
simply stated: the creation of a multi-designer environ­
ment in which computer system designers can define a
system in which a high degree of parallelism or concur­
rency exists, verify its logical and functional consis­
tency, evaluate its expected performance before imple­
mentation, and finally implement the hardware and
generate the code for the software. Inherent in any
CAD system is. a philosophy of target systems struc­
ture and an associated representation system which
both embodies that philosophy and has a well-defined
syntax and semantics. It would be helpful here to
briefly describe both to set the stage for a discussion of
LOGOS' contributions to the software engineer.

A LAYERED VIEW OF SYSTEM STRUCTURE

From a user's viewpoint, a computer system pre­
sents an environment to each user which is character­
ized by a collection of service facilities. 10 Each facility
may be activated and directed according to a well­
defined communications discipline. Since users do not,
in general, act in coordination, the system facilities
must cope with multiple and asynchronous requests for
services.

Response to a request activates the facility, an in­
stance of which we shall call a task, and the method of
handling multiple requests depends upon the nature of
the facility. A single-user facility would queue all re­
quests in excess of one, while a limited resource facility
such as a magnetic tape controller with six tape drives
would allow six concurrent activations before queueing
requests. On the other hand, a fully reentrant software
procedure would have no limit to its activations al­
though exhaustion of some other resource such as core
memory would impose a limit externally.

Users of facilities very often do not care about how a
facility is implemented internally, but rather how it
interacts with its environment. This concern with the
input/ output function of a facility is the "external" or
"primitive" view. Conversely, a user and, in particular,
a designer may need to know the details of implementa­
tion as well as the I/O function of a facility. This is the
"internal" view.

A facilities approach to viewing systems immediately
gives rise to a hierarchical structure. Many facilities in

a system provide essentially identical services, or
equivalently, have identical subtasks. These subtasks
could be viewed as instances of activation of separate
facilities shared among those requiring the particular
services. The most primitive shared subtasks in a soft­
ware system are the machine instructions. By the same
token, however, the reading of a text file appears primi­
tive to a compiler using the file system facility, although
an internal view of the file system shows that the read
file operation is quite complex and uses other shared
facilities such as the disk channel.

It is natural, therefore, to structure a system as a
partially ordered hierarchy of layers, the highest layer
being the interface with the system users, and the low­
est, the system primitives. A system primitive for a
software system might be a machine language instruc­
tion or a library subroutine, while a hardware primitive
might be a NAND gate or a four-bit MSI adder. A
facility on a lower layer may be activated by a task of a
facility existing on a higher layer. Its tasks may, in
turn, activate facilities on still lower layers.

Between any two layers, there is an interface parti­
tioning the system into facilities below the interface
and users of those facilities above it. Users above pre­
sent an environment of service requests and arrival
rates, while facilities below present an environment of I

service available and service times.
The ability to "collapse" or look at a facility as a

primitive suggests that consistency analysis of a facility
could be done by exposing the internal structures, ana­
lyzing it, collapsing it, and then analyzing its interac­
tions with its environment as a primitive. This is the
only practical way of analyzing large systems, and the
representation which accompanies this philosophy al­
lows just that.

Implied in all of this is the existence of an interfacility
communications discipline for both data and control.
Several might be defined such as Dijkstra's P-V dis- I

ciplinell or lVlultics' mailbox scheme.1Z What is impor- I

tant is that whichever one is chosen, it must be enforced,
or the layered model will break down, and the analytic I

capability afforded by this scheme will be lost.
A facility in general consists of four elements:

(i) Resources of one or more types which may be
required by the facility subtasks.

(ii) An enclosing control which determines, based
upon resource availability, if a subtask should be
activated or if the request should be queued or
dismissed.

(iii) A set of algorithms defining the subtasks. Algo­
rithms . are called activities; instances of their
activation are called processes.

(iv) An interpreter which accepts user directives and
determines appropriate action.

A facility need not have all of these elements. A wholly
software facility would not have local resources, while a
storage allocator would contr-ol a resource but have no
set of algorithms to be selected by a user.

This philosophy of system structure can be applied to
both hardware and software. It is consistent with the
structural approach to proving program correct­
nessI3 ,2,14,15 which is to . force the structure of the pro­
gram text (or representation) to correlate strongly
",ith the structure of the actual computation, thus al­
lowing analysis of the computation by analyzing the
structure of the representation by stepwise decomposi­
tion.

THE LOGOS REPRESENTATION SYSTE1V[

The central part of any CAD system is its representa­
tion system which consists of the design data base in
which the description of the target system is accrued,
the external representation of this design information,
and the translators between the external and internal
form. The representation system must satisfy severBl
global constraints. .

First, the representation must be sufficiently general
to describe all interesting and desirable objects in the set
of design objects, while at the same time, it must be
sufficiently specific to allow algorithmic consistency and
performance analysis. Second, the internalrepresenta­
tion must be decomposable into elements which may be
implemented directly. Finally the 'designer must be
comfortable with the external representation and the
constraints it places upon his freedom of expression.

In the case ofJ;.,OGOS, the target o~jects are facilities,
which can be described by a number of algorithms im­
plemented in either hardware, software, or a combina­
tion of both. Therefore, the representation must be
suitable for describing both and· must yield the target
system implementation directly.

The representation must be consistent· with .. the
hierarchical, layered view of system structure. It must,
therefore, be deClarative in that it must express bOth
the structure and function. of ~he t,arget facility to allow
algorithmic. consistency and;performance analysis .. It
must allow~he design tobe described in multiple levels
of abstraction to accommodate the primitive and in­
ternal views of facilities required: forstepwiB'e . analysis.
This feature is especially important to designers since
they terid to work "around" in a design rather than in a
strictly top-down or bottom-up manner.

Finally, since many of today's computer systems and

LOGOS and the Software Engineer 313

CONTROL GRAPH

DATA GRAPH

Figure I-Example of an activity

those proposed for the next generation contain parallel
processing capabilities, the representation must allow
the specification of parallelism or concurrency in a
natural way and be capable of analyzing its effect on
consistency and performance.

LOGOS chose a graph-theoretic system of representa­
tion which satisfies the above constraints. The system
is a synthesis and extension of valuable work done by
Petri,16 Karp and l\1:iller,17 Holt,18 Luconi,19 and others.
The extensions were required because (1) LOGOS
deals with very large systems and must localize analyses,
(2) little work had been done in the representation and
analysis of data structures in graph models, and (3)
because LOGOS must actually implement rather than
merely analyze the target algorithms or systems.

A complete treatment of the representation may be
found in References 20 and 21. Briefly, the representa­
tion of an algorithm consists of a pairof directed graphs.
The data graph (DG) defines the algorithm datastruc­
tures and the transformations upon them, while the as­
sociated control graph (CG) sequences the transforma­
tions and defines the control flow. The schema formed
bya CG-DG pair is called an activity and will be seen

314 Fall Joint Computer Conference, 1972

AND:

BLOCKHEAD

OR:

BLOCKEND

PREDICATE:
BLOCKHEAD

a 1 0 0 0 0 0
b X X 1 0 0 0
c X X X X 1 0

p d 0 1 0 0 0 0
e 0 1 0 1 0 0
f 0 0

,
0 1

,
0 0

9 0 0 0 0 0 0
h 0 0 0 0 0 1
i 0 0 0 0 0)

k 1 0 1 0 1 0 c

BLOCKEND

d
f
h
j
k
1
m
n

Figure 2-LOGOS atomic control operators

to be the static template of a task. Figure 1 is an ex­
ample of an activity.

The CG consists of two node types: the squares are
control variables or c-cells, and the remaining nodes are
control operators. Cells must be connected only to
operators by directed arcs and vice versa. There are
several types of control operators as denoted by the
different shapes in Figure 1. Each type of control
operator has an associated enabling or transfer func­
tion defined on its input and output c-cells.

The DG consists of cells (squares) which represent
the information structures of the activity, and data
operators which perform the transformation upon them
(e.g., Add, IV[ove, Integrate, etc.). Each data operator
is associated with a unique control operator which de­
termines when the data transformation may take place.
The initiation of a control operator initiates the as­
sociated data operator which then reads its input cells
(data structures), performs the data function, and
writes the results into its output cells. Upon writing, the
data operator communicates to the control operator
that it has terminated, and the control operator termi­
nates by alterings its c-cells appropriately.

The flow of control in the C G is determined by the
values in the c-cells and the nature of the c-operators
to which they are connected. The c-operators are de­
fined so that asynchronous or synchronous control and
data flow can be represented. The atomic or first level
control operators are shown in Figure 2 together with
their transfer functions in vector form.

The AND operator of Figure 2 is used to resynchro­
nize parallel control paths and functions analogously to
an AND gate in hardware. The OR operator is asym­
metric in that if both of its input c-cells contain l's,
the initiation of the operator preserves the 1 in the
second c-cell. It will then reinitiate as soon as possible.
This "conservation" of l's is required to insure deter­
minacy, a property of consistent systems with concur­
rency which will be discussed later. The OR operator is
analogous to an OR gate in all other ways.

The PRED operator is the interface between data
values and the control flow in the CG. It is a data de­
pendent control branch whose associated data operator
performs a test on its input d-cells. The result of this
test conditions the branch in the control.

The blockhead (BH) and Blockend (BE) operators
are paired to delineate an activity and form the enclos­
ing control for the facility task being represented. The
control algorithms must perform the following func­
tions:

(i) arbitrate access to the facility
(ii) provide a communication discipline between the

facility and its users

LOGOS and the Software Engineer 315

(iii) define the number of concurrent users which may
be served by the facility.

The BH/BE pair described in Figure 2 act as a P-V
pair. The arbitration algorithm shown is a fixed left-to­
right priority, but round-robin and other disciplines
have been implemented also. The BH and BE communi­
cate primarily via the feedback c-cell, which initially
contains, if it is present, the number of concurrent
activations possible. All control flow is restricted to
enter and leave the activity via the BH/BE pair with
the exception of nested subroutines or procedure calls
(i.e., calls upon activities on the same layer of the sys­
tem) which are controlled by Call/Return operator
pairs constructed from a common control primitive.

These control operators may all be constructed from
a common primitive control operator whose definition is
logically complete. This primitive operator may be
realized directly in hardware, but for the purposes of
the software engineer, it is sufficient to state that other,
higher-level control operators may be constructed from
the primitives and placed in a macrolibrary.

The activity of Figure 1 is shown in Figure 3 with
interpretations placed upon the data structures and
data operators of the DG (these are informal interpre­
tations; a formal syntax will be introduced later). The
activity is the representation of an ALGOL 60 FOR
statement with a parallel DO (statement) part. When
the task is activated, the stepping variable is initialized
to 5, and the loop head is passed. Note that there is no
data operator associated with· the loophead OR. If
the predicate is false, the parallel DO (statement) is
executed which allows the sequence of data functions
fj to be time independent of h. The threads are re­
synchronized at i whose data operator uses common re­
sults. n is decremented and the loop is re-entered. Thus
we have represented:

FOR N =5 Step-l until 0 DO (statement)

The 1 in the feedback c-cell indicates that the activity
may be initiated only once before terminating.

The nesting of activities on a layer allows the imposi­
tion of an ALGOL-like block structure upon the repre­
sentation. If the activity in Figure 3 were in a block
structured environment, data cells A, B, and C might
be global to the block while n, m, p, 5, and r are local.

Thus, a collapsed or primitive view of the activity is
that of a single control-data operator pair as shown in
Figure 4. For most types of analysis performed by
LOGOS, the local structure of an activity is analyzed in
its internal or expanded form, and the activity is then
collapsed. All further interactions with its global en­
vironment are analyzed in the collapsed form. In this

316 Fall Joint Computer Conference, 1972

DATA GRAPH CONTROL GRAPH

A B

5

n

m p

r

Figure 3-Example of Algol 60 for statement representation

way the analysis of a software (or hardware) system
can be carried out in a stepwise, computationally effi­
cient manner.

The imposition of an ALGOL environment is op­
tional, of course, and does not affect the representation
itself. To do so does imply the existence of an ALGOL­
like run time environment layer which implements the
necessary storage allocation and other semantics. A
cactus stack is required to keep track of the concur­
rently active and executing tasks.

The representation may be generalized to allow con­
trolvariable contents to be non-negative integers with
the control operator definitions changed to allow decre­
menting of input c-cells and incrementing of output c­
cells by greater than one. The constraint that output
cells be 0 before initiation of the control operator is re­
moved, and the initiation and termination of control
and data operators are made distinct to allow multiple
initiations of data operators before termination of pre­
ceding activations as resources allow. This generaliza­
tion is useful in describing higher level software pro­
cesses and hardware such as pipeline systems.

Thus far, only an ALGOL-type level structure has
been suggested. Where does layering enter the picture?
The concept of layers enters the representation at the
data operator. The function performed by a data opera­
tor may be truly a system primitive or it may be a
"call" on a lower layer facility. That is, its data cells
may be parameters to a task existing on a lower layer
which is activated by the initiation of the data operator.
This may in turn activate other tasks on still lower
layers, but the entire data function appears primitive
at the layer on which it is initiated. This is an explicit
call upon a lower layer. An implicit call would be the
activation of the storage allocator upon activation of an
activity in a block structured environment.

A formal syntax and semantics for data structure~

Figure 4-Collapsed activity

LOGOS and the Software Engineer 317

c.Df WORD =
(d)

(3q). ,

CDF DOUBL_WD = <CONTIGUOUS> YiQ.BD (2)
(6)

STRlJer INTEGER = <WORD>;
(C)

STRUCT LlSTEL =-<DOUBL_WD> (INTEGER;

DATA')<WORD> REF LISTEL; PTR)j
Cd)

INTEGER
~CONSrRAINr. SIMPLE

(e)

CF)

EX

TO

LlSTEL

Figure 5-Example of data structure declaration

and a syntax for data operator declarations is being
developed. The declarative language is similar to
ALGOL 68 and the resulting graphic representation of
the data structure descriptors resembles those of Early's
VERS.22 The language consists of six basic building
block structures-SIMPLE, MULTIPLE BIT
STRUCTURE (MBS) , ARRAY, REFERENCE,
UNION, and COMPLEX. Examples of SIMPLE
structures are integers, reals, etc. MBS's are used to
define fields in words or tables. REFERENCE struc­
tures denote address variables. UNION is meant in the
Set sense, and thus UNION is a place holder for one of
a set of structure types. A COMPLEX structure is
heterogeneous, consisting of more than one type of basic
building block.

Another fundamental concept is that of a constraint.
The data structure declarations define logical relation­
ships only. Constraints are used to relate these to
physical realities such as words, right half words, etc.
These two primitive constraints are: WORD and
CONTIGUOUS.

As an example, consider Figure 5. The length of a
WORD is defined in Figure 5a. The constraint

318 Fall Joint Computer Conference, 1972

DOUBL_ WD is defined in Figure 5b, and an integer
is Figure 5c. A complex structure LISTEL (list element)
is defined in Figure 5d. It is constrained to occupy a
double word, one being an integer, and the other a
reference to a LISTEL. The terms DATA and PTR are
accessing function names. Figures 5e, f, and g show the
graphic representation of the resulting templates.
Instances of these data structures may be declared
which create descriptors based upon the template but
with nodes for allocation information added.

Data operators are defined in terms of the types of
their input and output data structures. LOGOS has
no formal semantics for data operators, so functional
definition is not possible at present. However, an in­
formal semantics is being developed to enhance inter­
designer communication and to allow simulation of ac­
tivities if desired.

The intent of this brief and incomplete description of
the structural philosophy and representation system of
LOGOS has been to set the stage for a discussion of the
use of LOGOS and the analysis tools it provides the
software engineer and systems designer.

THE DESIGNER'S ENVIRON1VIENT

Before discussing the types of analysis tools LOGOS
provides the software engineer and system designer it
would be helpful to examine the LOGOS environment
by describing a typical design scenario.

The systems architects, two or three highly skilled
analysts, will either be given or will create a specifica­
tion for the target system in terms of capabilities, num­
ber of users, service times, arrival rates, etc. They will
pick the design parameters, block the system into facil­
ities, and identify any obviously common facilities such
as memory. In the case of a software system built on an
existing computer, the system primitives-the machine
instructions-will be specified in advance. The facilities
will probably be specified in terms of their external char­
acteristics and will have required performance param­
eters associated with them.

The information will be given to a group of designers
(perhaps the architects themselves) who will define
these facilities in the LOGOS design data base from
their graphics consoles. The individual tasks performed
by facilities will be roughed in, and performance param­
eters defined for them from those on the facility itself.

The designers may define canonical schemata and
store them in a macrolibrary to be inserted and ex­
panded during the design process. These may include
structures such as IFTHENELSE and DOWHILE,
the primary control elements of structured program­
ming.23 In terms of hardware, these macros will include
the set of lVISI functions· available to the designers.

As the description of a task becomes complete on a
layer, the resulting activities can be analyzed,and the
activity collapsed. Common tasks may be grouped into
facilities on lower layers and defined accordingly, each
having a performance specification derived from above.
The designers will make their work available to each
other by placing it in a common global data base. Here,
lower layer facilities common to several designers may
be identified. Duplicate and similar facilities and tasks
will be replaced by commonly shared facilities.

Modifications may be evaluated along the way by
substituting modified tasks into the data base and re­
analyzing the affected portion of the design. This pro­
cess is continued across descending layers until the data
operator functions are in terms of the software primi­
tives of the target system, i.e., machine instructions,
implementation language statements, or a trial set of
instructions if the entire hardware/software system is
being created. Code optimization can then be attempted
using one of the newer graph-oriented optimization
techniques. Code generation will be discussed briefly
in the next section.

If the hardware and/ or implementation language
exists, actual times will be available for the software
primitive operations. These can be reflected up and
across layers to determine if the performance require­
ments were met. If not, redefinition of tasks and/or
layer boundaries will be required to attempt to meet
the specifications.

If the hardware has not yet been designed, it can be
begun at this point with the trial instructions and their
required times. as the target. The process is identical to
the one above, 'but the lowest layer hardware primitives
will be hardware elements such as NAND gates, MSI
chips, etc. Once again, actual performance information
becomes available and is backed out to the software
layers.

If the resulting performance is inadequate, the
interpreter (hardware) can be speeded up by increas­
ing the degree of parallelism or upgrading the technol­
ogy. On the other hand, the hardware/software inter­
face can be adjusted by redefining as primitives certain
key data operators which were originally implemented
as calls upon lower layer facilities. These procedures
may be applied interactively in combination to reach
the desired performance, if indeed, it is attainable at all.
Once the instruction set is frozen, code may be gen­
erated, and the necessary steps taken for implementa­
tion of the hardware.

Note that this series of events is a departure from
the usual practice of defining the target instruction set
as almost the first step in system design and then send­
ing the hardware designers away to build a computer
and the programmers to build an operating system. The

-integrated design approach advocated here should (1)
reduce the hardware/software interface mismatches,
and (2) allow cost/performance tradeoft's to be intel­
ligently evaluated at the proper time-before commit­
ment to hardware and code.

The dat~ structures, data operators and resulting
code of the operating system are simply data in one of
the data structures-memory-of the interpreter
(hardware processor). This is true of all program/
interpreter systems. If the interpreter were not to be
implemented in hardware but on, say, an 1108, then the
data operator primitives would be 1108 machine in­
structions, and code rather than hardware would be
generated.

In addition to a framework for representing layered
systems, LOGOS will provide the designer with several
types of consistency and performance analyses. Further,
code generation of target system software, and ulti­
mate implementation of target system hardware are
goals which appear attainable.

The analyses can be separated into two classes­
uninterpreted and interpreted. Uninterpreted analysis
implies that no interpretation is placed upon the func­
tion performed by the data operators for purposes of
the analysis. Thus, uninterpreted analyses deal pri­
marily with the control graphs. and are topological in
nature.

The addition of parallelism or concurrency to an ac­
tivity raises several analysis questions. Of primary in­
terest is whether multiple activations of a parallel ac­
tivity (schema) with a given initial control state (con­
tents of its c-cells) and data values will result in the
same final values in a set of "result" locations. This
condition is called determinacy and was formulated
originally by Karp and Miller.17 This condition, even
after formalization, is mathematically difficult to prove.
Another condition, more stringent but easier to verify,
has been formulated by Karp and Miller.

1. A schema is determinate if, given an initial state,
qo and an initial set of values, each data location
has a fixed sequence of values.

With this condition satisfied, then a schema will surely
produce consistent values in the "resultn locations pro­
vided that the algorithm terminates. Karp and Miller
further showed that the above condition is equivalent
to the following two conditions.

2. (i) No two data operations can be concurrently
enabled to "write" into a common data location.
(ii) No data operation can be enabled to
"write" into a data location while another data
operation is simultaneously enabled to "read"
from the same location.

LOGOS and the Software Engineer 319

From conditions· (i) and (ii), a schema is determinate
provided that it is free of "race" conditions of two
types. This situation should not startle hardware de­
signers who have always faced this problem.

Karp and lVliller gave conditions on a parallel schema
which allow determinacy analysis to be conducted on
the control graph. The analysis tool is a mathematical
construct called a "vector addition system" (VAS);
for a given schema, the vectors used have one compo­
nent corresponding to each c-cell in the control graph.
A vector qo gives the initial control state, and, for each
control operator, e, a vector oe gives control state
changes when control operator e occurs. These change
vectors may be derived from those shown in Figure 2,
but may be generalized to integers greater than ± 1
for higher level representation. A "tree of nodes" is
generated from the root node qo which corresponds to
the tree of attainable control states of the schema. The
algorithm identifies loops in. the control and may be
used for finite and infinite attainable state schemata. A
complete treatment may be found in Reference 20.

The resulting tree can be used to determine those con­
trol operators which can·· be simultaneously enabled,
and, hence, those data operators which are concurrent.

By examining the input and output data cells of
those data operators, conditions (i) and (ii) above can
be verified. The blockhead/blockend of the activity in
LOGOS limit the scope of the analysis, and thus can
limit the size of the tree to manageable size. The activity
can be analyzed for determinacy and collapsed. It will
then appear as a single operator pair in more global
analyses.

The vector addition system can be used to check for
proper termination of an activity, i.e., can a control!
data operator pair remain enabled after the blockend of
an activity is enabled? Further, is the topology of the
control graph such that the activity will not terminate?
Remember that this is uninterpreted analysis, and, con­
sequently, the results of predicate operations are not
known. Therefore, in some cases, all that can be said
is that there exists a path which if taken, will result in
no termination.

Similarly, by viewing all activities as primitives, a
potential recursion analysis can be carried out using
the vector addition system. These types of analyses
fall into the category of general control path analysis,
and additional algorithms in this family can be identi­
fied and easily implemented using the VAS.

A major weakness in the integrity of computer sys­
tems has been the management of system resources and
the prevention of system deadlocks. This is particularly
true in systems with a high degree of real or apparent
concurrency. This problem has been extensively studied,
and much insight has been gained.6 ,l1,24,25 Holt25 has

320 Fall Joint Computer Conference, 1972

developed graph models for deadlock and resource al­
location which' are directly applicable to· the' LOGOS
environment; Resources are represented as control
cells, and a topological analysis using adaptations of
Holt's results can be performed. Once again, a layered
structure tends to limit the scope of analysis.

System performance analysis depends upon knowl­
edge of arrival rate and service reqm~st distributions,
and, thus is only as good as the model load. However,
actual path transit times can be computed in the
LOGOS environment, and if model service request
distributions and arrival rates are available,perfor­
mance statistics .can be gathered before implementation
using a combination of path analysis and simulation, if
necessary.

Interpreted analysis deals with the correctness of the
algorithms used in implementing the activities. At
present, LOGOS has no automated solution to the pro­
gram . correctness problem; The layered structure . of
target· systems, together with the communications
disciplines enforced by the syntax of the representation
and the various other analysis algorithms tend to assure
logical and structural consistency. However, a logically
consistent, but incorrect algorithm is undetectable. Cur­
rent work by Scott and Strachey,26 leading toward a
formal mathematical theory of hierarchical systems and
semantics, may well be the answer. Results of this work
could be adapted to r~place LOGOS current data graph
syntax and semantics . and provide' a certifiable repre­
sentation. In· the interim, interpreted data' analysis
algorithms based upon the functi,onal attributes' of . the
data operators are being considered. For example, a
data operator must access . data structures of the ap­
propriate type and compute results which correspond
to ·the types of output. data structures to which it is
connected. This is useful in analyzing data functions
which are implemented by interlayer facility activa­
tions. In critical areas" actual simulation of the, al­
gorithms in question may be performed directly.

Finally, if a global semantic such as ALGOL 60 or
FORTRAN is imposed, environmental ,consistency al­
gorithms such as scope of reference can be included
modularly.

CURRENT STATE OF LOGOS

The LOGOS system is being implemented on a Digi­
tal Equipment PDP-I0 with a Bolt, Beranek and New­
man paging box and TENEX executive system. The
primary graphics terminals are two IlVILAC PDS-l
display systems whichcomrnunicate with thePDP-IO
at 9600 haud. The implementation language is SAIL
(Stanford Artificial Intelligence Language). A multi-

designer data base management system is being imple­
mented using the LEAP associative data structures of
SAIL and the TENEX virtual memory facilities. The
system provides for local (single user) and global
(shared) data bases with linking between local and
global information in a controlled manner. The data
base management system is based upon earlier work by
M. Pliner.27

The graphical representation system is implemented
together with the following analysis algorithms:
graphical syntax checking, determinacy, halting and
termination, and repetition freeness. Implementation
of generalized control path analysis is also under way.

The remainder of the control analyses, deadlock and
resource allocation, are scheduled to be implemented
and integrated by September 1973. It should be noted
here that all of· the analysis packages are modular and
act upon the standard internal representation, thus al­
lowing new packages' to be added· when necessary.

The implementation specifications for the data struc­
tures and data operators are scheduled for completion
in December 1972, and implementations should be com­
plete by September 1973 along with the associated
analysis routines. These analysis routines assume a
FORTRAN environment with a static block structure
but may be replac~dif another semantic is chosen.

Performance analysis algorithms should be imple­
rnented and integrated by September 1973.

Thus, with the very major exception of 'a, formal
semantics and corresponding attack on program cor­
rectness, LOGOS is scheduled to have a funning repre­
sentation and analysis system by September 1973.

The implementation of target systems requires the
production of a code generator for the software and a
"hardware cornpiler" for the hardware portions of the
representation. Here again, Scott's work may provide a
general solution to the semantics problem for the code
generators, but even without' such results, if the soft­
ware primitives in the data graphs are machine language
instructions of the target machine, code generation be­
comes rather straightforward. In addition, the graphic
form of the program tasks will allow application of the
newer optimization. techniques to the target software. A
first cut code, generation scheme for sequential (rather
than parallel) systems should be implemented in early
1974.

Rather than re-create a Hhardwarecompiler" which
would require 30-50 man years, LOGOS has chosen to
interface with existing hardware CAD systems at the
logic equation/logic diagram level. . Although much of
the information which could help in optimization of the
hardware will be lost in' going to' the equations,' the time
scale and scope of the project preclude attacking the
hardware CAD problem directly. It is felt, however,

that the graphic representation may provide helpful
insight in the partitioning and placement operations of
hardware CAD, and those problems will continue to be
studied. The hardware equation/diagram outputs are
scheduled for September 1974.

In parallel with these efforts, an attempt is being
made to define one or more programming languages to
serve as alternate external representations of the target
system rather than the current graphical representa­
tion. This is being done because some programmers may
feel uncomfortable with the graph form, and because
the human engineering and scope management problems
become significant as the complexity of the target
graphs increases.

The LOGOS representation has been used off-line to
describe various types of small systems and subsystems
including a PDP-8. The resultirig descriptions are con­
cise, and being able to see both the structure and func­
tion of the systems in one "picture" aids in. understand­
ing the target system.

With regard to implementation, the resident execu­
tive in the IMLAC display'processors was designed ac­
cording to the LOGOS structural philosophy.

The IMLAC system proVides the designer. with facil­
ities of (1) creating a picture and designating it a sub­
routine for transmission to the PDP-IO, (2) editing a
subroutine, and (3) deleting a subroutine. The system
exists on six layers as shown in Figure. 6. The lowest is
the PDS-I hardware used by all higher layers. The next

SUBROUTINE CREATE h/
LIGHT PEN GRAPHICS
TRACKING MESSAGE

HANDLER

KEYBOARD CHARACTER 1·· CHARACTER
HANDLER ~ ~ RECEIVER

" CHARACTER ~
TRANSMITTER

IMLAC HARDWARE

Figure 6-Layer structure of Imlac executive

LAYER 1

LAYER 2

LAYER 3

LAYER 4

LAYER 5

LAYER 6

LOGOS and the Software Engineer 321

layer facility . is the character transmitter (all mes­
sages, text and graphics are sent to the PDP IO as
multiple character strings). Layer 4 contains the key­
board character handler and the character receiver both
of which are users of the character transmitting facility.
The; character receiver. uses the character transmitter
facility to control the transmission of characters from
the PDP-IO to the Il\1LAC. The next layer has three
independent facilities-'-the light pen tracking facilities,
the graphics message handler, and the core manage­
ment facility. All of these facilities are used by the
facilities on layers 1 and 2, the subroutine edit and sub­
routine create and delete facilities. The communica­
tions discipline between the facilities. are well-disci­
plined according to LOGOS design principles.

The design and implementation of the executive re­
quired about six man months of effort. It occupies ap­
proximately 3000 words in Il\1LAC. core and was coded
in assembly language. As with . the 'THE'li and
'VENUS'7 systems, coding errors were discovered,; but
few logical errors were committed in the design. These
proved easy to identify and correct.

CONCLUSION

The aim of Project LOGOS is to provide the computer
system designer with a . computer-assisted design en­
vironment in which good engineering practice can be
applied to large-scale target systems and verified after
the fact. The basis of this good engineering practice is a
structural view of computer systems which is a gen­
eralization of Dijkstra's2 and l\1il1s'23 structured pro­
gramming for sequential software. Dijkstra's 'THE'
system6 is a result of this philosophy as is the VENUS
system.7 Both these and the IMLAC executive have
demonstrated the payoffs of a well-disciplined approach
to structure. They were implemented in a fairly short
time by small design groups (VENUS required about 6
man years for the design and implementation of the
operating system and the support software). They were
easily checked out and modified, and have proven to be
stable, reliable systems. The primary contribution of
LOGOS in this area is that it provides a uniform, ana­
lyzable representation in which to. express. these other­
wise abstract notions of system structure, one which
leads directly to the implementation of· the target soft­
ware or hardware: It also allows the designer to, express
the maximum degree of real and apparent concurrency
in his target system and provides the analyses required
io evaluate its- effect.

Both 'THE' and VENUS are small operating systems
implemented on small to medium scale machines, yet
even they were found to contain a few errors resulting

322 Fall Joint Computer Conference, 1972

from breaches of discipline. True, these errors were
easily corrected, but as the size and complexity of the
operating system and hardware increases, the difficulties
of enforcing the disciplines, detecting errors, and cor­
recting them without introducing more will increase
nonlinearly. It is because of this complexity explosion
that a CAD environment such as LOGOS is required for
large scale systems.

A LOGOS-type system can provide several other ad­
vantages to the software engineer and system designer.
First, because performance measurements can be
made before rather than after implementation, modifi­
cations to the system can be proposed and their effects
evaluated economically. In particular, the final posi­
tioning of the hardware software interface can be post­
poned until quite late in the design cycle and can be
made a true function of performance vs. cost.

Second, the design team will tend to be smaller. The
computer will act as the "bookkeeper" and will perform
many of the analyses which have traditionally been at­
tempted manually or not at all.

Third, the increased degree to which a target system
can be certified before implementation (even without
formal semantics) should reduce the integration and
checkout cycle significantly. It may also be possible to
produce more complete diagnostics in a LOGOS en­
vironment since the entire system description as well
as its implementation is stored within the design data
base. This is an area for continued research.

Finally, although this hints of "big brother," valuable
management and scheduling information can be ex­
tracted from such a system. The effectiveness of de­
signers, the times required to complete various portions
of the system, etc., could be used in estimating, staffing,
and scheduling future systems.

LOGOS is an open-ended system. Although a first
producing system will be complete in 1974, it is expected
that the users themselves will enhance, modify and
tailor the design environment to their needs as new
technology becomes available.

ACKNOWLEDGMENTS

The LOGOS design environment described in this paper
is the result of work done over the past three years by
Professor E. L. Glaser, principal investigator; Dr. F. T.
Bradshaw; S. Katzke; the author and several others.
In particular, much of the philosophy of system struc­
ture which underlies the LOGOS system was articu­
lated by Dr. Bradshaw, and the syntax and semantics
of target system data structures and data operators
were developed by S. Katzke during his doctoral re­
search.

REFERENCES

1 F G HEATH C W ROSE
The case for integrated hardware/software design with CAD
implications
IEEE Computer Conference Digest September 1972

2 E W DIJKSTRA
EW D249-notes on structured programming
T. H. Report 7o-Wsk-Q3
Technological University Eindhoven Netherlands April
1970

3 T BREDT
A model for parallel computer systems
Technical Report No 5 STAN-CS-70-160 Stanford
University April 1970

4 C G BELL A NEWELL
Computer-structures: reading and examples
McGraw-Hill Book Company New YQrk New York 1971

5 M BARAY Y H SU
A digital system modelling philosophy and design language
Proceedings Eighth Annual Design Automation Workshop
1971

6 E W DIJKSTRA
The structure of the T.H.E.-multiprogramming system
Comm ACM Vol 11 No 5 May 1968 pp 341-346

7 B LISKOV
The design of the VENUS operating system
Comm ACM Vol 15 No 3 March 1972 pp 144-149

8 C D MARSH
A utomation of the design and manufacturing of a large digital
computer
lEE Electronics & Power October 1970 pp 375-379

9 M R CORLEY
The graphically accessed interactive design of thermally
stressed pipe systems
Proceedings Ninth Annual Design Automation Workshop
1972

10 F T BRADSHAW
Some structural ideas for computer systems
IEEE Computer Conference Digest September 1972

11 E W DIJKSTRA
Co-operating sequential processes
Programming Languages ed F Genuys Academic Press 1968

12 M J SPIER E I ORGANICK
The MULTICS interprocess communication facility
Second ACM Symposium on Operating Systems Principles
Princeton University October 1969

13 E W DIJKSTRA
A constructive approach to the problem of program correctness
BIT Vol 8 1968 pp 174-186

14 CAR HOARE
Proof of a program FIND
Comm ACM Vol 14 No 1 January 1971 pp 39-45

15 N WIRTH
Program development by stepwise refinement
Comm ACM Vol 14 No 4 April 1971 pp 221-227

16 C A PETRI
Kommunikation mit automaten
Schriften des Reinsch-West Falischen Inst
Instrumentelle Math und der Universitat Bonn Nr 2 Bonn
1962

17 R M KARP R E MILLER
Parallel program schemata
Journal of Computer and System Sci 3 1969 pp 147-195

18 A W HOLT F COMMONER
Events and conditions an approach to the description and
analysis of dynamic systems
Third Semi-annual Technical Report Part II For the
Project Research in Machine-Independent Software
Programming Applied Data Research Inc April 1970

19 F L LUCONI
Asynchronous computational structures
Doctoral Thesis MIT Cambridge Mass January 1968

20 F T BRADSHAW
Structure and representation of digital computer systems
Jenning Computing Center Report No 1114 Case Western
Reserve University Cleveland Ohio January 1971

21 C W ROSE
A system of representation for general purpose digital computer
systems
Jennings Computing Center Report No 1113 Case Western
Reserve University Cleveland Ohio August 1970

22 J EARLY
Toward an understanding of data structures
Comm ACM Vol 14 No 10 pp 617-627

LOGOS and the Software Engineer 323

23 H D MILLS
Mathematical foundations for structured programming
FSC72-6012 Federal Systems Division International
Business Machines Corporation Gaithersburg Maryland
February 1972

24 A N HABERMANN
Prevention of system deadlocks
Comm ACM Vol 12 No 7 July 1969 pp 373-385

25 R C HOLT
On deadlock in computer systems
Doctoral Dissertation Cornell University Ithaca New York
January 1971

26 D SCOTT C STRACHEY
Toward a mathematical semantics for computer languages
Tech Monograph PRG-6 Oxford University Computing
Laboratory August 1971

27 M S PLINER
PDMS-a primitive data base management system for
representing structured data in an information sharing
environment
Doctoral Dissertation Case Western Reserve University
Cleveland Ohio September 1971

Some conclusions from an experiment
in software engineering techniques

by DAVID L. PARNAS

Carnegie-Melton University
Pittsburgh, Pennsylvania

In two earlier reports1,2 we have suggested some
techniques to be used producing software with many
programmers. The techniques were especially suitable
for software which would exist in many versions due to
modifications in methods or applications. These tech~
niques have been taught in an undergraduate course3

and used in an experimental project in that course. The
purpose of this report is to describe the results that have
been obtained and to discuss some conclusions which we
have reached. The experiment was completely uncon­
trolled, .the programmers generally inexperienced and
poor, and the programming system used was not
designed for the task. The numerical data presented
below have no real value. We include them primarily as
an illustration of the type of result that can be obtained
by use of the techniques described in the earlier reports.
We consider these results a drastic improvement over
the state of the art. Major changes in a system can be
confined to well-defined, small, subsystems. No intel­
lectual effort is required in the final assembly or
"integration" phase.

THE PROJECT

The class was asked to produce the KWIC index
system described in Reference 2. The project was
divided into six modules, but two were combined
because they were clearly simpler than the remaining
four.* For each of the five assignments we specified
four distinct types of implementation. Each student was
given one of those to program. Had the experiment
been a complete success, any combination of one version
of each assignment would have run correctly; we would
have had 45 working versions (five independent selec.,.
tions from sets of four elements). In addition, each
student was assigned to write a program which would

* See Appendix 1 for a brief description.

325

"checkout') some module other than his own. Because
of the billing policies of our University Computing
Center, the programs were to be written and run in
WATFIV-a version of FORTRAN. All the defined
functions were to be made available as either sub­
programs or FORTRAN functions.

Only minor additional information was supplied
beyond the specifications given in Reference 2. ,

(1) Where necessary, the error routines were given
an additional parameter to.be used in identifying
the module whose error procedure should be
executed. This arose only where the same
function could be called from more than one
module.

(2~ Module identIfication numbers were assigned for
use in selecting the error routine.

(3) Conventions for the naming of labelled common
were established. No programmer ever knew the
name of the common used by other programmers.
The conventions merely avoided duplication.

(4) Maximum values for the various .parameters
were specified.

The students did not know which' combinations of
systems would be tested, nor did they know which
version of the module they would check. For that
reason they could use no information other than the
published specifications.

On completion of the programming' and checkout of
individual modules, complete systems were assembled
by a graduate student who had absolutely no knowledge
of the internal structure of any module. The results
indicated below were obtained with only one major
difficulty. All students had dimensioned their arrays
for the maximum possible values of. the parameters.
The combined storage exceeded what was available
in the programming system. The . sizes of the arrays
were easily reduced to a value appropriate for the actual

326 Fall Joint Computer Conference, 1972

TABLE I-Final State of Assignments for Individual Participants

Assignment
Version 1 2 3 4 5

A OK OK OK NOT COMPLETED2 OK
B OK OK OK OK INCORRECT'
C INCORRECT3 STUDENT NOT ASSIGNED OK INCORRECT5

DROPPED
D INCORRECT3 OK OK NOT ASSIGNED OK
E NOT ASSIGNED OK OK OK NOT ASSIGNED

Notes:

1. In our calculation of the potential number of working combinations we excluded versions which were not assigned or were assigned
to students who did not complete the course.
2. No work was supplied by this student.
3. The students assigned to check these programs did not do so. The modules were thought (by the instructors) to be incorrect, but

the simplest test was to include them in combinations with programs which were working properly. The suspect programs made errors
which were detected by the other modules. The errors were verified by the instructors to be violations of the specification of the modules in
question. In fact, in both cases the error had been detected by the student's own tests, but they failed to examine the output closely
enough to notice. (These were, by any measure, two of the poorest students in the class.)
4. This program was clearly incorrect, but still did not violate the restrictions specified for the modules which it called. Thus combina­

tions involving this program would run but would produce incorrect output. It produced the same incorrect output in every combination
tested. The program was "completed" by the student well past the due date and the "checker" was not able to do his job.
5. This program simply failed to terminate in any case. The error was found by the checker.

test. (In a language such as ALGOL where the
dimensions to arrays could be variables, this difficulty
would have been easily avoided.)

Table I gives the versions of each module which we
judged correct. From this we may calculate that there
are 192 working combinations. We could not test all of
these. An experiment was planned so that (1) each
version is used in at least two combinations and (2) each
version was in at least one combination where it was the
only difference with another tested combination. Table
II shows the results.

It should be noted that the fact that only 192 of the
possible 1024 combinations worked does not represent
a failure of the method. It represents the failure of five
students out of 20 to complete the work assigned to
them. One can argue that these failures provide addi­
tional evidence of the value of the method. In eachc~se
it was possible to show, without doubt, that the indi­
vidual student had failed to do his assignment. In most
projects to construct programs in teams some ambiguity
in the individual work assignments results in some
difficulties which cannot be assigned to an individual
programmer. Because of the use of formal specifications
in this project we had no cases in which a program was
found to meet its specifications yet would not work in
combination with other programs which met their
specifications.

Further experimentation

1. When an earlier version of. this note was cir­
culated privately early this year, Mr. Thibault

lA
lA
lA
IB
lA
IB
lA
lA
lA
lA
lA
lA
lA
lA
lA
lA
lA
lA
lA
lA
lA
lA

of IRIA, Rocquencourt, France studied the data
and suggested trying the combination 1B,2B,3D
4E and 5D which he believed would be signifi-
cantly faster than any of those tested.4 It ran in
4.4 seconds.

TABLE II-Execution Times for Some of the
Combinations Tested

Execution Time (sec.)
(excludes compilation

Combination Tested of 6-8 sec.)

2B 3B 4B 5A 37.26
2D 3D 4B 5A 11.42
2D 3A 4C 5A 10.87
2E 3A 4C 5A 10.31
2E 3A 4B 5D 8.53
2A 3E 4C 5B 21.79
2A 3B 4B 5B 302.99
2A 3B 4B 5A 50.16
2A 3B 4C 5A 36.69
2A 3D 4C 5A 11.07
2B 3D 4C 5A 10.99
2A 3B 4E 5A 43.30
2D 3B 4E 5A 43.61
2D 3B. 4E 5D 19.17
2E 3B 4E 5D 19.16
2E 3B 4C 5D 28.48
2B 3B 4C 5D 27.23
2B 3D 4C 5D 8.43
2B 3D 4C 5B 76.34
2B 3D 4B 5B 113.32
2B 3B 4C 5B 238.88
2B 3E 4C 5D 10.06·

Conclusions from Experiment in Software Engineering Techniques 327

2. We have just repeated the whole experiment
with a somewhat larger class. The results were
essentially the same. We estimate that the
family of programs has 1100 members, more
than 400 of these . were tested. Performance
improves somewhat, ranging between 3 and 13
seconds. The only interesting distinction between
the two experiments was that the instructor
(project leader) changed from intensely inter­
ested to bored and unconcerned with no noticea­
ble effect. We also eliminated the problem with
storage limitations mentioned above.

Conclusions

1. We cannot avoid stating our conclusion that the
experiment has revealed some validity in the
comments of our earlier papers. 2, 3 Clearly one
purpose of this paper is to draw your attention
to those earlier ones.

2. Our most significant new conclusion comes in
the area sometimes called "project manage­
ment". Recent papers have suggested that the
project manager must devote a significant part
of its best manpower to the "integration phase".
In our experiment the "integration phase,"
while not mechanized, was so simple that it could
have been mechanized. Even in the few cases
where errors did occur, the system had been
structured in such a way that diagnostic mes­
sages automatically indicated the module mak­
ing the error. We had no need for anyone who
had a thorough knowledge of the whole system.
Our experience indeed suggests that the integra­
tion phase is a very poor place to invest one's
manpower. The limited capacity of our minds
makes us more efficient when our job depends on
a relatively small amount of knowledge. More­
over, if we plan our project management around
a large "integration phase," we will have to in­
vest that manpower again whenever we change
some part of the system.

Our experiment suggests that manpower can
be much more profitably invested in the "pre­
programming" or "design" phase. The success of
our project depended largely upon the precisely
written module specifications described in Refer­
ence 1. The "cost" or intellectual effort required
to produce one of these module specifications
was comparable to the cost of producing an im­
plementation of the module. Such predesign
work therefore appears to many as unjustifiable
overhead. When we amortize this cost over the
number of versions of the system which are

finally built, and consider the savings realized in
the final "integration" phase, it appears to us
that the overhead is well justified.

Efforts in the industry to invest heavily in
a "pre-design" or "concept" phase have often
proven fruitless because the outcome was a set
of natural language documents which were so
general that they provided almost no decisions
to guide the development groups. When this
predesign phase produces precise module specifi­
cations the payoff is much more significant.
Additional amortization of the "pre-design"
effort can occur when the modules or their
specifications are used (either unchanged or
slightly modified) in a later project.

3. Another important conclusion lies in the area of
documentation. Several firms have invested
heavily in formalized documentation standards
intending to make all information easily availa­
ble to everyone on the project. Our experiment
suggests that the effort in these projects can be
focussed. Precise documentation of the external
characteristics of each module is essential and
should be in a standard notation. Our project
had minimal documentation about the internals
of the one.;..man assignments. Industrial practice
would require more effort in the area than we put
into it, but much less effort than is now common.
More significant, the specifications produced in
the pre-design phase were the only external
documentation required throughout the project.
These documents were updated several times as
errors were discovered, but no additional de­
scriptive material was needed. This is yet another
way that the effort invested in the pre-design
phase can be amortized.

4. Our experience demonstrated the importance of
careful attention to the possibility of errors in
the running program during the "pre-program­
ming" phase. Because of our careful attention to
the errors in the design phase, errors which did
occur when the systems were assembled were
quickly traced to their source and meaningful
diagnostic information was produced with almost
no effort on the programmer's part. A paper
reporting what we have learned in this area is in
preparation.

5. Our experience has indicated the great value of
independent module tests (by persons other than
the module author) before integration. In an
earlier effort of this sort we required each
programmer to test his own module before
integration. In the two experiments which we
discuss here, we required an additional person to

328 Fall Joint Computer Conference, 1972

test the module against the formal specifications
(another use of our pre;.design efforts). Our
success rate increased drastically and there were
apparently two reasons:

(1) Sloppy programmers'do sloppy tests.
(2) The specifications, although precise, can be

misinterpreted by human programmers. A
misinterpretation by the programmer which
resulted in an error in his module often
results in a corresponding error in his tests.
An independently written test was unlikely
to share the same misconceptions.

We are well aware that, as E. W. Dijkstra has put
it, 6 "Program testing can be used to show the presence
of bugs, but never to show their absence." Showing the
presence of bugs however is a very valuable service.

We eagerly await the day that professional program­
mers habitually produce programs which are written so
that they can be carefully proven to be error free. In the
meantime we suggest that effort invested in independent
pre-integration testing is well worthwhile;

Our -experience also suggests that both the hier­
archical structure which can be found in the system2

and the abstract nature of the modules themselves
greatly ease the building of the "scaffolding" required
for independent module tests. To test a given module
one need simulate only those modules immediately
below it in the system hierarchy. Further, the nature
of the modules means that many of them can be directly
simulated by arrays for testing purposes.

NON-CONCLUSIONS

The reader of this paper and the references might be
led to some conclusions which those closer to the project
would not draw. We mention them here to avoid
mislea<iing our readers.

1. The KWIC index structure givenin Reference 2
is the . best . known. FALSE: Our experiment
showed us a number of faults in the design which
we are. now trying to remedy.

2. Writing a system in a higher level language such
as FORTRAN helps to produce a better struc­
tured system. FALSE (or at least not supported
by our experiment) : We used FORTRAN
because of the billing and priority policies of our
computation center. Use of the language actively
interfered with some of our efforts imposing
quite unnecessary restrictions on what we did.
This was especially apparent in the area of error

handling; The secret of our success seems to lie
in the module specifications which were language
independent.

3. D. L. Parnasis a good project manager. FALSE!
Experience has shown him to be absent minded,
inattentive to details, unaware of the passage of
time, forgetful, etc., etc. The project succeeded
in spite of his being in this role.

4. The students in the course were good professional
programmers; FALSE! Most of the programs
written were horrid by any professional stand­
ards. The experiment succeeded in· spite of the
programmers as well. (There were a few good
programs but they were notable exceptions.)

5. Communication between modules should always
be by subroutine call as it was in the sample
system. FALSE! If one divides a system into
modules· according to the criteria given in
Reference 2 the use of subroutine calls imposes a
terrible overhead.

Two more non-conclusions

Several writers (e.g., Dennis7) have suggested that a
hardware supported virtual memory and a language
with the ability to pass complex data structures are
necessary conditions for well structured or "modular"
programs. Neither of.these "necessary conditions" were
met. in· the experimental system weare discussing.

We did not need the ability to pass data structures as
parameters (all parameters were integers) between
modules because of the nature of the way that our
system was divided into modules .. Data structures were
always operated upon within a single module. We
suggest that there is often a false identification of the
modular structure seen at design time with character­
istics of a program when it is running. This however is
a very complex issue and we cannot discuss it further
here.

Our programs were written in FORTRAN . and could
have run either with or without the virtual memory
mechanism. This however is begging the. question
because we built a small system .where overlays were
not. necessary. Memory assignment could be done at
compile time or assembly time and would be fixed while
the program was ru~ning.· It is definitely true that
memory assignments are data which should not be
shared between modules but. should be hidden from all
but one. 8 This allows. (in fact requires) programs to be
written for a virtual memory. However, the imple­
mentation of the one virtual memory module can be
done in many ways (hardware mapping, . run time
software, or assembly time software.) The choice
between these implementations is determined by per-

Conclusions from Experiment in Software Engineering Techniques 329

formance considerations not by "modularity" consider­
tions. Thus we can agree with the virtual memory
recommendation only it if is stated more carefully
indicating that the necessary condition is that memory
allocation considerations be hidden from all but one
"module." As a historical note we might mention, that
one well-structured system, the T.H.E. operating
system (which made heavy use of the virtual memory
concept) was implemented without mapping hardware
using the run-time software option mentioned earlier.

FINAL CONCLUSIONS

We believe that the small scale experiment described
above has provided us with some valuable insights into
methods of software production. We recognize the
danger of applying small scale results to larger scale
projects. We hope however that some organization with
the facilities for carrying out larger scale projects will
cautiously attempt to apply these results to larger scale
projects so that we may refine them further.

REFERENCES

1 D L PARNAS
A technique for software module specification with examples
Communications of the ACM (Programming Techniques
Department) May 1972

2 D L PARNAS
On the criteria to be used in decomposing systems into modules
To appear in Communications of the ACM (Programming
Techniques Department)

3 D L PARNAS
A course on software engineering
Proceedings of the SIGCSE Second- Technical Symposium
March 1972

4 M DEPEYROT
Private conversations

5 D SMITH
An organization for successful project management
Proceedings of the 1972 SJCC p 129

6 E W DIJKSTRA
Structure programming
Report on a Conference on Software Engineering
Techniques held in Gramish

7 J B DENNIS
Modularity
Course notes from an advanced study institute held at
Technical University of Munich February 1972

8 D L PARNAS
Information distribution aspects of design methodology
Proceedings of IFIP Congress 1971 August 1971

APPENDIX I

A Brief Description of the System(s) Built in the
Experiment
This appendix is intended for those who have not yet

read Reference 2.
The system being built was intended to read in a set

of titles and produce an alphabetized listing of all
circular shifts of those titles (a KWIC index).

This six modules were:
1. Input-The only module which knew the input

format. Programs in this module read the input
but called other modules to actually store the
data.

2. Output-The only module to know the output
format. This program took the information to be
printed from other modules, but selected the
format of the information of paper.

3. Line-Holder-The only module to know how
the titles were stored in memory. The module
offered programs which both stored and retrieved
the information from memory.

4. Circular-Shifter-The only module to know how
the circular shifts were represented in memory.
Some versions actually stored all shifts explicitly,
others sorted only relatively small directory
tables.

5. Symbol Table-This module was hidden within
80me versions of line holder. Programs calling
line holder were unaware of the existence of
sysmbol table.

6. Alphabetizer-The only module to know the
sorting method which was used. Some versions
did all sorting initially, others sorted only as
needed.

Project SUE as a learning experience

by K. C. SEVCIK, J. W. ATWOOD, M. S. GRUSHCOW,
R. C. HOLT, J. J. HORNING and D. TSICHRITZIS

University of Toronto
Toronto, Ontario, Canada

INTRODUCTION

"It is absurd to separate the study of designing from
the practice of design." (Christopher Alexander)

Project SUE at the University of Toronto is develop­
ing an operating system for the IBM System/360
family of computers. Weare basing our work as much
as possible on previous research in operating systems,
including that of Dijkstra, 1,2 Lampson,3 Brinch Hansen,4

and the MULTICS group.5-7 Their ideas have been
tested in actual systems, but separately, and on un­
common machines. We wish to combine their ideas and
the ideas of others in a system for a widely available
machine.

In Project SUE, we have attempted not only to build
an operating system, but also to learn how to organize a
large software project. To this end, we have attempted
to structure and document the project itself as well as
the system.

We have set high standards for the system. We want
it to be efficient. We want it to be extensible in the sense
that it is possible to append various protected sub­
systems which each serve a community of users. Above
all, we want the system to be reliable and understand­
able. We make no attempt to compete with generality
of existing operating systems. Rather, we are creating
an operating system nucleus (in the sen~e of Brinch
Hansen4) which can be extended to support particular
applications. The system nucleus is designed to support
simultaneously, for example, an interactive system and
an independent batch monitor.

This paper presents our objectives, and how they
have influenced our selection among reasonable alterna­
tives in some design decisions. This material has not
arisen from abstract discussions of the theory of operat­
ing systems. It comes from the specification, detailed
design and partial implementation of a system. A de­
scription of the system design is available elsewhere.8- 9

331

Here, we will only discuss some aspects of the design
process.

SYSTEM STRUCTURE

The concept of processes has been useful in under­
standing and designing operating systems.2,4, 7,10 Each
process proceeds asynchronously as if executing on its
own (virtual) machine, except when mechanisms for
the explicit interaction of processes are invoked. These
interactions may depend on relationships among the
processes. For example, processes may be

(1) regarded as equals, or
(2) related in a tree-structured hierarchy.

The latter situation arises if each process (after the first
one) is created by another process. In what we call the
creation tree, a process is a son of the process which
created it, and the father of any process which it creates.
While equality among processes is a simple relationship,
the weak system structure it imposes makes other goals
(understanding the system, assuring its reliability, and
establishing its correctness) difficult to attain. A
hierarchy among the processes specifies a logical order in
which to understand them and demonstrate their
correctness.

The virtual machine upon which a process executes is
defined by the set of operations supported for the
process by other processes, lower level software, and
hardware. Each process should be sufficiently simple
that its correct operation can be demonstrated (on the
assumption that its virtual machine operates correctly).
If the correct operation of a virtual machine does not
depend on the correctness of any process using it, then
a logical order for understanding and demonstrating the
correctness of the system is apparent.

332 Fall Joint Computer Conference, 1972

It is possible to distinguish between types of process
hierarchies in which virtual machines are

(1) completely ordered,
(2) partially ordered.

In the former case, the system is viewed as a sequence
of increasingly sophisticated virtual machines e'onion­
like layers"). The lowest level virtual machine corre­
sponds to the hardware, and each higher level is created
by adding a layer of Boftware (possibly composed of
processes) to the previous virtual machine. Dijkstra
has described the T.R.E. system in terms of six levels
of virtual machines.2 Every process in such a system is
associated with the level of virtual machine upon which
it executes. When virtual machines are completely
ordered, any two processes are related in one of two
ways; either they have the same virtual machine, or one
of them helps provide the virtual machine used by the
other. A more general process hierarchy results when
virtual machines are only partially ordered. Indepen­
dent processes then need not have the same virtual
machine.

The SUE system structure permits hierarchies of the
latter type although several onion-type layers are
distinguishable and worthy of mention. The Kernel is a
layer of software which uses the hardware to implement
processes (their creation, destruction and communica­
tion), protection, simple management of memory and
channels, and timing facilities. The innermost group of
processes uses the Kernel to create the Nucleus, a more
sophisticated virtual machine which provides disk files,
peripheral input and output facilities, and mechanisms
for measurement and accounting. The virtual machines
used by the processes which form the Nucleus can be
partially ordered with respect to sophistication. It is
possible to create a set of virtual machines which are
completely ordered by adding to some of the virtual
machines facilities which will not be used by the
corresponding. processes. This corresponds to imposing
an onion-type hierarchy on the processes in the Nucleus.

There are many ways of grouping operating system
activities to form processes. At one extreme each
conceptually asynchronous activity might be carried
out by a separate process. However, asynchronism
among activities does not necessarily justify the
existence of several processes with frequent inter­
actions among them. For example, at one time we
planned to have a' process to manage each disk spindle
and· each disk control unit. However, each disk spindle
manager would interact with a control unit manager
so frequently that little asynchronous activity would
occur. We have concluded that the extra processes

are not justified and that all disk spindles and all disk
control units should be managed by a single process.
Other aggregations of activities have been adopted,
and the SUE Nucleus now consists of only seven
processes.

COMMUNICATION AND COOPERATION
AMONG PROCESSES

Because our operating system is based on the co­
operation of processes, the communication mechanisms
must be efficient, easy to understand, and easy to use,
but secure from unauthorized· use and the danger of
deadlock.12,13,14 Many schemes for process interaction
have been developed. Each is based on either

(1) shared data, or
(2) message passing.

Process interactions in Dijkstra's T.H.E. system use
shared data called semaphores and special indivisible
operations for manipulating them. l · In a message
passing scheme suggested by Wulf, each process
possesses a number of ports, and each port is the inter­
face toa communication link with another process;15
Establishing the communication link may be an
expensive operation, but, with the link established,
less checking is necessary as each message is passed.
A mailbox with several message slots may be inserted
in a communication link to provide automatic buffering
of messages. 16 Because we desire autonomy among
processes in Project SUE, a message passing form of
communication is more appropriate than a scheme
based on shared data.

Message passing through ports and mailboxes was
initially accepted as the mechanism for interprocess
communication in Project SUE. Much work was done
examining protocols fOf establishing and using com­
munication links, and making sure that deadlock
would not occur.16 The scheme seemed to be com­
patible with our goals of making the system efficient
and understandable.

Only after much more time and thought did we
identify some problems with communication through
ports and mailboxes alone. One problem was estab­
lishing the communication links. A process must name
the process, or class of processes, with which it wishes
to communicate. Unless system-wide standard names
are established, another significant communication
mechanism is required to coordinate the naming of
processes.

Processes which provide a service, such as device
allocation or file system management have special
communication requirements. A large number of
processes wish to use each such service. With extensi­
bility as a design goal, the number of processes that
can simultaneously have a communication link to a
particular service· process should not be limited
(although such limits exist in many systems). Pro­
viding each service process with enough ports to
guarantee that competition could not lead to deadlock
would require the commitment of an excessive amount
of memory. We considered adding a second form of
mailbox which could attach a single port ofa service
process to an unbounded number of other ports. How­
ever, the complexity of such objects and new problems
in their design compelled us to seek a better solution.

Mailboxes are not appropriate for passing large
messages (such as block transfers on input and output).
Not only is memory space committed unnecessarily to
mailbox buffers, but each message must be moved
twice (source to mailbox buffer, then mailbox buffer to
destination) when one move could suffice. Finally, more
careful analysis indicated that passing even small
messages through mailboxes would not be as efficient as
we had hoped.

Another mechanism was suggested to supplement
communication through mailboxes. We call service
processes facilities and they are used as are the monitors
described by Hoare. 17 A requesting process contacts a
facility directly by issuing a facility call. The call is
unbuffered; and the requesting process cannot· proceed
until the facility completes the requested service.

For the· sake of system structure, we restrict which
processes are allowed to call on any particular facility.
A straightforward mechanism for representing this
information is an access matrix, whose (i,J)th element
indicates whether process i may call upon facility j.
However, such a matrix is not easily kept current in an
environment where processes are dynamically created
and destroyed. Also the access matrix does not contrib­
ute to system structure.

By relating permissibility of facility calls to the
creation tree, a hierarchical system structure may be
enforced implicitly. Three alternatives we considered
are that a facility may he called upon

(1) only by its descendants,
(2) only by its descendants, and by its younger

brothers and their descendants, or
(3) only by processes farther from the root of the

creation tree.

The second of these represents a -compromise between

Project SUE as a Learning Experience 333

the other two. The first is the simplest and most under­
standable. The advantage of the second alternative
over the first is that processes which provide a facility
are not compelled to also create and monitor sons. The
third alternative was reJected because the second repre­
sents a more structured solution which does not greatly
impair flexibility. Choosing between the first and second
alternatives was difficult. After several weeks of debate,
expediency of implementation caused us to permit
facilities to be called upon only by their descendants
(first alternative).

The facility call mechanism solves the problems of
naming the process to be contacted and of allowing
service processes to respond to arbitrarily many eus­
tomers. We soon realized that facility calls were also
sufficient for all other communication needs in the SUE
system. Conversations between any two processes are
accomplished by facility calls from each to one of their
common ancestors. Service requests can be buffered by
creating a son to provide the buffering. Thus, in order to
reduce the number of different system objects and
mechanisms,· mailboxes and ports have been eliminated
from the SUE System. All interprocess communication
is done with the facility call mechanism.

Because all facility calls are directed toward the root
of the creation tree, deadlock can be prevented by
assuring that each facility completes each user request
within finite time. Certain situations require that
facility caUs be used in an unusual manner. The inner­
most N uc1eus processes are situated in the system
structure where disk files and typewriter commumcation
are not available. Yet they need to report error condi­
tions to the operator, and record accounting and
measurement information in disk files. Thus the inner­
most Nucleus processes occasionally require the assist~
ance of a descendant which is at a level of the process
hierarchy where disk files and operator communication
are available. This descendant, known as the Special
Condition Manager, effectively provides serviee to its
ancestors in the creation tree. So that no process waits
for a descendant, the facility call mechanism is em­
ployed . as follows: The Special Condition Manager
creates a son for each ancestor which may require its
services. Each son issues a facility· call on the corre­
sponding ancestor, requesting the next "special condi­
tion." When a process wishes service from the Special
Condition Manager, it simply completes the service
call (which should be outstanding) indicating what
"special condition" exists. If the son of the Special
Condition Manager has not issued the facility call, the
process must not wait for the call to occur, but must
take some alternative action. Thus, information may be
lost if the Special Condition Manager does not react

334 Fall Joint Computer Conference, 1972

with sufficient speed, but special conditions cannot
deadlock the system.

AUTHORIZATION, ACCOUNTING AND
MEASUREMENT

An operating system should provide mechanisms to
prevent unauthorized and excessive use of system
resources. It should also be able to measure resource
usage and attribute it to processes or groups of related
processes.

The central mechanism in the .authorization and
accounting functions of the SUE system is the concept
of capabilities.5,18,19 A capability is a control block
associated with a process which indicates that the
process is authorized· to use a particular resource in a
particular manner. Processes are not allowed to tamper
with the information held in capabilities (especially
their own I). The ability to create and modify capabili­
ties is restricted to a carefully protected routine deep in
the Kernel.

Capabilities are but one possible way of representing
protection information. Lampson has described a theory
of protection based on objects (resources and processes)
and domains.3 A process executes in a particular domain.
A domain is defined by the manner in which processes
executing in that domain are authorized to use the
objects of the system. When processes are units of
protection as well as units of asynchronous activity, the
domain of a process may be represented as a list of
capabilities, one for each resource accessible by the
process.

An alternative manner of representing protection
information is to associate with each resource a list of
processes authorized to use it. This method is less
desirable in the SUE. system because facilities do not
discriminate among processes in providing service.
Using the capability representation allows each process
to allocate the right to use a facility among itself and its
sons.

In the SUE system, we distinguish three varieties
of capabilities. One governs resource usage qualitatively
(permission to use a disk drive or to access a particular
file), while another governs quantitatively (the number
of files which may be created or the number of file read
operations which may be done). A qualitative capa­
bility is known by the Kernel to contain a word of
Boolean information representing access rights, while a
quantitative capability is known to contain a number.
The number may be decremented by the facility when­
ever the capability is used to request use of resource.
This is similar to punching a "meal ticket" each time a
meal is consumed. When the count reaches zero, the

capability no longer has value. The third variety of
capability contains information which is interpreted
not by the Kernel, but only by the process which created
the capability.

We have chosen not to use two features of general
capability schemes. First, we do not allow rights to a
resource to be passed between arbitrary processes by
transferring a capability. In order to maintain system
structure and to avoid difficult questions about how to
dispose of leftover capabilities when a process is de­
stroyed, we have restricted all capability transactions
to occur between either father and son or facility and
user. Second, we do not use capabilities to represent
authorization information about some resources needed
by every process (such as processor time, and memory
space). For resources common to all processes, we use
an efficient encoding of authorization information. The
routines for manipulating capabilities would be made
too complex if they had to deal with each special
encoding, so the capability concept is not used for these
resources.

During much of the design of the SUE system, we
believed that capabilities would have to be associated
with longer-lived entities than processes. Consider a
permanent disk file which is created by one process,
then used from time to time by other processes. The
succession of processes each must have a capability for
accessing the disk file, yet their life spans need not
overlap. We faced the problems of how to keep the
capabilities in the system and recognize which capabili­
ties should be given to a particular. new process. We
planned to have permanent entities, called sponsors,
whose capabilities would be kept in disk files. Sponsors
correspond more or less to people who pay for use of the
computer system. Each process which deals with a
permanent file will have been initiated on behalf of
some person (sponsor). Thus, each disk file capability
could be associated with a sponsor, and transferred,
upon request, to processes created later on behalf of
that sponsor.

Further investigation revealed difficulties with imple­
menting sponsors within the Nucleus. First, it seemed
necessary to give the power of transforming data into
capabilities to a process whose virtual machine provided
disk files, yet we wished to use capabilities to protect
disk files. Second, the scheme would increase the com­
plexity of the flow of capabilities in the system. At
process creation, capabilities would come not only from
the father, but also from the sponsor. Worse yet, at
process destruction, a decision mechanism would be
needed to determine which of the remaining capabilities
were to be returned to the sponsor and which to the
father.

We have since found an alternative solution to the
problem of capabilities for permanent disk files. Since
disk space is to be allocated among the independent
sub-systems being supported by the Nucleus, and then
subdivided by each among its sons, the responsibility
for associating subdivisions of file space with people
(or sponsors) can be left to each process which divides
its space among its sons. Further, by requiring that
each suballocation consist of a subset of the father's
file space, the father is able to retain, in a single capa­
bility, the authorization to the entire file space which it
controls. Only when a subsystem process is destroyed is
there still a problem of where to keep the file capability.
By requiring the number of independent sub-systems to
be bounded and small, we can store the file space
capability for each sub-system within the Nucleus. This
approach eliminates the problem of transferring capa­
bilities to and from peripheral. storage and moves the
sponsor structure completely outside the N ucleus~ The
complexity of a disk resident sponsor structure makes
such a move desirable.

Mechanisms for accounting and measurement of
resource usage are implemented using capabilities.
Essentially, every process is held accountable for the
resource usage represented by any capability it receives
from its father or a facility. If it does not wish to be
financially responsible for the resource usage of its sons,
it must record the value of the capabilities passed to
each son and the value of the capabilities returned when
the son is destroyed. In this manner, resource usage can
be attributed to individual processes at as many levels
of the system as is desired.

Perhaps the strongest motivation for using capabili­
ties as the mechanism for authorization and resource
allocation is that we wish the system to be conveniently
extensible. Since we cannot define the universal resource
set, we have provided mechanisms so that processes can
define arbitrary resources and can authorize and
account for their usage.

RELIABILITY AND EXTENSIBILITY

Our original proposal contains the sentence, "A
design criterion is that neither the erroneous nor the
malicious program shall be able to 'crash' any other
user, or the system, under any combination of circum­
stances." We initially interpreted this as, "No process
should ever have to put itself at the mercy of another
process." By our selection of system structure and
mechanisms for resource allocation and authorization,
we have designed a system in which no process can
cause incorrect operation of any process which contrib-

Project SUE as a Learning Experience 335

utes to the support of its virtual machine (that is, any
process closer to the Kernel in the creation tree).
Further, two processes on different branches of the
creation tree cannot interfere with each other. Thus
protection in the SUE system provides two-way insula­
tion ("firewalls") between independent,non-interacting
processes, and one-way insulation of processes from
their descendants in the creation tree. Every process can
be mistreated by any facility from which it requests
service, and it has no protection against the whims of
its father. However, we do not feel that it is a compro­
mise to our original goal to require a process to trust
the virtual machine upon which it runs. Rather, we
have learned more precisely what our original goal was
and how inadequately defined the terms "user" and
"system" are.

Because extensibility is among our goals, we are
unwilling to establish a . clear distinction between
"system" processes and "user" processes. Definition of
"user" is always relative to a particular process. The
descendants of any process form the set of potential
users of that process. All mechanisms within· the
Nucleus are intended to be understandable and flexible.
They may be helpful to subsystems which are appended
to the N ucleus. We hope subsystems will exploit the
mechanisms provided within the Nucleus. However,
subsystems may choose to conceal the Nucleus mecha­
nisms from their descendants. For example, the
distinction among the varieties of capabilities, or, in
fact, even the existence of capabilities could be con­
cealed by a subsystem from its users. Similarly, the
communication mechanism used within the Nucleus
can be replaced. A subsystem might, for example, choose
to implement mailboxes as the mechanism for communi­
cation among its users.

IMPLEMENTATION LANGUAGE AND
PROGRAMMING

Our desire to make the SUE system understandable,
modifiable, and extensible along with our desires to
facilitate coding and demonstrate correctness made the
use of assembly language for implementation unaccepta­
ble. Although several systems programming languages
have. been developed, 20, 21, 22, 23 we chose to use an a vaila­
ble compiler generator24 to design and implement a
system language specifically for SUE. This language is
documented elsewhere. 8, 9,25,26 It features convenient
definition of new data types and control structures
which facilitate writing understandable programs.

Hoare's first thesis on the use of high level languages
in constructing large programs states :27

336 Fall Joint Computer Conference, 1972

"Programming languages are little help in the
construction of large programs.

,1. To design a 'language' as part of design and
implementation of a big system is essential.

2. To 'implement' this language is disastrous.
3. To use a language designed and implemented for

any other special purpose is of doubtful benefit."

Hoare's thesis is a valuable warning of potential danger,
but our experience indicates that disaster is not inevita­
ble. Language design ,'and implementation indeed
absorbed more project resources than was anticipated.
However, the' benefits of a well-designed, high-level
language are being felt in both coding and validation.

The technique of structured programming has been
used successfully in the implementation of several
systems.2,28,29 We have found that the use of structured
programming eases the transition from design to coding,
and facilitates attempts to demonstrate the correctness
of the system.

PROJECT MANAGEMENT

Our goal in Project SUE has been not only to build an
operating system, but also to learn about the process of
building operating systems. For this reason, we have
generated extensive documentation of what the system
design is and howit came to be that way. A large (and
growing) workbook incorporates project history, project
status, problems as they are discovered, solutions as
they are proposed, and decisions as they arernade. The
development of this paper has been based on material
contained in the project workbook.

At intervals of about four months, we have written
project evaluation reports (Checkpoint Reports). At
each checkpoint, we have thought about how well we
are progressing, how well we are fulfilling our goals, and
whether some redirection of the project is needed. In
the narrow view, Checkpoint Reports interrupt our
technical progress for periods from three days to three
weeks. In broader perspective, Checkpoint Reports
have forced us to periodically reevaluate our goals and
priorities. Without scheduled Checkpoints, it is un­
likely that we would devote enough attention to these
topics.

Technical decisions have been made in a democratic
way among as many as six people. Democracies tend to
progress slowly, but once all parties are convinced of a
decision, confidence in the decision is often greater than
if the decision had been, made by an individuaL

Some particularly difficult decisions have been

resolved by selecting a reversible decision. The questions
could not be completely investigated in the time we
were willing to keep a decision pending, so we assured
ourselves that the decision taken would not have such
broad impact that the decision could not be reversed
with reasonable e:ffort~

Although we intended to use "existing technologies",
design time, not programming time, has been our scarce
resource. Two reasons for this have been that most of
the designers could not devote full time to the project,
and that the system language speeds programming.

CURRENT STATUS

This paper is based on our experience during the first
fifteen months of Project SUE. As of July, '1972, we
have designed a systems implementation language and
implemented a subset sufficient for developing the SUE
Kernel and Nucleus. The system structure and all
mechanisms for process interaction have been designed
and their manner of use documented. The primitive
operations provided by the Kernel are designed and are
being implemented. Some Kernel modules have been
demonstrated correct. Most Nucleus processes are
designed and are being implemented. Weare encourag­
ing students to create diverse subsystems to ,be run
under the SUE Nucleus.

CONCLUSION

We started Project SUE with the intention of building
a reliable, hierarchical,.extensible system in which no
distinction is made between "user" process and "sys­
tem" processes. We, needed a compatible set of con­
venient·, structured ,mechanisms for control, communi­
cation, authorization,and accounting., ,We knew of
"existing technologies" for handling each of these
problems individually, but not of a unified set of
mechanisms which treated all the problems. We
underestimated the conceptual design effort involved
in modifying the existing technologies to make them
mutually compatible and appropriate for an extensible
system. Most of the systems from which we have drawn
ideas were successful at least in part due to their limited
goals. We have slowly become aware that our original
goals were very ambitious.

A notable change in oUr approach has occurred since
the start' of the project. Initially, we designed the most
general mechanisms which were implementable. Re­
cently, we have designed the most restricted mecha­
nisms which would satisfy our needs. Partly this is
because we now have a much sharper picture of what

our needs are. But, also, it reflects a trend toward
practicality.

The change in approach can be observed in several
areas. The System Language was fully designed early
in the project. It has become apparent that much of the
generality of the language was costly ·to implement
without contributing greatly to the goals of the project.
Early in the project, mailboxes and capabilities in their
general sense appealed to us. Both are flexible, power­
ful, and expensive mechanisms. Recently, we have
realized that we can make the system structured and
understandable, by using capabilities in a more con­
strained manner, and using a more restrictive
communication mechanism.

It is important to the future of the "Theory of
Operating Systems" that new work make use of the
knowledge of previous successes and failures in the area.
It is also important to test in full-scale systems the
adequacy of ideas presented initially at conceptual or
philosophical levels. Project SUE has attempted -to do
both. Frequent introspection has also allowed us to
extract some knowledge of designing from our process
of design.

ACKNOWLEDGMENTS

Project SUE is supported by the National Research
Council of Canada through the Computer Systems
Research Group at the University of Toronto.

REFERENCES

1 E W DIJKSTRA
Cooperating sequential processes
in programming languages (ed. F GENUYS) Academic
Press 1968 pp 43-112

2 E W DIJKSTRA
The structure of the T.H.E. multiprogramming system
Communication of the ACM Vol 11 No 5 1968 pp 341-346

3 B ,\\r LAMPSON
Dynamic protection structures
Proceedings of AFIPS FJCC Vol 35 1969 pp 27-38

4 P BRINCH HANSEN
The Nucleus of a multiprogramming system
Communications of the ACM Vol 13 No 4 1970 pp 238-241

5 J B DENNIS E C VANHORN
Programming semantics for multiprogrammed computation
Communications of the ACM Vol 9 No 31966 pp 143-155

6 F J CORBATO V A VYSSOTSKY
Introduction and overview of the MULTICS system
Proceedings AFIPS FJCC Vol 27 1965 pp 185-196

7 J H SALTZER
Traffic control in a multiplexed computer system
MAC-TR-30 MIT 1966

8 J WATWOOD et al

Project SUE as a Learning Experience 337

Project SUE status report
CSRG-11 Computer Systems Research Group University of
Toronto 1972

9 J WATWOOD B L -CLARK M S GRUSHCOW
R C HOLT J J HORNING K C S'EVCIK
Proceedings of session '72
Individual papers Canadian Information Processing Society
Conference Montreal 1972 '

10 J .T HORNING B RANDELL
Process structuring
CSRG-15 Computer Systems Research Group University of
Toronto 1972

11 G H MEALY B I WITT W A CLARK
The functional structure of as /360
IBM Systems Journal Vol 5 No 11966 pp 2-51

12 A N HABERMANN
Prevention of system deadlocks
Communications of the ACM Vol 12 No 7 1969 pp 373-385

13 R C HOLT
On deadlock in computer systems
CSRG-u Computer Systems Research Group
University of Toronto 1971

14 A SHOSHANI E G COFFMAN
Prevention, detection and recovery from system deadlocks
Technical Report 80 Dept of Electrical Engineering
Princeton University 1969

15 K CORBIN et al
A software laboratory preliminary report
Carnegie Mellon University 1971

16 Y VERNER
On process communication and process synchronization
Dept of Computer Science
University of Toronto 1971

17 CAR HOARE
Towards a theor1J of parallel programming-a preliminary
draft
Queen's University Belfast 1971

18 R S FABRY
Preliminary description of a supervisor for a machine oriented
around capabilities
ICR Quarterly Report No 18 Institute for Computer
Research University of Chicago 1968

19 G S GRAHAM
Protection structures in operating systems
Dept of Computer Science
University of Toronto 1971

20 W A WULF et al
BLISS reference manual
Computer Science Dept
Carnegie Mellon University 197{)

21 N WIRTH
PL36D-A programming language for the 360 computers
Journal of the ACM Vol 15 No 1 1968 pp 37-74

22 N WIRTH
The programming language PASCAL
Acta Informatica Vol 1 No 1 1971

23 R D BERGERON J GANNON A VAN DAM
Language for systems development
SIGPIJAN Notices Vol 6 No 9 1971

24 W M McKEEMAN J J HORNING
DB WORTMAN
A compiler generator
Prentice Hall 1970

338 Fall Joint Computer Conference, 1972

25 B L CLARK
The design of a system programming language
Dept of Computer Science
University of Toronto 1971

26 B L CLARK J J HORNING
The system language for project SUE
SIGPLAN Notices Vol 6 No 91971

27 COMPUTATION CENTRE
Efficient production of large programs

Proceedings of International Workshop'
Polish Academy of Sciences Jablonna Poland 1970 p 81

28 F T BAKER
Chief programmer team management of production
programming
IBM Systems Journal Volll No 1 1972

29 B H LISKOV
The design of the VENUS operating system
Communications of the ACM Vol 15 No 31972 pp 144-49

System quality through structured programming

by F. T. BAKER

IBM Corporation
Gaithersburg, Maryland

INTRODUCTION

Experience in development and maintenance of large
computer-based systems for government and industry
has led the IBM Federal Systems Division to the
formulation of a new approach to production program­
ming. This approach, which couples a new kind of
programming organization (a Chief Programmer Team)
with formal tools for using structured programming in
system development,! was recently applied on a con­
tract with The New York Times for an online informa­
tion system. Compared to experience on similar con­
tracts in the past, the approach resulted in increased
programmer productivity coupled with improved
quality. An earlier paper2 describes the approach in de­
tail and gives productivity measures in a form which
should allow comparability to other systems. Following
a brief description of the system and a review of the ap­
proach, this paper discusses the quality of the system as
o bserved during a thorough acceptance test and in the
initial period of operation following its delivery.

THE INFORMATION BANK SYSTEM AND
ITS DEVELOPMENT

The N ew York Times Information Bank is an on-line
system which will eventually replace the clipping file
(morgue) now used by the Times to provide back­
ground information for articles being written. An in­
quirer may interact with the on-line system to select
index terms, specify document parameters (e.g., date of
publication, section of the paper), and view article ab­
stracts until he has identified those articles relevant to
his immediate needs. Reporters and editors at the
Times do this by means of an IBM 4506 Digital TV
display unit which can display either text transmitted
from the IBM System/360 Model 40 Central Processing
Unit or images from standard TV cameras, and transmit
text to the System/360 from a standard keyboard.

339

They may also view the full original articles, which are
stored in a microfiche retrieval device containing TV
cameras capable of being switched to the IBM 4506' s
under System/360 control.

While editorial support is the main purpose of the
system, a number of other features are provided. In ad­
dition to the 40 terminals mentioned above, another
24 IBM 4506 units without article viewing capability
are interfaced to the on-line system for use by indexers
keying index terms, abstracts and document param­
eters for eventual entry into the system files. The Times
is marketing the retrieval service, and up to 500 remote
terminals may be added to the system. (While remote
users cannot view the articles on their terminals, they
can view the abstracts, which provide information suf­
ficient to permit retrieval of the articles from back issue
files or from microfilm.) The on-line system (the "Con­
versational Subsystem") is supported by other sub­
systems which provide the security data and interac­
tive message texts used by it, edit the keyed indexing
data, maintain the system files, print abstracts and
clipping references so that users may receive hard copy,
log all major interactions with the system and main­
tain and print statistics on its use. All programs operate
on the 360/40, under control of the Disk Operating
System.

The system was developed by a Chief Programmer
Team, a functional programming organization similar
in concept to a surgical team. Members of the team are
specialists who assist the Chief Programmer in develop­
ing a program system, much as nurses, anesthesiologists
and laboratory personnel assist a surgeon in performing
an operation. A team is organized around a nucleus of a
Chief Programmer, a Backup Programmer 'and a Pro­
gramming Librarian. The Chief Programmer is both the,
prime architect and the key coder of the system. The
Backup Programmer works closely with the" Chief to
design and produce the system's key elements, as well
as providing essential insurance that development can
continue should the Chief leave the project. The

340 Fall Joint Computer Conference, 1972

1. Sequence

2. IFTHENELSE

3. DOWHILE

Figure 1-Progressions allowed in structured programming

Programming Librarian is responsible for maintenance
and operation of a program library system used to keep
all system programs and data both internally in ma­
chineable form and externally in well-organized, highly
readable form. This Team nucleus, usually assisted by a
systems analyst, designs and begins development of the
system. The Team is then augmented by additional
programmers who produce the remainder of the code
under the close supervision of the Chief and Backup
Programmers. "Egoless programming,"3 featuring care­
ful code review by team members other than the original
programmer, is practiced throughout.

In addition to the functional organization and the
enhanced cooperation fostered by the program library
system, the Team operates in a highly disciplined fash­
ion using principles of structured programming de­
scribed by Dijkstra4 and formalized by Mills. 5•6 These
couple a top-down r evolutionary approach to systems
development with the application of formal rules gov­
erning control flow within modules. In the top-down
approach a nucleus of control code is· written and de­
bugged first. Function code is then written incre-

mentally and added to the already operational system.
This approach eliminates the need for throwaway
drivers and reduces integration problems typically en­
countered at the end of a project. It also improves
reliability because code is debugged within the actual
system and because major portions of the system, in­
cluding critical control code, are operational during
almost the entire development period. The rules govern­
ing control flow are a consequence of a program struc­
ture theorem proved by Bohm and J acopini. 7 This
states that any proper program-a program with one
entry and one exit-can be written using only the pro­
gramming progressions illustrated in Figure 1.

Application of these rules permits a program to be
read from beginning to end with no control jumps. It
therefore simplifies testing and greatly enhances the
visibility and understandability of programs. Finally,
it supports the writing of program modules in top­
down fashion by enhancing the ability to write and de­
bug control code before adding function code.

DEBUGGING EXPERIENCE

Throughout the development of the system, prog­
ress was noticeably enhanced due to the use of struc­
tured programming and the library Although no sta­
tistics on number of errors or number of runs per
module were kept, it was apparent from a qualitative
standpoint that both were significantly reduced when
compared to similar systems on which team members
had previously worked. In a number of cases, program
nuclei consisting of two to four hundred source state­
ments ran correctly the first time. In all cases, debug­
ging was clearly faster. Identification of paths to be
tested was greatly facilitated by the use of only those
formalized control structures permitted by our struc­
tured programming conventions.

ACCEPTANCE TEST EXPERIENCE

The system was developed in two major steps. To
allow the Times to prepare data for the system files
and for debugging and testing of the on-line system, the
File Maintenance Subsystem was developed first. Fol­
lowing delivery of that subsystem, the Conversational
Subsystem and the rest of the supporting subsystems
were developed.

Rigorous and extensive formal testing was performed
prior to acceptance by the Times of each of these major
phases of the system. For each phase, a test plan was
developed jointly by IBM and the Times. Each plan
was designed specifically to test an functions included

'

1)1

in that phase and was derived principally from the de­
tailed functional specifications agreed upon by the two
parties. Data to test these functions were then pre­
pared exclusively by the Times, and these acceptance
tests were conducted by the Times with IBM personnel
in attendance. All the functional tests were rerun after
all problems identified had been corrected, so that cor­
rections could not have undetected effects on parts of
the system already tested.

The File Maintenance Subsystem contained 12,029
lines of source code (about 14 percent of the overall
system). The test plan for it contained tests for 171
separate functions required in creating and maintaining
system files~ Acceptance testing lasted a week and also
covered all operational aspects of the subsystem, in­
cluding the elaborate backup and recovery procedures
incorporated to ensure preservation of the valuable
data. Listings and hexadecimal dumps of all files were
made and checked to ensure compliance with predicted
file content and specified formats. No errors at all were
detected during any of the testing of the File Mainte­
nance Subsystem.

Acceptance testing of the Conversational Subsystem,
which contained 38,990 lines of source code (about 47
percent of the overall system), was carried out during a
five-week period. The first two weeks were devoted to
single-thread (one user signed on from an IBM 4506)
testing of the 286 separate functions itemized in the
Test Plan. Seventeen errors were detected during this
testing, all in the interaction processing modules and
none in the time-sharing control program.

Following the single-thread testing, multiple-thread
testing was conducted. All the previous tests were re­
peated with multiple users executing them asyn­
chronously fromIBM 4506's. No additional errors were
discovered during this testing. Finally, the tests were
repeated a third time from IBM 2740 and IBM 2265
terminals, serving to test the remote terminal handling
features of the system. While all function was verified
to be identical to that observed using the IBM 4506's,
three errors were detected in the control program.
The~e all had to do with handling of unusual types of
transmission errors on remote lines.

Finally, "Free-form" testing allowed for several
periods of retrievals by typical users under conditions
when any errors or anomalies detected could be care­
fully recorded and analyzed. No errors were detected
during this type of testing. In addition to the formal
acceptance testing, system performance was measured
to compare normal and peak load performance to a set
of performance goals specified by the Times. Even
though the system was operating on an IBM 360/40
with three disk drives, instead of the IBl\1 360/50

System Quality through Structured Programming 341

with seven drives which had been proposed and ac­
cepted on the basis of the performance goals, the goals
were still met.

In all, twenty errors were discovered in the Con­
versational Subsystem during the five weeks of testing.
Only two of those caused abnormal termination of the
system; in other words, most of the coding errors were
of such a nature that the system continued to function
even though output was incorrect. Also, only nine
represented bugs in the usual sense; the remaining
eleven errors represented functions which had not been
incorporated into the coding, or coding which per­
formed as we expected but not as the Times desired.
It is also of interest to note that twelve of the errors
were in code written during the last two months of the
nine-month coding period, and all were in code written
during the last four months.

Acceptance testing of the Data Entry Edit Subsys­
tem, which contained 13,421 lines of source code
(about 16 percent of the overall system) was carried out
during the third week. Pre-defined entries were keyed
to test all identified features of this subsystem. However,
due to pressure of other duties on the part of the in­
dexers, little free-form testing was conducted. One error
(misinterpreted function) was detected in this subsys­
tem as a result of the formal tests.

The five other supporting subsystems, containing
18,884 lines of source code (about 23 percent of the over­
all system), primarily prepare files and tables for use by
the Conversational Subsystem and produce listings,
logs and statistical reports on the basis of outputs from
it. Because of the variety of conditions required for and
ensuing from these tests, it was agreed that the smaller
subsystems would be sufficiently tested without the
need for additional data. These subsystems were run
on a regular basis during the five weeks of acceptance
testing, and no errors were detected in any of them.

The complete system contained 83,324 lines of source
code. Table I summarizes the total of twenty-one errors
found during formal and free-form acceptance testing
of the system. In the tables, "incorrect function" refers
to code which operated improperly; "omitted function"
refers to specifications not implemented; and "mis­
interpreted function" refers to code which did not per­
form precisely the functions specified.

OPERATIONAL EXPERIENCE

The File Maintenance Subsystem was delivered in
June, 1970. It was used during 1970 and early 1971 to
build files for the acceptance testing described above.
Beginning in November, 1971, it has been in use on a

342 Fall Joint Computer Conference, 1972

TABLE I-Errors Identified During Acceptance Testing

Error Type

Misin-
In cor- Omit- ter-
rect ted preted

Source Func- Func- Func-
Subsystem Lines tion tion tion Total

File Maintenance 12,029 0 0 0 0
Conversational 38,990 9 8 3 20
Data Entry Edit 13,421 0 0 1 1
Other 18,884 0 0 0 0
Total 83,324 9 8 4 21

daily basis to add to the files new data keyed by the in­
dexers and several years of past data converted from
tapes used to publish The N ew York Times Index. Only
two errors have been discovered in this subsystem,
neither of which affected the data base. One of these in­
volved incorrect function and the other misinterpreted
function.

The Conversational Subsystem was delivered in
June, 1971. It was used for experimental and demon­
stration purposes until November, 1971. Since that
time it has been operational eight hours a day for on­
line indexing and for inquiries designed to ensure the
consistency of the operational files now being con­
structed. A total of seven errors have been discovered
since delivery. Only one of these resulted in abnormal
termination of the system, and this was due to lack of
any capability in the System/360 Disk Operating Sys­
tem to handle the particular file error condition which
caused it. (Additional application coding was added to
circumvent . the possibility of this error occurring
again.)

The Data Entry Edit Subsystem was also delivered
in June, 1971, and became operational on a daily basis

TABLE II-Errors Identified During Operation

Error Type

Misin-
Incor- Omit- ter-
rect ted preted

Source Func- Func- Func-
Subsystem Lines tion tion tion TotaJ

File Maintenance 12,029· 1 0 1 2
Conversational 38,990 4 3 0 7
Data Entry Edit 13,421 8 5 3 16
Other 18,884 0 0 0 0
Total 83,324 13 8 4 25

in November, 1971. It had the least formal testing of
any of the subsystems and has had a number of ex­
tensions made to it since delivery. Sixteen errors have
been identified in this subsystem.

The five other supporting subsystems have been used
on an intermittent basis since their delivery in June,
1971. No errors have been detected in any of these
during that period.

Table II summarizes the operating experience to
date which has resulted in a total of 25 errors being
identified, only thirteen of which involved incorrect
function. This represents about three errors per 10,000
lines of code, a result which informal comparisons sug­
gest is substantially better than average. From another
standpoint, there was about one error for each five
man-months of effort on the project. In fact, the pro­
grams written by the Chief and Backup Programmers
had about one error per year of effort on their parts.

Consequently, initial operation has been very
smooth. The important Conversational Subsystem has
only suffered one abnormal termination due to an error
in thirteen months of experimentation and operation;
the other five errors prevented a single user from com­
pleting an inquiry or entering indexing data but per­
mitted continued operation. To the best of our knowl­
edge, no errors have been created in the files during two
years of operation of the File Maintenance Subsystem.
The experience with the Data Entry Edit Subsystem
has not been as good, and it has suggested some changes
in procedure discussed below.

CONCLUSIONS

Structured programming, and the organization and
tools used to achieve it, were key factors in developing
this kind of system. The fact that most of the errors
encountered during acceptance testing were in code
written during the last. two months tended to confirm
our expectations that the longer period of operation
permitted by the top-down approach would lead to a
more reliable system. The application of the program
structure rules made it thoroughly practical for pro­
grammers to read, check and criticize each other's
code and nearly eliminated the need for flowcharts as a
means of communication. The Chief Programmer and
Backup Programmer together reviewed much of the
code on the project, particularly that of the more junior
members of the team. This ensured that specifications
and standards were being adhered to and that code would
function as intended. Numerous problems were identi­
fied by code reviews which would otherwise have led to
problems later.

The program library system used was also a major
factor in improving quality. Ensuring that up-to-date
versions of programs and data were always available
reduced problems frequently encountered due to use of
obsolete versions. For instance, when programmers were
ready to use an interface, they could directly include
the appropriate declarations into their code instead of
writing their own version. When the interface changed,
it was only necessary to recompile.to incorporate a new
version into all affected programs. In addition to re­
ducing interface problems, the library system facilitated
study of code to allow one programmer to adapt an ap­
proach used by another instead of re-creating it. Most
importantly, it permitted the ready review and criti­
cism of code by others as described above. As a side
benefit, the availability of all this information in usable
form reduced the need to get it verbally and thus further
reduced errors due to distraction or interruption.

While it was not essential to structured program­
ming, the use of the functional Chief Programmer Team
organization had three major benefits in the area of
program quality. First, the use of senior people directly
in the design and programming process led to a cleaner,
more rapidly implemented design. Second, use of a pro­
gramming librarian to do many of the clerical tasks as­
sociated with creating, updating· and maintaining pro­
grams reduced interruptions and diversions which tend
to cause programming errors. Finally, the higher de­
gree of specialization and smaller· number of program..;
mers led to a reduction in the number of misunder­
standings and inconsistencies.

This project has suggested two areas in which further
work needs to be done. First, it may not always be pos.;.
sible to follow a strictly top-down approach in develop­
ment .of a large programming system. If a system or­
ganization, viewed as a tree structure, is narrow and
tall, then a pure top-down approach may take too much
elapsed time to be practicaL Second, a more rigorous
approach to code review needs to be developed. In
retrospect, a number of the problems encountered in
the. Data Entry Edit Subsystem after delivery were of
such a nature that they. would probably have been

System Quality through Structured Programming 343

caught earlier if all the code had been read. The Chief
and Backup Programmers did much functional coding
themselves on the project, but it would probably have
been more effective for them to have reviewed more
code and written less. This would have reduced pro­
ductivity slightly but would have eliminated a number
of the remaining problems.

While the initial objective of the approach was im­
provement in production programming productivity, it
became apparent that the same methods also resulted in
increased quality. Experience gained on this project is
leading IBM to more experimentation with structured
programming and Chief Programmer Teams, and lim­
ited results to date confirm the conclusions reached here.

REFERENCES

1 H D MILLS
Chief programmer teams: Principles and procedures
Report No. FSC 71-5108-May be obtained from
International Business Machines Corporation Federal
Systems· Division Gaithersburg Maryland 20760

2 F T BAKER
Chief programmer team management of production
programming
IBM Systems Journal 11 No 1 pp 5~73 1972

3 G M WEINBERG
The psychology of computer programming
Van Nostrand Reinhold New York 1971 p 72

4 E W DIJKSTRA
Notes on structured programming
Report No EWD249 Technische Hogeschool Eindhoven
Eindhoven Netherlands August 1969

5 H D MILLS
Mathematical foundations for structure(i, programming
Report No FSC 72-6012-May be obtained from
International Business Machines Corporation Federal
Systems Division Gaithersburg Maryland 20760

6 HD MILLS
Top do'lfmprogramming in large systems
Debugging Techniques in Large Systems
Prentice Hall Englewood Cliffs New Jersey 1971 pp 41-55

7 C BOHM G JACOPINI
Flow diagrams, turing machines and languages with only
two formation rules
Communications of the ACM 9 No 3 pp 366 .. 371 May 1966

An application of cellular logic for high speed decoding
of minimum-redundancy codes

by K. OHMORI, S. NAITO, T. NANYA and K. NEZU

Nippon Electric Company, Limited
Kawasaki, Japan

INTRODUCTION

In the efforts to improve the total efficiency of computer
systems and their applications, more importance is
being placed on the qualitative improvement of pro­
cessing information in these days. The use of "Kanji
(Chinese characters)" in the system is becoming one
of the topical themes of research and development in
Japan. It is expected to considerably improve the
communication from machine to man. In the case of

I Kanji, a character generator with a font capacity greater
than 1000 is required. The same requirement might

I exist also in Western countries, if special fonts for Greek
I or Roman alphabets, italics, bold face, or special

mathematical symbols are necessary. Another example
is a computer generated high-speed phototypesetting
system.

In the realization of the character generator of a large
character set, the problem of storing and retrieving the
information of character patterns has to be solved. If
all the information of the character patterns were
directly stored in the high speed memory, the system
would be too high in cost. For example, when each
individual pattern is composed of a 24X24 dot matrix,

II which may be considered· to be the . necessary and
sufficient size for representing a character pattern of
good quality, the memory capacity needed for 1000

I Chinese characters is 576,000 bits. Therefore, com­
pression of the data to be stored has a practical meaning
for reducing the cost of pattern generating systems, if a
satisfactory speed and design simplicity of the ac­
companying decoder can be obtained.

Information theory gives us the basic concept and
techniques of the data compression. 1 Minimum-re­

I dundancy codes, or. Huffman Codes,2 are the most
efficient ones when the statistical property of original
data is known.

In the character generation, the encoding speed does

345

not directly affect the performance of the system. On
the other hand, decoding speed is essential, because it
determines the printing or displaying speed of the
output device. In decoding, the trouble is that Huffman
Codes, whose length is variable, have to be decoded
bit by bit during read out of the data from memory.
This has encouraged the development of high speed
decoding hardware.

This paper presents a new high speed decoding
system consisting of cellular logics which have such
merits as high decoding speed, design simplicity and
ease of machine fault detection.

ENCODING CHARACTER PATTERNS

As shown in Figure 1, the character pattern for a
certain character is defined as a dot matrix, each element
of which is given either one of the binary symbols, or
in other words, binary states B (black) or W (white).
We can easily see that the occurrence of a certain state
of any dot in the matrix is not independent of the states
of the neighboring dots, because of some specific char­
acteristics of the character patterns.3 For instance, the
probability of a dot being black is very large, if all the
neighboring dots are black. This fact shows that the
dot matrix has a great deal of redundant information
in it.

In order to encode the dot matrix mentioned above
efficiently, let's consider a group of dots as shown in
Figure 2. We call the group of dots a subpattern, here­
after. A subpattern consisting of a 2X2 dot matrix
has 24 states.

Which state a subpattern lies in depends considerably
on the state of neighboring subpatterns, especially on
the ones below and above, or to the right and left.
This fact comes from the characteristics that Chinese
characters involve many vertical and horizontal straight

346 Fall Joint Computer Conference, 1972

- - - -.... - - - - - - -
---... --------
- = B·-· ---~ ------: ---~ ___ ~ : =1.= : : : = -

----- --1·- - -: : -- - - - - -. - - .: ... -----··-------a-·DIN:
~~~a;~=~~~~~==~:=:~ .. - - - - - - -- - - - - - --

::::~~~~~Ii~~~ 
- -.. -
: =11: --

= :: -- :: : :Ii= ~ 
------- .... ---
- - - - - - - .. - - - -

Figure I-Chinese character pattern consisting of a 24 X 24 
dot matrix 

strokes in their patterns. Therefore, considering the 
conditional probability of the occurrence of a certain 
subpattern under the condition- that the state of sub­
pattern to its left is given, the entropy of the character 
set, which is the theoretical lower limit of the average 
code length, possibly decreases as compared with the_ 
nonconditional entropy. 

For the Chinese character set (the size of the matrix 
is 24X24 .as shown in Figure 1), the average code 

Figure 2-Subpatterns consisting of a 2X2 dot matrix 

length for a character is reduced to 300 bits, while in 
the nonconditional case, the average length is 380 bits. 
Because 576(24X24) bits for a character is needed 
without encoding, this means that the memory capacity 
needed has been reduced to half. 

As each sub pattern has 16 states, as mentioned 
above, 16X16 messages are necessary for encoding the 
patterns. In other words, 16 Huffman trees each having 
16 leaves have to be defined for encoding. Such a 
quantity of messages or message codes makes it com­
plicated to design high speed decoder circuits. We 
solved this problem by introducing cellular logics.4 ,5 

TOTAL SYSTEM 

A block diagram of the total system is given in Figure 
3. I t primarily consists of code-address converter, 
memory, parallel-serial converter, decoder, ring buffer 
register and several asynchronous controllers. The 
inputs which should be applied to the system are 
character codes, each of which is generated either by 

I Controller 

II 

Figure 3-Block diagram of pattern generating system 

CPU, key board, card-reader or tape-reader, and 
designates a corresponding character pattern. The 
outputs of this system are the coordinate signals X, Y 
and a pattern signal Z, which should be applied either 
to CRT, printer or any other display devices. 

Now, we will outline the behavior of each component, 
in the system and the signal flow between them by 
means of Figure 3. 

The encoded character pattern data are stored in 
the memory M. Since the stored data of the character 
patterns are composed of variable length code words,_ 
the addressing method required is somewhat an 
elaborate one. 

Generally, character codes don't have any informa­
tion related to the code word length of the encoded data 
or to the original character pattern. Therefore, when 
the pattern generator receives a code which designates 



I 
~ 

Application of Cellular Logic for High Speed Decoding 347 

a specific character pattern, the code must be trans­
formed by some way into an address which indicates 
the location where the data corresponding to the pattern 
is stored. 

Concerning the data-storing and its addressing, there 
are two ways, in general to approach it. One represents 
a viewpoint wherein the data should be stored in the 
main memory of a computer, and the addressing is 
executed by some software. The other viewpoint is 
where a pattern generator should have its appropriate 
memory all by itself and where code-address con­
version is executed by hard wired logic. In this paper, 
the latter has been adopted because of its processing 
speed and the saving of CPU time. The code-address 
converter C in Figure 3 performs such a function as 
mentioned above, and its details will be described in 
the following section. 

As one can easily see from the preceding section, the 
decoder D processes the encoded data bit by bit, while 
the encoded data must be read out from the memory 
M word by word. So, a register P for the parallel-serial 
conversion is required. This is composed of identical 
components which are called two-dimensional cells. 
The modes of the information transmission along the 
X -axis and the Y-axis are quite symmetric. This func­
tion makes it possible to receive parallel signals and 
put out serial signals without losing any bit-time as 
will be described in detail later . 

Now, recalling that Huffman codes are assigned for 
ordered pairs of subpatterns and that each sub pattern 
has 16 kinds of states, it is clear that the decoder D 
must be composed of 16 tree networks, each one of 
which is a practical realization of a decoding system 
graphically represented by a binary tree proper to a 
certain given state of the preceding subpattern of an 
ordered pair. Each tree has a different structure from 
any other tree and has 15 nodes in order to branch into 
16 sub patterns. Considering that, at each node of the 
16 trees, an identical component, or cell, is placed for 
branching elements, the decoder fundamentally consists 
of 240 cells. The actually realized system, however, 
consists of only 180' cells by reduction, utilizing the 
concept of node equivalence. 

Considering again that the encoded data for the 
pattern information cOIisists of the variable length 
codes, we can see that the decoder D puts out 2X2 dot 
patterns at random intervals. Therefore, in order to 
display a character pattern by arranging 144 sub­
patterns, the output of the decoder must be transformed 
into a serial bit signal at regular intervals according to 
the scanning mode of the display device. The ring buffer 
register B has such functions of signal transformation. 
It consists of circularly arrayed 96 bits memory cells 

and two endless shift registers. A detailed explanation 
will be also given in the next section. 

Finally, the signal flow of the system is summarized 
as follows. . 

(1) A character code is received by C and converted 
into the address corresponding to the head of the 
data-storage location in M. 

(2) Encoded data are read out word by word and 
applied to D bit by bit in serial through P. 

(3) The data is decoded into subpatterns consisting 
of 4 bits-binary signals at random intervals. 

( 4) The subpatterns are arranged into a full dot 
pattern of 24 X 24 by B and signal Z is obtained 
at regular intervals, being accompanied with the 
coordinate signals X a~d Y. 

Concluding this section, the interconnection between 
each component explained above are supervised in 
parallel by several controllers consisting of asynchronous 
sequential circuits. 

COMPONENTS 

Code-address converter and memory 

The pattern data are stored according to the order of 
the character codes. As we have seen, the encoded data 
do not require any punctuation mark between adjacent 
data 'because of a uniqueness of the decoding of Huffman 
codes. Therefore, in order to save memory capacity, 
the head of each record (pattern data for a character) 
is superimposed on the tail of its preceding one, if 
possible, as shown in Figure 4. Consequently, the 
length of each record is variable, and its distribution 
is approximately considered to be Gaussian with mean 
length of 300 bits. The starting location of each record 
is obtained by means of linear regression as shown in 
Figure 5. 

For efficiency of the regression, all records for a full 

t word 1 word 

v A A 

T '( 
A I A+1 A+2 r A+3 r I I 

I 
I r 

I IWJ I 
y ~ ; 

R; y 
R/+I 

Figure 4-Data structure in memory 



348 Fall Joint Computer Conference, 1972 

Address 

group group group : Ordinal Number 
I of Records 

Figure 5-Linear regression for addressing 

character set are partitioned into several groups. A 
regression line y=ax+b is chosen for each group so as 
to minimize the maximal deviation A from the line in 
the group. Then, only if regression coefficients a and b 
for each group and a deviation A for each record are 
stored, the address A of the starting location of any 
record can be obtained by the relation: 

A=aN+b+A 

where N denotes the ordinal number of the record. 
After all, the code-address converter consists of a 

multiplier, controller and some registers. 

Parallel serial converter 

The parallel serial converter used in the system is a 
kind of shift register composed of 20 cells, each of which 
has a functional line, 2 input lines and a output line. 
The functional line selects one of two input lines 
(X input and Y input) and the cell stores the value of 
the selected input line when the shift pulse comes in. 
At the same time, the stored value at the last shift 
pulse is sent into the output line. 

The block diagram of the parallel serial converter is 
shown in Figure 6. In the diagram, Xi and Yi are the 
input lines of the cell. Zi and Ii are output line and 
functional line, respectively. 

Usually, the value of functional line is set to select 
the X input. Therefore, the converter operates as an 
ordinary shift register. However, the value of functional· 
line changes and selects the Y input line when the shift 
pulse counter indicates 19. Then, at the time of next 
shift pulse, the cells receive 20 bit signals in parallel 
from memory and the last bit is sent out simultaneously 
into Zl. 

Decoder 

A cell for the tree network capable of decoding serial 
codes should have the following 3 functions. 

1. To select one of two output lines according to 
selection signals. 

2. To register the input signal, until the next 
selection signal comes; 

3. To send an output signal to a selected output 
line. 

The realized cell is shown in Figure 7. In the circuit, 
the Master Slave J -K flip flop is utilized as the memory 
element. 

The number of nodes in a tree structure is N -1 when 
the number of messages which are distinguishable from 
each other is N. In our decoder, 16 code systems should 
be decoded and each code system has 16 messages; 
therefore, 240 cells are needed fundamentally. However, 
there exist some nodes from which the tree branches 
similarly and which lead to the same output signals. 
These nodes are considered to be equivalent in the sense 
of Moore machine and are able to be reduced to one 
node. As the result of the reduction, the realized decoder 
has 180 cells. 

Figure 8 shows the state transition of the decoder 
consisting of 16 binary trees. 

The 16 kinds of subpatterns are numbered according 
to the following rule: 

(1 ) Using the 2 X 2 dot matrix representation, 
regarding white dots and black dots as "0" and 
"I" respectively, rewrite the matrix in binary 
form. 

(2) Rewrite the 2X2 matrix in a single 4-bit row 

r-~----~---------------4-----~ 

Shift pulse 

Figure 6-Parallel-serial converter 



Application of Cellular Logic for High Speed Decoding 349 

A 

X 0------1 

B 

X input line 

A,B selection lines 

Zl,Z2 output line 

Figure 7 -Cell in decoder 

form by placing the second row in the first two 
bit positions. 

(3) Next, add "0001" and assign the decimal number 
equivalent to the sum. 

Thus, the subpatterns are represented by the numbers 
1 to 16. 

The initial state is set in cell Al and the output of 
I state Al is set at subpattern No. 1. When input code 

"I" is received by cell AI, cell A2 fires. On the contrary, 
if the input code "0" is received, cell Al merely con­
tinues to fire. When cell A2 is fired and it receives input 

Figure 8-State transition diagram of the cellular decoder 

code "0," cell A3 fires, and finally, if cell F1 or PI is 
fired according to the input codes "0" or "1," sub­
patterns No.6 or No. 16, respectively, will be generated. 

Since our original Chinese character was partitioned 
into a 12 X 12 array of subpatterns and our processing 
scheme is concerned with ordered pairs of subpatterns, 
this routine is iterated until 144 subpatterns have been 
decoded, that is to say until completion of the genera­
tion of the Chinese character. 

The decoder consisting of cellular logics of tree 
structure is well suited for easy fault detection. Because 
the tree network essentially has no feedback loop, such 
difficulties as frequently occur in sequential logic cir­
cuits can be eliminated. Practically speaking, by 
applying each code sequence systematically to the 
input terminal, observing whether the corresponding 
output terminal fires or not and by combining the 
firing terminal cells with the nonfiring ones, any faulty 
cells in the 'tree network are sure to be detected. The 
procedure of fault detection can be automatically 
executed. 

Ring buffer register 

Figure 9 shows the principle of the ring buffer 
register. It consists of circularly arrayed 96 bits memory 
cells and two endless shift registers. One of the two 
shift registers is the address register W, for the write 
mode and the other, R, for the read mode. 

For convenience in explanation, let's number each 
memory cell from 1 to 96 as shown in Figure 9, and 
similarly, number each dot of 24X24 dot matrix in 
such way as shown in Figure 10. 

The address register W simultaneously designates 
four locations of the circularly arrayed cells for writing 
of the information of 2X2 dot matrix, and is initially 
set at cell 1, cell 2, cell 25 and cell 26. The address 
register R is for reading the pattern information 
registered in the suitable locations, and is initially set 
at cell 0 ( = cell 96). 

Now, the first output of the decoder must be a sub­
pattern (dl , d2, d25, d26 ), while the scanning mode of the 
dot matrix on the display device is given by, 

Therefore, the bit signals d25 and d26 must be stored for 
a time in ring buffer register, so that the locations 
designated by Ware required to be located in cell 1 for 
dl , cell 2 for d2, cell 25 for d25 and cell 26 for d26• Then 
after the data of 4 bits has been registered in the corre­
sponding cells respectively, the address register W 
shifts by two addresses and waits for the next output 



350 Fall Joint Computer Conference, 1972 

73 72 

48 

49 

Figure 9-Diagram illustrating the behavior of the ring 
buffer register 

(d3, d4, d27, d28). Thus, four locations designated by W 
shift by two addresses whenever the 2X2 dot matrix 
is put out from the decoder. 

When the data of 12 subpatterns for two rows of the 
24 X 24 dot matrix has been registered, another address 
register R starts to shift bit by bit for reading the 

- - - - - -_-....---.---r-__ 
d l d 2 d 3 d4 

d2s d26 d27 d28 

d49 dso ds• dlS2 

d73 d74 d71S ~== 
~ -

Figure 10-Dot matrix on display 

pattern information just registered, synchronizing with 
the horizontal scanning on the display device. 

The circulation of both address register W· and R 
along the memory cells are quite independent of each 
other, because the 2 X2 dot pattern is put out at random 
intervals in spite of the regular intervals of display 
scanning. 

Summarizing, the ring buffer register has the follow­
ing two functions. 

(1) To transform a signal generated at random 
intervals into one generated at arbitrarily 
required intervals. 

(2) To transform parallel bit signals into serial 
bit signals. 

Controllers 

All the controllers in Figure 3 consist of asynchronous 
sequential circuits and their jobs of supervising each 
interconnection between components are executed 
completely in parallel by each corresponding controller. 

RESULTS 

The pattern generating speed of this system is 8000 
characters per second, and the memory capacity on an 
average requires 300 bits for a Chinese character to be 
stored by data compression, while the original bit 
pattern of the dot matrix for a Chinese character has 576 

Figure II-An example of generated Chinese characters 

I 



, 
I 

Application of Cellular Logic for High Speed Decoding 351 

bits of information. This result means that the memory 
capacity needed for a pattern's data was reduced to half. 

An example of Chinese characters generated by the 
present system is shown in Figure 11. 

CONCLUSION 

A high speed decoder consisting of cellular logics has 
been explained. The decoder has such merits as high 
decoding speed, design simplicity and ease in detecting 
faults in the circuits. These merits were confirmed by 
a practical decoder developed for high speed pattern 
generation of a large character set. Among the merits 
mentioned above, the design simplicity may be most 
essential. The simple and clear representation of a given 
Huffman tree and simple connection of trees eliminate 
awkwardness of implementation of Huffman Codes. 

Further investigation into the reduction of the 
number of cells required in the decoder without loss of 
these merits is expected to be conducted. 

ACKNOWLEDGMENT 

The authors wish to thank Mr. Yasukuni Kotaka for 
his kind interest in this work. 

REFERENCES 

1 C E SHANNON 
A mathematical theory of communication 
The Bell System Technical Journal Vol 27 No 31948 

2 D A HUFFMAN 
A method for the construction of minimum-redundancy codes 
Proceedings of the IRE Vol 40 Nov 9 1952 

3 K NEZU 
A method for encoding character patterns utilizing mutual 
information between dots 
The Transactions of The Institute of Electronic and 
Communication Engineers of Japan Vol 55-D No 4 1972 

4 M M NEWBORN 
A synthesis technique for binary input-binary output 
synchronous sequential Moore machines 
IEEE Transactions on Computer Vol C-17 No 7 1968 

5 T F ARNOLD et al. 
Iteratively realized sequential circuits 
IEEE Transactions on Computer Vol C-19 No 11970 





t 
1,

1 

'I, 
I' 

On an extended threshold logic as a unit cell of array logics 

by RYOICHI MORI 

Electrotechnical Laboratory 
Tokyo, Japan 

INTRODUCTION 

Some of our viewpoints on array logics follow. 

(a) The unit cell of the array should have as high 
logical abilities as possible. 

(b) The number of interconnecting wires are limited 
so they should carry as much information per 
wire as possible. 

( c) There is no reason for that the noise immunity 
inside the array logic must be as high as outside 
the array, for example, as that required for 
inter peripherals. 

These points suggest the use of multi-valued logic. 
1 However, general multi-valued logic lacks some kind of 

generality or simplicity, for example, 4-valued logic is 
quite different from 3-valued one, and so on, and 
practical hardwares have rarely been reported. On the 
above described standpoint, we have made research on 
a concept of an extended threshold logic, briefly AETL. 
Logical theory and practical hardwares have been 
developed. In short, this AETL presents a much higher 
logical ability with basically the same hardware com­
pared with usual threshold logic. Short explanations of 
basic idea, theory, and hardware development follow. 

In usual threshold logic, there are input variables Xi 

which takes a value 0 or 1, and L: WiXi is given multi­
plying weight Wi and making a linear summation. Then 
it is compared with threshold t and the output y takes 
either 0 or 1 depending on the result of the comparison. 
The threshold t is variable as of W. S. MeiseP and is 
plural as of D. R. Haring,2 in some papers. There is also 
a hardware of integrated threshold logic.3 We won't go 
further in details as excellent reviews4 ,5 have been given. 

Unlike this, the basic concept of AETL is as follows. 
Consider a pair of inputs Xi, X/. See which is larger and 
generate 0 or 1 depending on the result. Multiply it by 
weight Wi and make a linear summation. And let the 
result be output y. From another point of view, usual 
threshold logic performs the linear summation at input 

353 

side. On the contrary AETL performs it at output side. 
They may have a question as follows. Outputs of a 
certain logical circuit are usually given to some inputs 
of some circuit. If we consider a system comprising a 
number of logical circuits, isn't it the matter of defini­
tion which is the input side (which is the output side) ? 
Isn't the actual hardware the same? The answer has 
two aspects. 

The first thing is that the degree of technique re­
quired in manufacturing a hardware is basically the 
same. The reason is that, when the result of linear 
summation takes certain value, it is necessary to dis­
tinguish this value from the value next to it without 
fail, regardless the temperature, source voltage, manu­
facturing variations, aging, etc., so the required 
accuracy is the same basically. 

The second thing is that the two configurations are 
entirely different in their logical abilities, as explained 
below. In usual threshold logic, both input Xi and output 
yare two-valued. The result of the linear summation is 
multi-valued and contains plenty of information, but 
it exists inside of unit circuit and is not accessible from 
outside. Only one binary information, output y, is 
accessible from outside and other informations are all 
lost. On the contrary, in AETL, the result of linear 
summation is the output y which is multi-valued and 
accessible as the input of arbitrary circuit and so its 
logical ability is far better. 

An arbitrary boolean function can be realized by two 
AETLs. * Two 3-input-pair AETLs realized a full adder. 
One 2-input-pair AETL realized a Data F/F. Using 
4-input-pair AETL as master and as slave, a 2-dimen­
sional shift register has been realized. Of course all 
previously known threshold logic can be realized by 
AETL. ** Although AETL is a multi-valued logic, it is 

* This means two AETLs realize a hardware of multi-threshold 
threshold logic. 
** In AETL, when xi' is selected as a constant, output y is the 
same as ~WiXi of usual threshold logic. Let y be the input Xi of 
the next stage and give t as xi'. Then the result is the same as the 
usual threshold logic. 



354 Fall Joint Computer Conference, 1972 

u 
x - u > V 

v 

Figure l-Symbolic expression 

different from usual 3-valued or multi-valued logic. The 
main difference is that AETL is based on the most 
simple method, that is, the comparison of algebraic 
magnitudes in operation of multi-valued variables, 
instead of seeking a basic set of logical operations which 
realize all logical functions in multi-valued logic. Hard­
ware realizations of basic operation become straight­
forward by this AETL method. Therefore AETL has 
made it possible to design 4-valued, 9-valued, and 
17-valued logical hardware on the same basis. 

SYNTHESIS PROBLEM BY AETL6 

Definition of AETL 

Let's define a notation as follows (Figure 1). 

{

I if U>V 

(u>v) = ° 
if U<V. 

Then, usual threshold logic is defined as follows. 

Xj=O,l y=o, 1. 

U 1 

X1 W1 

X2 W2 

I 
I 
I 
I 

Xn Wn 

S 

t 1 

t2 

AETL is fundamentally based on threshold logic. Figure 
2 shows AETL's graphic symbol. AETL is defined as 
follows. 

n n 

y= ~ Wj(Uj>Vj) = ~ WjXj 
j=1 j=1 

n 

xj=O,l y=O, 1, ... , ~ Wj 
j=1 

where y: output Uh Vj: input Wj: weight. 
AETL has one output. However, logically, AETL 

generates many outputs comparing y with values tj. 

Let Uj be variable and Vi, tj be constant. Then Figure 
2 is reduced to Figure 3. This restricted usage of AETL 
is called Multiplex Median Logic, for short, MML.7,8 

An MML circuit can generate a complete set of 
median functions for a given weight vector (Figure 3). 
Here median functions M tW are defined as follows. For a 
weight vector (WI, W2, Wa, ••• , W n ) , 

1 

° 

n 

if ~ WjXj?;;.t 
1==1 

n 

if ~WjXj<t 
j=1 

n 

where Wj: weight of Xj Xj: ° or 1 W = ~ 1 Wj I. 
j=1 

- L Wj Xj 

Fl - ( s > t 1 ) 

~ 

~ 

( 
I 
I 
I 

Figure 2-Graphic symbol of AETL 



I An Extended Threshold Logic as Unit Cell of Array Logics 355 

X1 
W1 1 M, 

W2 2 

Wj t 

Xn Wn W 

Figure 3-Graphic symbol of MML 

Synthesis of logical functions9 ,10 

First of all, we give a fundamental theorem con­
cerning synthesis problems by MIVIL. 

Theorem 1. 

The necessary and sufficient condition that a given 
n~variable logical function can be realized by two 
cascaded MIVILs as shown in Figure 4 is as follows: If - -- ~~ --f(X) ~f(Y), then WX~WY for all XY, E Vn (1) 

~ 

where Wi is the weight of Xi and W = (WI, W2, •.• , W n ) • 

X 1 WI 1 

X 2 I 
W2 2 

I 
I 
I 
I 

Wn W 

I 
I 
I 
I 
I 

Vn is the whole of n dimensional binary vectors. The 
weight sum of the second stage MIVIL does not exceed 
that of the first stage. 

When n variables ofa function f are partially sym­
metric and classified into h blocks as nl +n2+ ••• +nh = n, 
we say that f has a symmetric pattern (nl, ~, ... , nh). 

Theorem 2. 

When a given function f has a symmetric pattern 
(nl' ~, ... , nh), f can be realized by assigning the 
weights of the first stage MML in Figure 4 as follows. 
Let all variables belonging to the kth block have the 

b 1 

b ' 2 

t f 

bw 

Figure 4-Simple cascade connection 



356 Fall Joint Computer Conference, 1972 

Xl 0 1 

I 
X 2 

I 
02 

I 
I 
I 

Xn On 

t 

WI 1 b 1 

W 2 2 b 2 I 
I I 
I I 
I I 
I 

Wn 
I 

bw W X n 

Figure 5-Bypassed cascade connection 

same weight Uk, and 

k-l 

Ul = 1, Uk = L: uJnj+ 1 
j=l 

Then total weight sum W is equal to 

(2~k~h). 

W does not depend on the order of assigning the weight 
for each block. 

Lemma 2-1 

An arbitrary n-variable symmetric function can be 
realized by at most two MMLs of which weight sum W 
is at most n. 

For the practical purpose, there is no reason to confine 
to the case of Figure 4. Figure 5 is the most generalized 
connection of two MMLs. 

Concerning the minimization of W in this case, we 
show next theorem. 

Theorem 3. 

-In Figure 5, given function j, given weight W = 
(WI, W2, ••• ,wn ) of the first stage, the necessary and 
sufficient condition for j to be realized is as follows: If 
and only if, without depending on the parameter h, 

--. 
there exists a vector A= (aI, U2, ••• ,an) such as 
~ ~ -- -+ -AX>AY for all X,Y E Ch,j(X) >j(Y),jcan be realized 
for the given weight W, where 

~ --l>---+ 

Ch= {X I WX=h}. 

Minimization oj weight sum W 

We presented a kind of table look up method. Once 
we have prepared the table of SWV which means 
Standard Weight Vector, we can select an optimum 
weight vector from the table of SWV for a given func­
tion, where "optimum" means the minimum weight 
sum. 

The numbers of SWV for 1- to 4-variable functions 
are given in Table 1. As seen from the table, the ratio 

n 1 2 3 4 

2 5 19 

2 14 222 

N1 Number of standard weight vectors 

N2 Number of representative functions 

TABLE I-Nl,N2 of n-Variable Boolean Function 



'I 
i 

" 
I 

I 
II 

I 

An Extended Threshold Logic as Unit Cell of Array Logics 357 

( 1 ) 
(8 ) 

x (2 ) 
X, 
X2 X, X2 X3+ X, X2 X3 (9 ) 
X3 + Xl X2 X3 

X, ~XI+X2 (3 ) 
X, 

X2 1 2 X, X2 X2 Xl X2 X3 + X, X2 X3 (10) 
X3 

X, *XI+X2+ X3 (4 ) 
X2 12 X, X2+ X,X3+ X2 X3 (5 ) X I X, X2 G) X3 (1 1) X3 1 3 X, X2 X3 X 2 

X3 (X , E& X2 )X3 (12) 

X, ~X3(X2+Xl) X2 ( 6) X, 
X3 X 2 Xl X2+ X, X2X3 (13) 

X3 

X, 

X, G) X2 (7 ) X 2 X2 
X3 X, X3 + X2 X3 ( 14) 
X, 

X3 

Figure 6-Synthesis example of 3-variable functions 

of the number of SWV to that of the representative 
boolean functions is very low. So this table look up 
method is effective. The minimum value of W to realize 
all 4-variable boolean functions by Figure 4 is 12. The 
minimum value of W may be decreased by Figure 5. 

Figure 6 presents synthesis examples for all 14 
representative functions of 3 variables. All of them are 
realized by at most two MMLs, each of which has at 
most 4 as the weight sum, and at most 3 input-pairs. 
Table II presents those for all 222 representative 

I functions of 4 variables. All of them are realized by at 
most two MMLs, each of which has at most 10 as the 

weight sum, and at most 6 input-pairs. 212 functions 
out of 222 can be realized at most 8 as weight sum and 
at most 4 input-pairs. 

Example 1; No. 132 function (0, 1, 3, 4, 6, 9, 10) can 
be realized as shown in Figure 7 a. 

Example 2; No. 62 function (0, 1, 2, 3,4,8) is 
I-realizable function, and the fourth column is marked 
by the symbol "T" which stands for threshold function 
(Figure 7b) . 

How to look up the table is as follows: 

Compute the characteristics vector of the given 



358 Fall Joint Computer Conference, 1972 

TABLE II ~Synthesis of 4-Variable Functions 

NO CHAR VC:CTOP) STANDARD SUN(2) WI(3) CONNECT! ON (4) 

32'Hl~IIilIOI"1101111 e I 
4 201il1lkliliHilI0l1kl 10 3 
5 211111 I I I JCu,"uiilll 0 7 
6 211110,jlj000111Hl CI5 

7 3tJIill1011 1121 1222 ;; I 2 
8 ';;;111111",,2(;:::211 " I 6 
::I J .. 11111122222,;';'; I 24 

I" 3111Ikl.iJ2<l2211112 1) 114 
II 31111~,~222<l1111," 10 312 
12 31111102<::22211';';;:: I 212 

13 40022.322222<'2222 (j I 2 3 
14 4,i111 II 1<:.;".;,,233 ~ I 2 4 
15 4011 <::11221321 J2": .' I 2 5 
16 4.,12212211211;.;3'; J I 2 7 
17 4u~GG~";C::.d~~IfJG~~G " I 6 7 
18 4 JG'::!GGG~~2GGGG..:.i J 0 3 5 6 
19 41 I I I >';2..:2"211';';2 I 212 
210 411 112<::<.2223J3";4 I 2 4 8 
21 41 II<:iJd<:1 31 :::2<::3 (; I c.:1J 
22 4J J J:::,,8J2J33";..;2J u <: 5 9 
23 411<:<:0111 I <:22';J2 <l I 215 
24 41 J 2<:<::J 11 ..I2.:2';J ~ II J 6J I 
25 4112221 I 3';;;221 I..; 3 411 
26 41122211..1';2<.2334 I 2 41 I 
27 41222111 ,)221 3321 " I 6J5 
28 41~G~111~~~")3JI.j.) I 2 4J5 
29 42~~~du(! c.:~:::!~~~~G ;) 11415 
3.:1 42(::22 tjz2~e:;~~.:..~2iJ C 31215 
31 422<::2,,22<::";22<:J.,2 J 31JI4 

32 50122122332..1..12J3 OJ 2. 3 4 
3J 5 "'2:::22222222..;244 C 2 4 7 
34 5~22.2222<:;242";422 ," 2 5 6 
J5 51 I I I <:<:22223';..IJ4 0 2 4 6 
36511122<:123332"-4'; \) 249 
37 5112<:.)30101J<:223';2'; 2 312 
38511222113";222334;; 2 411 
39 :>1122213314223';2 oJ 2 51ll 
4;.1 51122213';J2241';~ J I 3 4110 
41 511222333';2443..14 I 2 3 4 8 
42 51222111222';334J 0 J 2 415 
43 5122211322.1;31323 ~ I 2514 
44 5122<:13.522211343 C I 2. 712 
45 51<::<::2I..1..12 .. 2J3321 C J 36J2 
46 51222133442JoIJ4'; I <:: 3 412 
47 512a.33..1J22J 3J2'; C I 6 1 8 
48 5122233..1222333"'1 ., 3 5 6 8 
49 5122233322233345 I 2 4 7 8 
50 51222';33224.1';52') I 2 5 6 8 
51 5GzG~;i}~4~~£':~~44G u J (::1,15 
5, 52c:!t::c:.:,J~:""..!L.oi..!~ ... ~4 ~ 1 21314 
53 52<:22';24..;42~~~22 " I JI214 
54 522222<:2,,224444.. I 2 4 815 
55 52222222224J4222 " I 61'" I 3 
56 52<::2222<:24-142244 I 2. 4 914 
51 52222,,244222222" oJ .; 5UI2 
58 5222222442422442 I 2 51012 

59 602232234334·333J 0 2·3 4 5 
60 6023323333233244 0 2 3 4 1 
61 6033333322422433 0 2 5 6 1 
62 6112223J332443J4 0 2 3 4 8 
63 6112323234343243" 2 3 4 9 
64 61133222442J3334 10 2 3 411 
65 6122213344233343 0 2 3 412 
66 6122233322233345 0 2 4 7 8 
61 6122233322433523 0 2 5 6 8 
68 6122313243334234" 2 3 413 
69 6122333223332254 0 2 4 1 9 
10 6122333223532432 0 1 2 5 6 9 
11 6122333243352232 e 2 3 4 5 9 
12 612JJI22JJ244J4J 0 1 2 3 415 
73 6123332233222345 0 I 2 4 111 
14 61233322J3422523 .. 1 2 5 611 
75 6123332235224323 C I 3 4 611 
16 613J322222233354 0 I 2 4 115 
71 61333222224J3532 0 1 2 5 615 
18 6222222222244444 0 I 2 4 815 
19 6222222224442244 0 1 2 4 914 
80 6222222442422442 0 1 2 510"12 
81 6222224444244444 1 2 3 4 812 
82 6222304343J233J3 0 I 2 JI213 
83 6222322123343J53 " 1 2 4 915 
84 6222322143323335 0 1 2 41113 
85 62223223415233J3 0 1 2 51013 
86 6222322343321533 0 1 2 51112 
81 6222324143343133 0 2 3 4 913 
88 6222324343341331 0 2 3 5 912 
89 6222344343363333 2 3 4 5 8 9 
90 62233103333233442 0 1 2 31215 
91622332113323344401241115 
92 62233213J143J442 " I 2 51015 
93 622332133J235242 " 1 3 41015 
94 6223323333211444 0 1 2 11112 
95 6223341333213244 0 1 4 11011 
96 6223341353233222 10 3 4 51011 
91 6223343333033224 0 3 4 1 811 
98 6223343333233042 0 3 4 1 910 
99 6223343333233446 1 2 4 1 811 

100 6233311322442433 10 1 2 51415 
1101 6233313322222453 IiJ 1 2 11215 
102 6233313322422235 0 1 2 11314 
103 6233333302224433 0 1 6 1 815 
104 6233333322244411 0 3 5 6 815 
105 6233333322404233 0 1 6 11013 
106 6333302222433334 0 1 2131415 
107 6333322222415332 10 1 6101315 
108 6333322244433336 1 2 4111314 

T 
01011 
III I I 
IIII 

I I I I 

I 10 
2 10 1- I 
2 " " 10 I 10-1 
" 0 " 0 I 0 0-1 

T I I 2 2 
I I I I I I - I 0- 2 10 0 0 
IIII -I " " 0 I-I 0 0 
II JJ I 10 0 0- I - I 0 I 
II I 3 I 0 " 10 0- I 2- 2 " 0 
I I II - I - I 0 0-1 10 2 0 

T I I 0 
T I I 2 

122 I-I 1-2 10 e e " 1111 I-I 1)-2 I 0 0 
122 " 0 0 0 I -I 0 0 
JJ 11 - I 0 0-2 I-I Ii) 

IIII -1-1 10 10 I Ii) 10 2 
JJ I I 10 0 0 " 1-1 0 0 
122 0 0 0 1-1-1 10 0 I 
122 0 " " 1-2 ~ I-I 0 
1II1 I I 0 0-3 " I II 
JJ22 - I ,,- I c- I 0 03 2 0 
122 0 " 0 1-2 

" 0 
I 10 

1I1I I-I 10 0 10 2-2 10 
1122 I 10 0 10 1-2 10 " I IIII -I 10 0 0 I-I ~ 2 
122 " 10 0 0-1 10 C 10 I 
1122 10 10 " 0 10 0 I-I 10 
1122 10 10 0 10-1 10 10 I-I 

I 1 1 2 3 
111 I -1 " 0 0- I "0 
1111 1-1-1010 '" 0 

I 1 1 1 I 
1111 1 2 " " :il-1-2.1O 
I I I I I I 10 0-2 0 0 10 
1111 1-100101-20 

" 
10 

123 -1 0 0 I 10. 10 1-2 0 0 
I I 12 1- 1 0 0 1 10- 2 0 0 
I 111 -1-1 0 0 10-·1 2 0 
II I I I"" 0- 2 " I " 
1122 1 0- I 0 0 J-2 10 0 0 
11121"0001-210" 
1113 1-1 0 0 0 3-2 0 10 0 
12210.,1-31000 
122 0 10 0 1-1-1 0 1 10 
1111 I I 1 0 0-2 0 0 
1111 -1 0 0 " 2-2 I 0 
122 10 0 0 I I 1-2 0 " 
1 122 10 111 0 ;: - I I -I " " 
1122000;)I-J01il1 
122 0 0 0 1-1-1 10 0) 2 
1111 00011l1-101 
1112 I 0 0 0 ,,- I 2 -;! '" 
I 112 - 1 - I 0 0 0 3-2 '" 0 
1 I I I I I 0 0 0 1-2 0 

• J 123 "J '" " .:I I £ "-2 2-2 0 

Til 2 
!III 1 1-1 0 0-2 0 
1111 -1 0 10 0 1 0-1 
Til 2 2 

122 0 1 0 1 0 2-1 0 0 
1111 1-1 0 0- 1 0 0 1 
1111 1 2 10 0-2-1 0 0 
1111 1 0 0 0 10- 1 2 0 
122 10 10 0 1 0 1-2 0 0 
1112 1-1 0 10 2- 2 0 0 0 
122 -1 0 0 1-1 0 2 0 0· 
il11 1-1-200 300 
1112 -1-1 0 0-1 0 2 0 0 
1111 1 2 0 0-3 10 1 0 
1122 1 0 0 0 1"" 2 0 1 0 
122 -1 0 0 1 2 0-1 0 0 
123 0 0 0 1-1- 1 0 1 0 0 
1111 1 0 0 0- 1- 1 1 0 
1112 -1 0 0 0 2-2 1 0 0 
1111 0 10 0 0-1 0 1 0 
1123 -1-1 0 0 0 3 0-2 0 0 0 
1124 1- 1 0 0 0 3 0- 2 0 0 0 0 
1122 1 1 0 0 0-3 1 10 0 0 
122 0 0 0 0-1 0 10 1 0 
1113 1 0 0 0 0-1 2 0-2 0 
1111 1 2 0 0 0 1-3 0 
123 0 0 0 1 0-1 2-2 0 0 
1123 1 0 0 0 0- 1 0 2 0- 2 0 
123 -1 10 0 1-20 0 2 0 0 
1122 -1 0 0 0 1 0-1 10 2 0 
122 10 10 0 0 1 0-1 0 0 
1122 0 0 1 1 1-2 0 0 0 
1112 1 0 0 0-1- 1 0 2 0 

I 
2 
2 
2 

5 
3 
3 
2 
4 
3 

<: 
3 
3 
2 
2 
J 
3 
3 
2 
5 
3 
3 
I 
2 
2 

5 
2 
.4 
2 
4 
2 
4 
4 
4 
3 
2 
5 
3 
5 
3 
2 
3 
.4 
4 
2 
2 
2 
2 
4 
5 
4 
5 

3 
3 
3 
3 
4 
2 
3 
2 
3 
4 
3 
5 
3 
3 
3 
4 
2 
2 
4 
1 
5 
5 
3 
1 
4 
5 
4 
4 
3 
3 
2 
3 

*1234 0 0 0 0 0 0 1 0-1 1 0 0 0-1 
1112 1-1 0 0 0 3-2 0 0 

2 
3 
5 

1112 -1 0 0 0-1 0 2-1 0 
1122 -1 0-1 0 0 2 0-1 10 0 
1112 1-1 0 0 0- 2 0 2 0 
122 0 0 0 1 0 1 1-2 0 
1122 1 0 1 1 0 0-2 0 0 0 

*1133 0 0 0 0 1-1 1-1 1-1 0 0 
*1234 0·0 0 0 0 1.,.1 1 0 0 0 10-1 

1123 0 0 0 0-1 1-1 0 0 1 0 
1112 1 0 0 10 1-2 0 1 0 
1122 1 0 10 0-1 10-1 0 2 10 
1112 0 0 0 0-1 1-1 0 1 
1223 0 0 0 0-1 0 0 0 1 0-1 0 
1122 0 0 0 0 0- 1 0 0 1 0 
1223 0 10 0 0-1 0 1-1 0 0 1 0 
11110·100001-10 

3 
4 
3 
4 
3 
4 

o 3 
2 
3 
2 

·2 
2 
1 
2 
2 

NO CHAR VECTOR STANDARD SUI'! 

109 7033333344444433 0 2 3 4 5 6 
H0 1122333443354434 0 2 3 4 5 8 
111 1123332453444343 0 2 3 4 510 
112 11233344·33244345 0 2 3 4 1 8 
113 7123334433444523 0 2 3 5 6 8 
114 1133322444453334 0 2 3 4 514 
115 7133324444233354 0 2 3 4 112 
116 1133324444433532 0 2 3 5 612 
111 1133344422433534 0 2 5 6 1 8 
118 1133344444455534 1 2 3 4 5 6 8 
119 1222224444244444 10 1 2 3 4 812 
120 1222324343345335 0 1 2 3 4 813 
121 1222324345343353 0 1 2 3 4 912 
122 7222344343363333 0 2 3 4 5 8 9 
123 1223323333255444 0 1 2 3 4 815 
124 7223323335453244 0 1 2 3 4 914 
125 1223323355233444 0 1 2 3 41112 
126 1223323553433442 0 1 2 3 51012 
1211223341353433444012451011 
128 122.3343333233446 0 1 2 4 1 811 
129 1223J43333433264 0 1 2 4 1 9110 
130 1223343333633442 0 1 2 5 6 910 
131 1223343335235424 0 1 3 4 6 811 
132 12233433J5435242 0 1 3 4 6 910 
133 122334355.3455444 I 2 3 4 5 8110 
134 1233313344244453 0 1 2 3 41215 
135 1233313344444235 0 1 2 3 4131"4 
136 1233313544442433 0 1 2 3 51214 
137 7233333322244455 10 1 .2 4 1 815 
138 7233333322444633 0 1 2 5 6 815 
139 7233333324442255 0 1 2 4 1 914 
140 1233333324642433 0 1 2 5 6 914 
141 1233333344422633 0 1 2 5 61112 
142 1233333522442435 0 1 2 5 1 814 
143 1233333524444413 0 1 3 5 6 814 
144 1233333542422453 0 1 2 5 11012 
145 1233333544424431 0 1 3 5 61012 
146 7233333544464435 1 2 3 4 5 814 
141 1233333564444453 1 2 3 4 51012 
148 1233335524224433 0 1 3 6 1 812 
149 1233335544244455 1 2 3 4 1 812 
150 1233335544444633 1 2 3 5 6 812 
151 1333304444433334 0 1 2 3121314 
152 1333322224453354 0 1 2 4 91415 
153 1333322244433336 0 1 2 4111314 
154 7333322442433552 0 1 2 5101215 
155 1333322442633334 0 1 2 5101314 
156 1333322444431534 0 1 2 5111214 
151 7333322644433332 0 1 3 5101214 
158 7333324444255554 1 2 3 4 81215 
159 1333324444415332 0 1 3 6101213 
160 1333324444455336 1 2 3 4 81314 
161 1333324446453354.1 2 3 4 91214 
162 1333344444433330 0 3 5 6 91012 
163 1333344444433314 1 2 4 1 91012 
1641333344444633552 1 2 5 6 911012 

WI CONNECTION 

Til 1 3 
T 1 2 2 3 

1111 1-1 2 0-2 0 0 0 
1111 1 1-1 0 0-3 0 0 
i 22 0- 1 0 1 0- 1 2 10 0 
1111 1 1 2 0-3 0 0 0 
1220001-1-1100 
11111-1002-2010 
1111 1-1 0 0 1 0-2 0 
1111 1 0 10 0-2 1 0-1 
1111 I 1 0 0-1-1 0 0 
122 0 0 0 1-1 0 1 1 0 
122 Iii 1 0 1 0 2-2 0 0 
1111 -1-1-1 0 2 0 0 0 
1111 I 1 10 0-2 0 1 0 
1112 1-1 0 0-2 0 2 0 0 
122 -1 0 0 1-1 0 0 0 2 
1112 1 2 0 0 0 1 0-3 0 
122 0 1 0 1 1 0 0-2.0 
1111 1 1 0 0 0-2 2 0 
122 - 0 0 0 1-1 0 2-1 0 
1111-1-1000200 
123 0 0 0 1 1 0-2 0 1 0 
1122 -1 0-1 0-1 0 2 0 0 0 
1123 -1-2 0 0 0-2 0 3 0 0 0 
1124 0 0-1 0 0 2 0 0-2 1 0 0 
1112 -1 0 0 0 0 2-1 0 0 
123 0 0 0 1-2 0 0 1 1 0 
1111 1 0 10 0- 1- 1 2 0 
1123 0 0 0 0-1 " 0 1-1 1 0 
1123 0 0 0 0- 1 1 0-1 0 10 1 
1113 1-1 0 0 0 3 0-2 0 0 
1112 -1 0 0 0 0-1 2-2 0 
1122 1 0 10 0 0 1-3 0 0 
122 -1 0 0 1-2 0 2 0 0 
1123 -1 0 0-1 0-2 0 2 0 0 " 
1122 .,.1 0 0 0-1 0 2-1 0 0 
1223 0 0 0 0 1-1 0 0 1 0 0-2 
122 -1 0 0 1 2 0 0- 2 0 
1123 -1 0 0 0 2 0-2 1 0 0 0 
1112 1 1 0 0 0-3 1 0 0 
122 -1·0 0 1 3 0-2 0 0 
1220001-1-1020 
1123 0 0 0 0 0 1-1 1 0-2 0 
1111 100001-20 
1223 -1 1 10 0 0 0 3 0-2 0 0 0 
1123 1 0 0 0 0-1 2 0-2 0 0 

*1234 0 0 0 0 0 0 1-1 1 0-1 1-1 
1112 -1 0 0 0 0-1 0 2 0 
1122 0 0 0 0-1 1-1 0 1 0 
1122 1 0 '" 0 1 0-2 '" 1 0 
1122 0 0 0 0 1-1 0 1 0-2 
1123 -1 0 '" 0 0 1-2 0 0 2 0 
1111 0 0 0 0-1 1-1 0 
122 0 0 0 1-:1 0 2 0-2 
1122 0 0 0 0 0 1 0-1 0 0 

165 8044444444444444 10 I 2 3 4 5 6 1 T 1 
166 81333444444555J4 0 I 234 5 68 1111 1 0 0 0-1 0 0-1 
167 81334443 /15554443 '" 1 2 3 4 5 6 9 1111 1-1" 0 0-2 0 0 
168 81J4443355444534 " 1 2 3 4 5 611 11 JJ 1-1 10 0-1 0 1 0 
169 8144433344455543 0 I 2 3 4 5 6·15 1111 1 0 10 0-2 1 0 0 
170 8222444444464444 (; 1 2 3 4 5 3 9 I 1 1 1 
111 8223343553455444 0 I 2 3 4 5 810 122 -1 2 0 1-2 0 0 0 0 
112 8223443454354535 " 1 2 3 4 5 811 123 1 0 0 1-1 0 0 1 0 0 
11"; 3224442464444444 " I 2 3 4 51011 122 1 1 0 0 0-2 0 0 0 
174 8224444444244446 " 1 234 1 811 1111 1 1 0 0 10-1 1 0 
175 8:':24444444444264 0 I 2 3 4 1 910 122 1 1 0 1 0 0-2 0 0 
1768233333544464435 0 1 234 5 814 122 1 0 0 1-2 0 200 
171 823333J564444453 Iil I 2 3 4 51012 122 0 0 0 1 0-2 1 0 0 
118 3233433443365544 (; I :2 3 4 5 815 1112 1 1 0 0-3 0 2 0 0 
119 8233433463545J44 0 1 234 51013 1112 1-1 0 10-1 0 0 2 0 
1808<:33435245545344 0 I 2 3 4 6 913 122 0 1 0 1-2 0 0 1 0 
181 823343544J345346 0 1 2 3 4 1 813 1223 1 1 0 0 0 0-2 0 2 10 0 0 
1<32823343544354552401 235 6 813 1123 1-1 0 10 0-20 2 000 
1838234432453455453 0 I 2 3 4 51015 1122 1 10-1 0-2 10 2 0 0 0 
184 82J4434433255455 10 1 2 3 4 7 815 122 1 0 0 1-2 0 0 1 0 
185 823443443J45563.~ 0 1 2 3 5 6 815 1112 -1 0 0-1 0-2 2 0 0 
186 824442G444464444 0 1 2 3 4 51415 122 1 0 0 0-2 1 0 0 0 
187 8244424444244464 Ii 1 2 3 4 71215 122 -1 0 0 1 0-2 2 0 0 
188 8244424444444246 0 I 2 3 4 7J..314 1112 1 0 0 0 1-2 1 0 0 
189 8244444422444644 " 1 2 5 6 1 815 1112 1 0 0 0-1 0-1 2 0 
190824444444442264401 2 5 6 71112 1112 0 000 1 0-1 0 I 
191 8333324444255554 10 1 2 J 4 81215 1122 1 1 0 0-2 0 0 2 0 0 
192833332.444445533601 234 81514 1111 1 1 0 10 1-2 0 0 
1938333324446453354 0 1 2 3 4 91214 1123 -1 0 1 0 0-2 0 2 0 0 0 
194 8333344444433314 0 1 2 4 1 91012 122 0 0 0 1 1 0-2 0 I 
195 8333424343356445 0 1 2 3 4 81315 122 0 0 0 1-2 0 1 1 0 
196 8333424345354463 " 1 2 3 4 91215 1223 -1-1 0 0 0-2 0 2 0 0 0 0 
191<3333424365334445012341112131122 -t"0-1 00-10020 
1986333444145534445101 24 6 91113 1112 1 001 0-2 0 0 0 
19983334443433344410124 181113 1111 10 0 0-11-20 
2008333444343374443023458915 1113 0 0 0 0-11-10 1 0 

4 
5 
3 
3 
3 
3 
2 
4 
.4 
3 
2 
2 
4 
4 
2 
3 
2 
5 
4 
3 
3 
3 
3 
3 
4 
4 
3 
2 
2 
2 
2 
5 
4 
4 
3 
3 
3 
4 
5 
4 
.3 
5 
2 
4 
3 
5 
4 

" 4 2 
2 
3 
4 
.3 
2 
4 
2 

1 
2 
2 
2 
2 
2 
3 
2 
2 
2 
3 
3 
2 
3 
2 
2 
3 
3 
3 
2 
3 
2 
3 
3 
2 
2 
2 
3 
3 
3 
2 
3 
2 
2 
3 
2 

201 8333444343534265 0 1 2 4 1 91013 1223 0 1 0 0 0 0 1-2 0 2 0 0 .3 
202 8334423335464354 0 1 2 3 4 91415 1223 0 1 0 0 0-2 0 0 2-1 0 0 3 
2038334423355244554 0 1 2 3 4111215 1122 1-1 0 0 0-2 0 0 2 0 2 
20483344233554443360 1 234111314 1111 1-1000-220 3 
205 8334441J53444554 0 1 2 4 5l<l1115 123 -1 001 0-3 0 2 0 0 3 
206333444333324455601 24 1 81115 1111 -1-1 0 0 0-1 3 0 3 
207 8334443333444374 0 1 2 4 1 91~15 122 0 0 0 1-2 0 2-1 0 3 
203 8334443335246534 0 1 3 4 6 81115*1234 0 0 0 0 0 J 0 0-1 1-1 0 1 3 
209 8334443335442356 0 I 2 4 1 91114*1234 0 0 0 0 1 0 0-1 0 1-1 0-1 4 
21.0 8334443355426334 " 1 3 4 6t111113 1123 -1 0 0 0 0-2 0 2-1 0 0 3 
211 8344413344455345 0 1 2 3 4131415 1123 0 0 0 0 0-1 0 0 1 0 0 1 
2128344433324453365 0 I 2 4 1 91415 1122 -1 0 0 0 0 1-2 0 2 0 3 
213 834443J324653543 0 1 2 5 6 91415*1123 0 1 0 0 1 0-2 0 2-1 0 4 
214834443334"44333410124 1111314 1111 1000 1-2 1 0 3 
215 8344433344433143 " 1 2 5 6111215 1223 0 0 0 0 1 0 0-1 0 0 1 0 2 
216 8444404444444444 10 1 2 312131415 122 0 0 0 0 0-1 0 1 0 I 
211 6444422244444446 0 1 2411131415 tr12 0 0 0 0 0-1 0 1 0 1 
2188444422442644444 0 1 2 510131415*1234· 0 0 " 0 0 1-1 1 0 0-1 1-1 4 
219 3444422444442644 0 1 2 511121415*1234 0" 0 0 0 1 0 0-1 1-1 0 3 
2208444424444422446012111121314 1122 0·000 10-10 1 2 
221 8444444444404444 0 1 6 110111213 122 0 0 0 0 1 0-1 0 1 2 

Note: (1) 
(2) 
(3) 
(4) 
(5) 

The characteristic vector 222 8444444444444440 0 3 5 6 9101215 1111 0 0 0 0-1 1-1 1 2 

Decimal numbers which corresponds to binary input vectors which make f = 1. 
The weight vectors of the first stage MML. 
How to connect two MMLs. 
The threshold of the second MML. 



"I,·, 
I' 

i, 

t 
I~ 

I 

An Extended Threshold Logic as Unit Cell of Array Logics 359 

TABLE III-Realization of Boolean Functions by AETL 

Number Con- lNumber of 
of Comment Weight Sum Input 

AETL nection Pairs 

1 Fig. 3 
Complete set of Median 
Functions 

Simple a. Arbitrary Boolean W~n_l ~n Functions 
Cascade 

b. Symmetric n-Variable W=n ~n Fig. 4 Functions 

c. Partially Symmetric h n-Variable Functions. W= IT (n .+1 )-1 ~n 2 'Symmetric Pattern is j=l J (nl , n2 ,··· , nh ) 

By-passed All 3-Variable Boolean 
W ~4 Functions ~3 

Cascade 
All 4-Variable Boolean 

W ~lO ~6 Fig. 5 Functions 

212 out of All 222 4-Var. 
W ~8 ~4 Rep. Functions 

functionf 

{p(O), p(l), p(2), p(3), p(4), p(l, 2), p(l, 3), 
p(l, 4), p(2, 3), p(2, 4), p(3, 4), p(I, 2, 3), 
p(l, 2, 4), p(I, 3, 4), p(2, 3, 4), p(l, 2, 3, 4)} 

and look up the table. 
The characteristic vector is essentially equivalent to 

the "invariant,"l1 which corresponds to the representa­
tive function uniquely. The relation between them is 

w(fE9xil E9Xi2E9 ••• E9Xik) =2n- l+w(f)-2p(il, i 2, •.. , ik) 

where 
w(!)= ~ f(X) 

XEvn 

andf(X) is a boolean function. 
Above results are summarized into Table III. 

HARDWARE OF AETL12 

AETL circuit presented in this paper (Figure 8) has 
following characteristics compared with the usual 
threshold circuits. 13 

• Since each input-pair is a current switch pair, each 
threshold is variable and can be given indepen­
dently. 

• Complementary output pair is given and each 
output can be ~ed as an input for the next stage. 

• Weight vector W = (WI, W2, Wa, W4) can be selected 
arbitrarily where WI=W2=1, w3=1, 2, w4=1, 2, 
3,4. 

• l\10st of logical functions of four variables can be 
realized by one or two 4-2-1-1 AETL . 

• Since weight sum is large and unit signal amplitude 
is small, temperature compensation must be 
secured. So, temperature compensation circuit has 
been built-in. 

CAD has been used to design and simulate the circuit. 
The influence o(accuracy of components and deviations 
of transistor characteristics have been investigated. 
Sensitivity factors for circuit parameters have been 
calculated. The worst case conditions and the proba­
bility distributions of circuit component parameters 

X4 

X2 

1 4- 1 

1 
I 1 I 

3 
XI 

I 2 1 r 1 

2 3 2 

No.132f =(0,1,3,4,6,9,10) 

Figure 7a-Synthesis example 



360 Fall Joint Computer Conference, 1972 

X2 ------t 
31------f 

X3 -----t 2 

X4 -----12 

NO.62 f = ( 0,1, 2,3,4,8 ) 

Figure 7b-Synthesis example 

have been taken into consideration. Resultant hybrid 
IC has been successful and used in the plane register de­
scribed later. 

Circuit configuration of AETL 

The following two essential operations must be 
realized. 

RJL I 

(1) generation of unit threshold function 
(2) weighted analogue summation. 

As for (1), the current switch pair is used, which com­
pares the input voltage pair, XUj and XLi, then switches 
the current from the current source according to the 
result of the comparison. When (XUj>XLj) = 1 (=0), 
QJU is turned on (off). As to (2), the current source 
generates the current proportional to the weight Wj for 
each pair of inputs. The current from the source flows 
through QJU or QJL by the switching operation and is 
summed at the collector-circuit common resistance RJ, 
and generates the voltage proportional to the sum of 
each current. As the collector internal resistance of 
transistor QJ is suffici~ntly high compared with RJ, the 
analogue summation of the currents is achieved almost 
completely. Unsaturated current switch pair enables 
high speed logic operation. 

Figure 8 shows 4-input-pair AETL circuit (Wi = W2 = 1, 
ws=1, 2, w4=1, 2, 3, 4). QE1, QE2, . .. ,QE4 form the 
constant current generators. Diodes D1, D2, D3 com­
pensate the variation of the unit current due to the 
ambient temperature. Connecting or not the terminals 
Z31, Z41, Z42 to E to select the values of emitter resistance 
RE3, RE4, the weights W s, W 4 can be chosen for the 
logic function to be realized. The voltage level shift 
circuit by QH and RH1 is to prevent collector saturation 
of QJU and QJL. The minimum value (when 8=8) of 

Figure 8-4-2-1-1 AETL circuit 



An Extended Threshold Logic as Unit Cell of Array Logics 361 

(V) 

O~-----------.r-------------------~ 

tvo x HI 
- 2 f-

- 4 I-

- 61-

~I::~ IvOxw 
-12 I-

-14 I-

-161-

VBE 
- 18 I- J base potential of constant 

current generating CI rcu It 

- 20 I- voltage source 
E 1---- ------------------------

input RJ RH1 

design of potentials in AETL circuit 

* tolerance for unsaturation 
** level shift for asymmetric outputs 

output 
(terminalsJ 

Figure 9-Signal voltage level in 4-2-1-1 AETL 

the potential VCJ of the collector of QJ should not be 
much less than the maximum value (when S = 0) of 
output voltage VC S where 

4 

S = L Wj (XUj> XLj) for the upper side. 
j=1 

The transition of signal level· in the circuit is shown in 
Figure 9. This circuit is perfectly symmetric in upper 
and lower sides except the level shift circuit. There is a 
complementary relation between 

4 

YL= L Wj(XUj>XLj) and 
j=1 

4 

Yu= L: Wj(XLj>XUj): 
j=1 

YU+YL=W. 

For the complete operation of the current switch 
pair, the situation XUj=XLj may not occur. So let two 
classes of outputs, Y and y' be generated, where y=O, 
1, ... , Wand y' ="72, 1"72, ... , W +"72 (Figure 10). 
To realize this, the potential of QHU is made a little 
different from that of QHL. The base emitter voltage 
VFO of transistor QO influences output voltage directly. 

- Vyu 

-VYL 

o w 

Yu = L Wj(Xj>xj ), YL = LWi(xj>Xi) 

Figure Io-Output voltage vs. logical output 

QH compensates for this change of VFO caused by 
temperature variation. In other words, the changes of 
V FO and V F H are required to be the same for the 
temperature variation, and resistors to satisfy the 
relationship of RJ + RHI *' RH. 

4-input-pair (W max=8) AETL circuit was designed 
and hybrid-integrated (Figure 11). CAD enabled us to 
design the circuit with appropriate noise margin. The 

Figure ll-Elements 
top; 3-Compatible Switch 
left; 4-3-2-1 AETL 
bottom; input MML 



362 Fall Joint Computer Conference, 1972 

Figure 12-8-bit high speed full adder 

results of experiments on integrated AETL agreed very 
well with that of simulation and the values aimed by 
the design. 

The effect· of the ambient temperature was com­
pensated almost completely by the temperature com­
pensation circuit (O.09mV/deg). It was found that the 
output error was mainly caused by the deviation of 
resistors. To make W max large, it is required (1) to 
increase base emitter break down voltage of transistor 
QJ, (2) to increase the accuracy of resistors. 

HIGH SPEED FULL ADDER14,15,16,17 

To examine the dynamic behavior of hybrid inte­
grated }\1}\1L we have constructed an 8-bit Full Adder, 
shown in Figure 12, based on a revised Sklansky's 
Conditional Sum }\1ethod. The experimental results 
are as follows. The carry propagation time was mea­
sured as 11ns (Figure 13). Stable operation was assured 
by a dynamic tester/8 ,19 under the conditions that 
ambient temperature is between -15°C",-,+ 75°C, and 
the source voltage drops down to 55 percent of the 
design center value. 

PLAN:E REGISTER 

We show, as an example of sequential circuit using 
hybrid IC AETL mentioned above, a plane register, in 
which one cell corresponds to one AETL element. 

Two types of Data F IF's are shown in Figure 14. 
They accepts two data inputs D I , D2 and are dual each 
other. The data to·bereceived is decided by the values 
of two enable signals E I , E2• The weight of each input 
pair is 1. In the figure; integer values denote the logical 
values of each variable. This plain register operates 

essentially in multi-valued logic but if we dare to explain 
it like 2-valued logic, the right side of the virgule 
corresponds to the "true" and the left side_jto the 
"false." 

Let us explain the operation of master F I F in Figure 
14. When E IM=E2M=5, the FIF keeps its previous 
state. When ElM =3 and E2M~9 the data DIM is enabled 
by ElM and the output Qu M follows the data DIM. In the 
next step, ElM and E2M should be 5, and the output is 
held. The data Dl'[ is enabled when ElM ~ 9 and E2M = 3. 
When ElM, E2M~9, the FIF is cleared. The slave FIF 
operates in the same way, i.e., when Eis = E2s = 6, the 

Figure13 -Carry propagation time 
Co; the first bit carry input 
Cs; the final bit carry output 
X axis; lOns/div 
Y axis; 0.2 V /div 
Source voltage; lOV 

Co 

C8 



An Extended Threshold Logic as Unit Cell of Array Logics 363 

11 (9)/5/3 
I E ~ (enable) Q~ 

"'0,214 I D~(data) 8,6/4 

11(9)/5/3 M IE2 Q~ 
/0, 2 14 I 

ID~ 
1,3/51 

I 
L_ 

12(10)16/4 IE; 
I 0,2/4 

1,3/5 IDs 1 (data) 

12(10)1614 IE~ 
I 9,7/5 

1,3/5 ID~ -----

master F / F slave FI F 
Figure 14- Two data F IF's 

Figure-15 Construction of plane register using two data F/F's 
shown in Figure 14 

Figure 16-Simulated 4-bit torus register. The terminals which 
have the same name are connected 



364 Fall Joint Computer Conference, 1972 

Figure 17-Waveforms. of simulated 4-bit torus register. The 
arrow direction denotes truth value, dot line threshold value 

between true and false value 

F IF keeps its previous state. The data D1S(D2S) IS 

enabled when ElS=4(~10) and E2S~10( =4). The 
enable signals can be generated easily by the usual 
pulse generator and AETL. 

The plane register can be made arranging master and 
slave F IF's above mentioned, as shown in Figure 15. 

Figure 18-Torus register of 8X8 bits by the hybrid Ie AETL 
circuit 

The state of each slave F IF on a lattice point can be 
shifted to any direction by the combination of enable 
signals. 4 bits plane register connected in the torus form 
(torus register) was simulated by the AETL simulator 
(Figure 16). The 'wave forms of enable signals and 
outputs are shown in Figure 17 and their values in 
Table IV. Torus register of 8X8 bits was fabricated 
using hybrid Ie AETL (Figure 18). The stable opera­
tion and the ability of AETL for cellular automata were 
ascertained. 

TABLE IV-Simulated Four Bits Torus Register 

>0 C 4 

EMI EM2 ESI ES2 SUI SU2 SU3 SU4 MLI ML2 ML3 ML4 

7 5 7 5 767 6 * 2 • 4 • 4 • 4 • 5 • 5 • 5 • 5 
7 5 7 5 1 6 7 6 + 0 • 4 • 4 • 4 • 5 • 5 • 5 • 5 ** 

* 3 .91 6 7 6 + 0 • 4 • 4 • 4 • 5 • 5 • 5 • 5 
* 3 • 9 1 6 7 6 + 0 • 4 • 4 • 4 • 5 • 5 • 5 * 3 ** 

7 5 7 5 * 4 .10 + 0 • 4 • 4 • 4 • 5 • 5 • 5 * 3 
1 5 7 5 * 4 .10 • 4 * 2 • 4 • 4 • 5 • 5 • 5 + 1 ** 

.9* 3 7 616 • 4 * 2 • 4 • 4 • 5 • 5 • 5 + 1 
• 9 * 3 7 6 1 6 • 4 + 0 • 4 • 4 • 5 * 3 • 5 • 5 ** 

1 5 7 5 * 4 .10 4 + 0 4. 4 • 5 * 3 5 5 
1 5 7 5 * 4 .10 • 4 • 4 • 4 * 2 • 5 + 1 • 5 • 5 ** 

• 9 * 3 1 676 • 4 • 4 • 4 * 2 .5+ 1 • 5 • 5 
• 9 * 3 7 6 1 6 • 4 • 4 • 4 + 0 • 5 • 5 • 5 * 3 ** 

7 5 7 5 .10 * 4 • 4 • 4 • 4 + 0 • 5 • 5 • 5 * 3 
1 5 1 5 .10 * 4 • 4 • 4 * 2 • 4 • 5 • 5 • 5 + 1 ** 

.9* 3 1 616 • 4 • 4 * 2 • 4 • 5 • 5 .5+ 1 
• 9 * 3 1 6 1 6 • 4 • 4 + 0 • 4 • 5 • 5 * 3 • 5 ** 

7 5 7 5 * 4 .10 . 4 · 4 + 0 · 4 • 5 • 5 * 3 . 5 
7 5 7 5 * 4 .10 * 2 · 4 · 4 4 • 5 · 5 + 1 . 5 ** 

* 3 9 1 6 7 6 * 2 4 · 4 · 4 • 5 · 5 + 1 5 
* 3 . 9 1 6 1 6 + 0 · 4 · 4 · 4 · 5 · 5 · 5 * 3 ** 

7 5 1 5 .10*4+0 · 4 · 4 · 4 • 5 • 5 · 5 * 3 
1 5 1 5 .10 * 4 4 • 4 * 2 · 4 • 5 · 5 · 5 + 1 ** 

Note: (1 ) '**' denotes stable state. 

(2) '+' and 1 *' denote 'true'. 

, 1 and '? ' denote 'false' in this 

ANALOGUE ME1VIORY20.21 

case. 

A new analogue memory element with similar con­
figuration to AETL has been developed, and its basic 
experiments have been performed successfully. The 
principle of this system consists in that (1) the direction 
of the unit current flowing through each current switch 
is changed over according to the level of input voltage, 
(2) the product of the current and the common collector 



An Extended Threshold Logic as Unit Cell of Array Logics 365 

RH1U 
r-----~--------~----~---------~----__ --_MN_----__ --~ 

rCA RK RK RJU RU 
-----"Nv--- -i: 

---r-----

RE I 
VBO 

~ ____ L 

~----~------ --~----~--~~----~~~ 

RH1U 

Figure 19-Circuit of analogue memory element 

resistance forms an analogue quantity, and (3) the 
result is made to be self maintained. Results of the basic 
experiments showed that the response time is pS per 
step. Figure 19 shows the circuit and Figure 20 shows 
the input-output response. 

Figure 20-0utput response by sine wave input 

CONCLUSION 

A new kind of threshold logic named AETL (An Ex­
tended Threshold Logic) and its simplified modification 
l\1ML (l\1ultiplex Median Logic) have been presented. 

This report is summarized as follows: 

(1) We obtained several theoretical results for the 
realization of boolean functions by AETL. 

a. One AETL can generate a complete set of 
median functions and their negations. 

b. Two AETLs can generate an arbitrary 
boolean function. 

c. An arbitrary symmetric n-variable boolean 
function can be generated by two AETLs of 
which weight sum W~n. 

Synthesis examples are shown for all 3-variable 
(Figure 6) and 4-variable (Table II) boolean 

. functions. All above results can. be similarly 
realized also by l\llVIL. 

(2) 4-input-pair (W max= 8) AETL circuit was de­
signed and hybrid-integrated. It has been used 
as a unit cell of the plane register. 



366 Fall Joint Computer Conference, 1972 

(3) An 8-bit full adder was fabricated to test the 
performance of Ml\1L. 

(4) We showed as an example of sequential circuit 
usingAETL, an 8X8-bit plane register, in which 
one cell corresponds to one hybrid IC AETL 
element. 

(5) As. a first step to realize F / F based on multi­
valued logic, 17 -valued analogue memory was 
designed and tested successfully. 

Through this research, it is our solid conclusion that 
the AETL concept will override previous threshold 
logics in logical abilities. On the other hand, the AETL 
hardwares presented are by no means conclusive ones. 
Their future will depend much on IC technology and 
requirements for the variable weight and variable 
threshold ability of AETL. 

One of our next interest aims at a realization of certain 
AETL processor, which might present a unified 
(pre-) processor for various kinds of pattern information. 

REFERENCES 

1 W.S MEISEL 
Variable-threshold threshold elements 
Doctoral Dissertation E E Dept U of So Calif. 
May 1967 and IEEE Transactions pp 656-667 Vol C-17 
No 7 July 1968 
W S MEISEL 
Nets of variable-threshold threshold elements 
IEEE Transactions pp 667-676 Vol C-17 No 7 July 1968 

2 DR HARING 
Multi-threshold threshold elements 
IEEE Transactions pp 45-65 Vol EC-15 No 1 
February 1966 

3 J J AMODEI D HAMPEL T R MAYHEW 
R 0 WINDER 
An integrated threshold gate 
1967 International Solid-State Circuits Conference 
Digest of Technical Papers pp 114-115 Lewis Winner 
NY February 1967 

4 R 0 WINDER 
The status of threshold logic 
1st Annual Princeton Conf on Information Sciences and 
Systems pp 59-67 Princ Univ NJ March 1967 

5 R 0 WINDER 
The status of threshold logic 
RCA Review pp 62-84 Vol 30 No 1 March 1969 

6 N SANECHIKA 
Synthesis of logical functions using Multiplex Median Logic 
Bulletin of the Electrotechnical Laboratory pp 17-36 Vol 35 
Nos 9 & 10 1971 

7 R MORI 
Unitron (multiplex median logic) 
Technical Group on Electronic Computers of Institute of 

Electronics and Communication Engineers of Japan 
December 1968 

8 R MORI 
Multiplex median logic system 
1971 Mexico IEEE International Conference on Systems 
Networks and Computers pp 683-687 January 

9 N SANECHIKA M TAJIMA R MORI 
Synthesis of logical functions by Unitron 
National Convention of the Institute of Electronics and 
Communication Engineers of Japan p 957 No 1898 August 
1970 

10 R MORI Y TSUJI N SANECHIKA 
Synthesis of logical functions by U nitron 
Joint Convention of the Four Electrical and Electronics 
Institutes of Japan pp 3566-3567 No 3093 March 1969 

11 M A HARRISON 
Introduction to switching and automata theory 
McGraw-Hill Inc pp 162-167 pp 395-407 1965 

12 R MORI Y OKADA M TAJIMA S KAO 
T TOMARU T ABE 
J,.-input-pair variable weight and variable threshold AETL 
circuit 
Bulletin of the Electrotechnical Laboratory pp 99-125 
Vol 35 Nos 9 & 10 1971 

13 S COHEN R 0 WINDER 
Threshold gate building blocks 
IEEE Transactions pp 816-823 Vol C-18 No 9 
September 1969 

14 Y TSUJI H TAJIMA R MORI 
8-bit high speed full adder by Unitron 
National Convention of the Institute of Electronics and 
Communication Engineers of Japan p 960 No 901 
August 1970 

15 Y TSUJI N SANECHIKA H TAJIMA R MORI 
A high speed full adder using Unitron and Switch 
Bulletin of the Electrotechnical Laboratory pp 69-82 Vol 35 
Nos 9 & 10 1971 

16 J SKLANSKY 
Conditional-sum addition logic 
IRE Transactions pp 226-231 Vol EC-9 No 2 June 1960 

17 R MORI Y TSUJI H TAJIMA 
Design and trial fabrication of 3-input push-pull Unitron 
and compatible Switch 
Bulletin of the Electrotechnical Laboratory pp 48-68 
Vol 35 Nos 9 & 10 1971 

18 H TAJIMA Y TSUJI R MORI 
The dynamic tester of small scale logic system 
National Convention of the Institute of Electronics and 
Communication Engineers of Japan p 962 No 903 
August 1970 

19 H TAJIMA Y TSUJI R MORI T ABE 
A dynamic tester for small scale logic system 
Bulletin ofthe Electrotechnical Laboratory 
pp 140-146 Vol 35 Nos 9 & 10 1971 

20 R MORI S KAO 
A nalog memory element using current switches 
Bulletin of the Electrotechnical Laboratory pp 132-139 
Vol 35 Nos 9 & 10 1971 

21 R MORI S KAO 
Stabilization of 16-input-pair MML circuit 
Bulletin of the Electrotechnical Laboratory pp 126-131 
Vol 35 Nos 9 & 10 1971 



Multiple operand addition 
and multiplication 

by SHANKER SINGH and RONALD WAXMAN 

International Business Machines Corporation 
Poughkeepsie, N ew York 

INTRODUCTION 

Traditionally, adders used in small- and medium-sized 
computers are designed to add two n-bit numbers. 
There are arithmetic operations which require the addi­
tion of a large number of numbers. Multiplication 
(division) and special function generation are such 
operations. In large computers, "carry save addition", 
which adds a group of 3 numbers and reduces their 
sum to a partial sum of two numbers, has been fre­
quently used to speed up multiplication. One of these 
two partial sums evaluates the sum modulo 2 of bits in 
the same binary order; the second partial sum being 
composed from carries generated but not transferred. 
These partial sums are regrouped in triplets and enter a 
"carry look ahead" adder to provide the final sum. The 
circuit implementation is a cascade connection of full 
adders, and is referred to in the literature as' "adder 
tree" .1.2 The operation time is considerably reduced 
because carries are not transferred, although they are 
formed. 

This paper considers the problem of adding k n-bit 
numbers (operands) where k> 3. A novel scheme for 
adding k numbers will be described. It will be shown 
that by partitioning these k numbers columnwise, such 
that each column partition contains m bits of each of 
the k numbers, where m is an integer2::log2 (k-1), the 
final sum can be obtained in m+ 1 addition cycles. 
These cycles are not algorithmically related to the 
cycles used in the adder tree method. Cycle time is de­
pendent upon structure and technology. 

We shall also be describing the use of the adder in 
multiplication of two numbers. It will be shown that 
the use of such an adder can lead to a good compromise 
between hardware requirements and speed for multi­
plication. 

Finally, it will be shown that, from the point of view 
of large scale integration, such implementation may be 
quite suitable for arithmetic units in digital computers. 

367 

In order to illustrate the basic ideas involved in the 
method it will be worthwhile to start with an example. , . 
Oonsider a matrix of nine 3-bit numbers as shown In 
Figure 1. We can use a circuit Figure 2 to obtain the 
final sum. The circuit operation can be described step 
by step as follows: 

1. Initialization 
Reset all the register cells R18 'to zero state. 

2. 1st Add Cycle 
Gate column 2 (left most) of the matrix in the 
adder. The sum and the carries appear simul­
taneously at So, COl, C02, C03 terminals of the 
circuit, which in turn provides the 1st cycle 
partial sum of the numbers at terminals Sc2, SCI, 
Sco, S2, Sl, So equal to 001000. The values at 
ScI down through So are set into register cells 
Ill 8 at this time. 

3. 2nd Add Cycle 
Gate the column 1 of the matrix in the adder. 
Once again, the sum and the carries are generated 
simultaneously and in turn automatically get 
added to the previous cycle shifted partial sum 
contained in register cells RIB. (The previous 
cycle partial sum is effectively shifted left one 
position because the contents of each register 
cell is fed into the sub-adder position to its left.) 
This provides the second cycle partia:l sum at 
Sc2, SCI, Sco, S2, Sl, So as 010110. 

4. 3rd Add Cycle 
Gate column 0 of the matrix. The operation re­
peats as in Step 3, and we obtain the final sum 
110011 of the 9 numbers in the matrix of Figure 
1. 

From the example, it may be noted that sub-adder 
unit 1 of the multiple adder is the most complex and 
requires the maximum number of logic gates. This sub­
unit also increases in size and complexity as k increases. 



368 Fall Joint Computer Conference, 1972 

Register No.2 

Numbers I" Register No. - 1 

To Be Regist er No. 0 
Added 1 1 1 1 r---

2 1 0 1 

3 1 1 1 

4- 1 1 0 

5 0 1 1 

6 1 1 1 

7 1 1 1 

8 1 0 0 

9 1 0 1 

2nd 1st Otb 

Columns 

Figure I-Matrix of nine 3-bit numbers stored in three 
registers of length 9 

The size of other sub-adder units remains constant. 
However, with recent advances in large scale circuit 
integration and with the availability of monolithic read­
only memories, the circuit realization of sub-adder unit 
1 should not be difficult. One of the many such possible 
circuit realizations of sub-adder unit 1 is shown in 

STORAGE BUFFER 

"0 ' , , 

., , ° , 
t-+-+--+-t-+-I "2 , , , 
t-+-+--+-t-+-I 

~ r,+-,~o+-t-+-I 

"4 t-0+--;' t-'+-t--I-~ 
"5 t-'+--;' I-l+-t--I-~ , , , 

, ° ° , ° , 

Figure 2-9-number adder 

Figure 3. The decoders 1 and 2 produce aIl5-tuples and 
4-tuples of inputs ao, aI, a2, aa, a4 and a5, a6, a7, as respec­
tively. po represents 5-tuple aOala2aaa4 (00000). PI repre­
sents the set union of all the 5-tuples with weight 1 
(i.e. {OOOOI +00010+00100+01000+ 10oo0}) realized 
by 'dot ORing' all the tuples of weight 1, (weight is 

r r r r r 
I DECODER ., I 

'. Ull '4Lllill ~lli ~ ft,W '0 

0 0 

- .. 0 

0-- ~., 
0 , 0 , 0 

.. ~ 
0 

0---- :~ .. , 0 , 0 , 0 

Cl 

0-- I~ .. 0 , 0 , 0 , 

0--- ~ , 0 , 0 , 0 .. 
So 

'-v ..... 
v .. 

"" 0 0 , , 0 0 .. --; 
, 0 0 , , 0 

} .,-
, , 0 0 , , 

.. - ~-.-

0 , , 0 0 , 
'3-

0 0 , , 0 0 

e~ 

.. - v .. 

V .. ~ , , 0 0 0 0 

.. <>------I , , , 0 0 0 

i 
.,- , , , , 0 0 

.. -
0 , , , 0 

.. ---H 
0 0 , , , 

e~ 

.. - V .. 

v .. ..----.NV- 0 0 0 0 0 .. 
0 0 0 0 0 0 

Vee .,-
0 0 0 0 0 0 

.. - '-----1 , 0 0 0 0 0 
.........0 

'3-~ , , 0 0 0 0 

e~ 

.. -~ V .. 

V .. ~ 
V •• 

NOTATIONS 

ur 
~c -t~ 

-W--
~cc 

Figure 3-Sub-adder unit I 

defined as the number of 111 in the n-tuple). Similarly 
P2, Pa, P4 and P5 are realized by 'dot ORing' all the 5-
tuples of weight 2, 3, 4, and 5 respectively. qo, ql, q2, qa, 
and q4 are also realized by 'dot ORing' all the 4-tuples 
of weight 0, 1, 2, 3, and 4 respectively. Thus, logical 
functions for So, COl, C02 and Coa can be expressed as fol-



lows: 

So= (qO+q2+q4) (P1+P3+PS) + (q1+q3) (PO+P2+p4) 

C01=qO(P2+P3) +q1(P1+P2+PS) +q2(PO+P1+P4+PS) 
+q3(PO+P3+P4) +q4(P2+P3) 

C02 = qO(P4+PS) +q1(P3+P4+PS) +q2(P2+P3+P4+PS) 
+q3 (PI +p2+P3+P4) +q4 (PO+P1 +P2+P3) 

C03= Q3PS+q4 (P4+PS) 

The other function shown in Figure 2 for sub-adder 
units 2, 3, 4, 5 and 6 are expressed as: 

Sl = [So (previous cycle) JEBC01 

C11 = [So (previous cycle) J. COl 

S2= [Sl (previous cycle) JEB C11EB C02 

C21= [Sl (previous cycle) J. [C11+C02J+C1l·002 

Sco= [S2 (previous cycle) JEBC21EBC03 

C31= [Sl (previous cycle) J·[C21+C03J+C21·C03 

ScI = [SeO (previous cycle) JEBC31 

Ci= [SeO (previous cycle) J·C31 

Se2= [ScI (previous cycle) JEBC41 

An adder of the type shown in Figure 2 is able to add 
any 9 numbers of n bits long, with the final sum avail­
able after n cycles. Such an adding scheme has an addi­
tion time proportional to n. Therefore, if we use many 
parallel adder units such as shown in Figure 2, we in­
crease the speed of addition considerably. 

The example shown added the most significant col­
umn first. However, equivalent results would be ob­
tained if the least significant column were to be added 
first. This may be verified easily by the reader. One less 
S.A. unit and one more R1 unit (see Figure 2) would be 
required. 

Let us proceed with the example, but increase to 32 
bits the length of the nine numbers to be added. Sup­
pose we partition these nine numbers column-wise, 
such that each partition set has three adjacent columns. 
Now the eleven partition sets, each with nine numbers, 
are added in parallel, using 11 adder units of Figure 2. 
(See Figure 3.) The final sum digits from 11 units de­
noted by So, Sl, ... S32 are stored in register A, and the 
sum digits denoted by SeO, ScI, ... Se32 are stored in 
register B. Three cycles of AMO are required to obtain 
the register A and B sums. In the fourth cycle, the con­
tents of registers A and B are fed to a carry look-ahead 
adder to obtain the final sum of all nine 32-bit numbers. 

Multiple Operand Addition and Multiplication 369 

REGISTER A 

REGISTERB 

FINAL SUM 

Figure 4-32-bit 9-number adder 

Thus in 4 addition cycles, one may add nine numbers. 
Note that the register positions are lined up into the 
carry look-ahead adder so that S32 adds to Se29, S31 to 
Se2S, Sao to Se29, etc. Thus a 36 position CLA is required. 

The first three cycles include the time to ripple the 
carriers through sub-adder unit 2 to 6. But this is the 
case for a simple design. In a more sophisticated design 
using techniques of "carry look ahead", one could re­
duce each individual cycle time for the first three cycles 
to a minimum by generating carriers C11, C21, C31, and 
Ci, simultaneously. Such expressions of carry genera­
tion are given by: 

C11= COl[SO (previous cycle) J 

C21 = C01[SO (previous cycle) J[Sl (previous cycle) +C02J 
+[Sl (previous cycle) JC02 

Cal = C01[SO (previous cycle) J[SI (previous cycle) +C02J 
X [S2 (previous cycle) +C03J+[S2 (previous cy­

cle) JC03 

C41= [Seo (previous cycle) J[Col[So (previous cycle) J 
X [SI (previous cycle) +C02J[S2 (previous cycle) 
+C03J+[S2 (previous cycle)C03JJ 

The circuit implementation of these expressions' to 
obtain the sum term will lead to a minimum overall 
time for addition of nine numbers. It can be easily veri­
fied that if each column partition of nine numbers had 
two adjacent columns instead of three, then it would be 
impossible to obtain two partial sums 000S31S30 ... So 
and Seal, Se30, ... SeO 000 only by appending Si and Sci 
for f = 0, 1 ... 31 from individual sub~adder units in 
Figure 4 respectively. However, one could obtain at 
least three partial sums which can be formed by ap-



370 Fall Joint Computer Conference, 1972 

pending only. It may be noted that if we intended to 
add five numbers, a partition set of two adjacent 
columns would be quite suitable. 

. The reader may also note that the specific manner in 
which the partial sum digits are separated for register 
A and B is no consequence provided the individual digits 
preserve proper positional significance. 

ADDITION OF k OPERANDS 

Consider a design for an adder for multiple operands 
(AMO) capable of adding k, n-bit long numbers in 
minimum addition cycles by a scheme such as described 
by the example of nine numbers. First, we shall show 
that it is possible to add k numbers in m+ 1 cycles, 
where m is the smallest integer 2log2 (k -1) . 

Let each column partition of k numbers have m 
adjacent columns for any k such that (2m- 1+ 1) <k 
~2m+1. It is easy to show that sum of k m-bit long 
numbers is always ~ 2m bits for the given range of k. 
Thus, we can always represent these sum bits by 
{8e(m-1)8e(m-2) ••• 8 e (0) , 8 m - 18 m - 2 ••• 80}. These sum 
bits can always be expressed as two partial sums; 

m m 
bits bits 

and 8 e(m-1)8e(m-2) ••• 8 e(0) 00 ... 0 
r---~''--~ 

m 
bits 

m 
bits 

Therefore we can always group the total sum bits 
from adding n bit numbers with m bits per partition, 
using n/ m m bit adder units, as two partial sums con­
sisting of: 

·00 ... 0 8m_118m_21 ••• 8018m_128m_22 ... 802 ... 
~ 

m 
bits 

and 

8 e(m-l/8e(m-2)1 ••• 8 e(0)18e(m_1)28e(m_2)2 ... 8 e(0)2 .. . 

8 e(m_1)n/m8e(m_2)n/m • •• 8 e(0)n/m 00 ... 0 
'---y-----/ 

m 
bits 

by applying the operation of appending only. (In· the 
previous example of adding nine 32 bit numbers, this 

notation will yield two partial sums of: 

o 0 0 821 811 801 822 812 802 823 813 8 0
3 ... 

8210811080108211 8111 8 0
11 

8 e(2) 1 8 e(1) 18e(0) 1 8 e(2) 28e(l) 2 8 e(0) 2 8e(2) 3 8 e(l) 3 8e(0) 3 

X 8 e(2)48e(I)48e(0)4 ••• 8e2118cl118c011 000 

this corresponds to 0008328 31 . . . 8 0 and 8c328e31 • • • 

8 eo 000.) 
However, by choosingm-1 adjacent columns in­

stead of m, for the same range of k, it will be impossible 
to obtain only two partial sums. In case of m -1, it is 
easy to show that one cannot obtain less than three 
partial sums formed by simply appending the sums 
available from individual 2 bit, 9 number AMO units 
in Figure 4. Addition of these three partial sums im­
plies one additional stage of carry save addition (Le., 
another cycle of addition) before using the carry look 
ahead adder to obtain the final sum of k numbers. 
Thus, minimally m+ 1 cycles are required to add k 
numbers. 

The reader may note that according to the general 
partition concept explained with regards to k number 
addition, carry save adder design is a special case. For 
carry save addition, k = 3 and hence from the minimum 
addition cycle point of view, each column partition set 
can have one column only. While for k = 5, 9, 17 and 33, 
the column partitions must have minimally 2, 3, 4, and 
5 adjacent columns respectively. For example, the addi­
tion of 33 numbers with 5 bit column partitions will 
require only 6 addition cycles. 

APPLICATION OF ADDER FOR MULTIPLE 
OPERANDS (AMO) FOR MULTIPLICATION 

Figure 5 illustrates the long hand process of the pro­
cedure for the general case of multiplying an n-bit 

Multiplicand 

Multiplier 

Partial 
Product 
Array 

(PPA) 

a(n-l) •••••••••• a(2)a(l)a(O) 

X b(m-l) •••• b(llb(Ol 

(a(n-l) •• a(m-l). a(2)a(l)a(0)) 

(a(n-l) •••••••••••••. &(I)a(O)] 

[ [~1) .a(O)] 

[a(n-1la(n-2) a(n-ml. &(00 

Product 

P(m+n-l)P(m+n-2) •••••••• P(n-l). P(m-l) ••••••• P(O) 

Figure 5-Partial product array (PPA) 

1 

&b(O) 

&b(I) 

&b(m-U 



Ii'. 'I , 

" 

~" 

'I·i: 

'I 
,I, 
\ 

\i 

I 
a(8)a(7)a(6)a(5)a(4)a(3)a(2)a(l)a(0) 

x b(5)b(4)b(3)b (2)b (l)b(O) 

a(8)a(7)a(6)a(5)a(4)a(3)a(2)a(l)a(0) b(O) 

a(8)a(7)a(6)a(5)a(4)a(3)a(2)a(l)a(0) b(l) 

a(8)a(7)a(6)a(5)a(4)a(3)a(2)a(l)a(0) b(2) 

a(8)a(7)a(6)a(5)a(4)a(3)a(2)a(l)a(0) b(3) 

a(8)a(7)a(6)a(5)a(4)a(3)a(2)a(l)a(0) b(4) 

[t.:::.~)l.:a:l.(7:.l:)a:.l(~6)l.:a::Jo:(5:.r;)=a(t.::41.:)a:l:(3:.r;)=a(c21.:)a~(I::.c)=a(~04) ________ b(5) 

Figure 6a-A 9-bit X 6-bit example 

number by an.m-bit number. Once the partial product 
array (PPA) is established, the product is obtained by 
summing the rows of·this array. This is where the AMO 
can be used in several different ways. 

Once again, consider an AM 0 which is designed to 
add nine numbers. Thus, each AMO partitioned unit is 
capable of handling a maximum of nine rows of 3 bits. 
Since we are adding in parallel one column from each 
3-column partition set at a time, three cyles of add are 
sufficient for each nine rows of any PP A. The two partial 
sums from AMO's are then fed into a carry look-ahead 
adder to yield the final result. 

Naturally, from the point of view of speed of multi­
plication, it would be desirable to establish the PP A of 
nine rows in a parallel operation. This can be done by a 
circuit such as shown in Figure 6. A skewed array is 
established where each cell position consists of an AND 
gate and a shift register cell. The multiplicand is applied 
at the top of the array and multiplier to the side inputs 
of the array. Each bit of the multiplicand in ANDed 
with each bit of the multiplier and the result is stored in 
the corresponding register position. The skewing of the 
array accomplishes the appropriate shift of multiplicand 

A '''RTIAL PRODUCT ARRAY 

.. ., .. 'Ii .. .. .. '1 .. 

Figure 6b-Circuit realization of PP A 

Multiple Operand Addition and Multiplication 371 

a(8) a(7) a(6) a(5) a(4) a(3) a(2) all) a 

x bl5l bl4l bl31 bl21 bill b 

\ 0 0 0 a(8) a(7) a(6) a(5) a(4) a(3) a(2) all) a 

0 a(8) a(7) a(6) a(5) a(4) a(3) a(2) all) a(O) 0 

0 a(8) a(7) a(6) a(5) a(4) a(3) a(2) all) a(O) 0 

a(8) a(7) a(6) a(6) a(4) a(3) a(2) all) a(O) 0 

a(8) a(7) a(6) a(5) a(4) a(3) a(2) all) a(O) 0 

a(8) a(7) a(6) a(5) a(4) a(3) a(2) all) a(O) 0 

Column: 1 2 3 

Figure 7a-Cyclic nature of PPA 

simultaneously with the data entry. The PP A in Figure 
6 is partitioned into three -column sections. The left col­
umn of each 3-column section feeds the AMO. At the 
conclusion of the first cycle, the 3-bit shift registers 
shift left one position, allowing the data from second 
column of each 3-bit section to feed the adder. This is 
done one more time and PP A operation is complete. 

A minimized partial product array 

Observation of the array shown in Figure 6 demon­
strates the cyclic nature of the PP A. Figure 7 denotes 
how column 2 and 3 in each three column section may be 
obtained in the column 1 position. By shifting column 1 
up one position, and feeding into the bottom of column 
1 the value (previous to the shift) in the third position 
up of the column 1 immediately to the right, the column 
1 position will contain the column 2 values. The values 
of column 3 may then be obtained in the column 1 
position by another upward shift and transfer from the 
right. Note that with the use of this algorithm, the AND 

.,N,M,ZED PARTIAL PRODUCT ARRAY MULTIPLICAND 

Figure 7b-Circuit realization of PP A with minimum circuits 
1 



372 Fall Joint Computer Conference, 1972 

MULTIPLICAND 

835 81 

PARTIAL PRODUCT ARRAY [PPA) 

CARRY LOOK AHEAD ADDER 

Figure 8-Schematic of 36 X 36 bit multiplier 

of the multiplier with the multiplic'and takes place at 
the output of each register position. This technique re­
duces the matrix to ~ of its former size. 

Implementation of a 36 bit X 36 bit multiplier 

The PPA for a 36 bitX36 bit multiplication requires 
36 rows and 36 skewed columns or 1296 bits. Including 
the bit positions containing zeros results in an array of 
36 rows by 72 columns or 2592 bits. Without loss of 
generality, we will consider partitioning the array into 
one containing nine rows and 44 columns (9X36 
skewed). Thus, it will take four passes through the 
PPA to apply all 36 bits of the multiplier, nine bits at a 
time, to the multiplicand. We will require 15 3-column 
partition sets to utilize the three cycle AMO. Also, the 
minimized PP A will be used. Only 15, 9-bit shift 
registers with appropriate AND gates are required for 
this suggested PP A (135 bits of storage) . 

Four passes through this PP A will take 12 cycles. 
Figure 8 illustrates the structure of the complete 

multiplier. The operation is as follows: 

1. The multiplicand and the low order nine bits of 
the multiplier are entered into their respective 
input registers feeding the PP A. 

2. The multiplicand is entered into the PP A, all 
bits in parallel, for all nine rows. 

3. The Sand Se registers are filled in 3 cycles of the 
multiplier: 
A. On the first cycle, the bits in each column 

are applied to their respective nine bit adders. 
B. The second cycle starts with the registers all 

advancing up one position and being fed 
from the designated position on the right. It 
concludes with the application of the nine 
bits of each register to their respective nine 
bit adders. 

C. The third cycle is a repeat of the second. 
4. At this time, the Se and S registers have a partial 

result for this pass. The contents of the. Sand 
Se registers are added in the carry look ahead 
adder. The result is placed in register Ri. Ri is 
added to R2 in the carry look ahead adder with 

RESET GROUND 

30110'$ 
AiiPROx 1000 BITS 

SHIFT 
REGISTER 

'-----FROM LAST 
POSITION 
OUTPUT 

Figure 9-Module partition of a multiplier 



I 

the most significant bit of R2 line up with the 
ninth bit (to the right of the most significant 
bit) of R1, and R1left justified as it goes into the 
adder. The result is placed in R2, left justified. 

{ 

5. In parallel (overlapped) with the operations of 
6. step 4 is the second pass through the PP A. The 
7. multiplicand remains the same, but the second 

nine bits of the multiplier are applied to the 
indicated multiplier inputs. This is basically a 
repeat of steps 1, 2, and 3 in parallel with step 4. 

8. Step 4 is repeated for the second pass. 

~, 9. Steps 5, 6, and 7 repeated overlapped with step 
10. 8. The third nine bits of the multiplier are ap-
11. plied to their inputs. 
12. Step 4 is repeated for the third pass. 
13. Steps 9, 10, and 11 repeated overlapped with 
14. step 12. The fourth nine bits of the multiplier 
15. are applied to their inputs. 
16. Step 4 is repeated for the fourth pass. 
17. The contents of R2 now is the final product. 

. If another multiplication is to take place immediately, 
It can be overlapped with step 16. This results in a 12 
cycle multiplication (12 passes through the AMO). 
The final pass through the carry look ahead adder when . . ' , 
It IS not overlapped, adds the equivalent of another 2 
to 3 cycles onto the multiply time. Thus, two 36-bit 

,I numbers may be multiplied, using this technique and 
the suggested partitions, in the equivalent of 12 to 15 
AMO cycles. 

A possible module partition for an n bit X m bit multiplier 

Figure 9 illustrates a possible module partition sliced 
so that it may be applied to any multiplier siz:. Nine 
rows of multiplier may be accommodated at each passs 
and one module is used for each 3 columns of PP A. 
Thus, for the 36 bitX36 bit multiplier, 15 modules 
would be used and four passes required. For a 72 X 72 
bit multiplier, 27 modules would be used and eight 
passes required. The multiply time may, of course, be 
halved by approximately doubling the number of 

I modules to handle 18 bits for each pass, using two carry 
look ahead adders, and going through an extra carry 
look ahead add cycle with the two partial sums resulting. 
Thus, for approximately four times the hardware of the 

Multiple Operand Addition and Multiplication 373 

36X36 bit multiplier, a 72X72 bit multiplier could be 
just as fast. 

CONCLUSIONS 

If the PP A could be compacted by neglecting all rows 
containing zeros, then the number of rows in the modi­
fied PPA will be the same as the number of l's in the 
multiplier. This modified PP A could be further reduced 
in size by multiplication techniques3.4 used for shift­
over l's. Thus, in many ways, compromises between 
overall speed of multiplication, amount of hardware 
needed and various ways to organize multiplication can 
be reached. The circuit implementation of a 17 -number 
adder using a Read 'Only Memory type of circuit seems 
possible in the near future. This in turn could handle 17 
bits of multiplier at a time. 

With the AMO and with reasonable modifications in 
the present multiplication schemes;4 additional speeds 
over present methods of multiplication can be attained. 
However, for high speed gains, we feel that the general 
multiplication schemes suggested in this report should 
add another dimension to the organization of arithmetic 
units of future computer systems. An important feature 
of this suggested scheme is its natural ability to match 
with pipe line computer systems. 

ACKNOWLEDGMENT 

The authors wish to thank Messrs. M. S. Axelrod and 
G. A. Maley for their encouragement and discussions 
during the course of this work. 

REFERENCES 

1 I FLORES 
The logic oj computer arithmetic 
Prentice-Hall Inc 1963 

2 0 L MAcSORLEY 
High speed arithmetic in binary computers 
IBM Tech Report RE 00 740 Oct 1960 

3 G A MALEY E J SKIKO 
Modern digital computers 
Prentice-Hall Inc 1964 

4 A SVOBODA 
Adder with distributed control 
IEEE Trans on Computer pp 749-751 Vol C-19 August 1970 





Procedures for increasing fault 
coverage for digital networks 

by L. RONALD HOOVER* 

Bell Laboratories 
Greensboro, North Carolina 

and 

JAMES H. TRACEY 

University of Missouri-Rolla 
Rolla, Missouri 

INTRODUCTION 

Definitions and assumptions 

The following definition for a fault detection test 
(fdt) will be used throughout this paper: an input 

I sequence X (of length one or more) for a given network 
~ is a fault detection test for fault ji, located in ~, 
if the output response to X for ~ with no faults present 
and the output response to X for ~ with ji present, 
differ. 

Throughout this paper the abbreviation fdt will be 
used when referring to a fault detection test for a single 
fault; whereas, FDT will be used when referring to the 
collection of fdt's or sequence of fdt's which attempt to 
cover all faults in a network. 

The methods considered within this paper are based 
upon the validity of the single fault assumption (sfa). 

Scope of the problem 

The problem of fault detection for combinational 
networks is solved by several methods.1 •2 Many of the 
same methods, which experience great success with 
combinational networks, are also very successful when 
dealing with synchronous networks.3 •4 •5 This success can 
be accomplished readily when the synchronous network 
is considered inthe space domain6 (as compared to the 
time domain). In the space domain, the synchronous 

* Previously at the University of Missouri-Rolla, Missouri. 

375 

network obeys all the restrictions placed upon a com­
binational network. . 

With the asynchronous problem, however, success is 
more limited. Although some methods attempt to use 
space domain analysis on asynchronous networks3 •5 the 
results are not totally acceptable. These methods fail to 
produce maximum fault coverage on a general asyn­
chronous sequential network. The reason is that due to 
the inequality of total delays within closed paths of an 
asynchronous network, the space domain model fails. 
The time required to generate the total fault detection 
test sequence for an asynchronous network by one of 
these methods will increase rapidly with the size of the 
network, the number of feedback lines, and the levels 
over which the feedback is passed. 

When considering the sequential problem, the asyn­
chronous case is of most interest since it is more general. 
Faults within a synchronous network may yield a 
network which does not obey the restrictions placed 
upon the general synchronous model. 

Since it is usually assumed that the general asyn­
chronous problem defies closed solution, this research 
has been directed at developing supplementary pro­
cedures which can be used in conjunction with any FDT 
to increase the fault coverage yield. It is intended that 
these supplementary procedures, hereafter referred to 
as secondary techniques, would be utilized in the design 
stage of packaged digital components. 

In the light or' LSI technology, it is apparent tpat a 
small increase in actual gate count within a network 
does not significantly increase the package cost." The 
secondary techniques presented herein utilize this fact 
while trying to hold to a minimum the number of 



376 Fall Joint Computer Conference, 1972 

additional external package contacts required, a factor 
which greatly influences cost, to facilitate greater fault 
coverage. 

The secondary techniques will also cover faults within 
redundant network elements. Failure to handle re­
dundancies is one major shortcoming of existing 
methods. Friedman7 has shown that this shortcoming 
can lead to the concealing of otherwise detectable faults. 

Two methods will first be presented which lead to 
modification of the package to increase the fault 
coverage. A technique is then presented which facilitates 
coverage of faults which are otherwise undetectable 
under the application of ~ to mr. This technique results 
in a modification of the original ~ sequence. 

The problem of generation of the original FDT 
sequence ~ for mr is not treated by this paper. It is 
assumed that an FDT is available and may have been 
generated by modified d-algorithm, boolean difference, 
or some other technique. However, since mr may be 
asynchronous and observation is limited to primary 
outputs, in the general case ~ will not detect all of the 
single logical faults within mr. 

Preliminary notat~'on 

Consider M to represent the set of machines which 
can result from a given asynchronous network mr, being 
subjected to any of its possible internal single logical 
faults. That is, if F = (jl, r ... nn) is the set of all 
possible single logical faults of mr, then M = (mO, mI, 
m2 ••• mn) is the set which corresponds to the n+ 1 
configurations of the network mr in the presence of the 
elements of F. That is, for each Ji contained in F there 
exists a unique mi contained in M. The element mO 

will be used to represent the network mr in the fault 
free configuration. 

Allow M d (d for detected) to represent the set of 
machines such that for each micontained in Md, Zi 
(where Zk represents the output sequence of mk under 
the application of ~). A parallel definition exists for 
M u (u for undetected). Thus, the application of ~ to 
mr partitions M into two disjoint subsets, Md and Mu. 
Sjnce the mapping from the set (M -mO) to the set F 
is one-to-one and onto, there exists a similar partitioning 
on F. That is, Fd will represent detected faults and Fu 
undetected faults. The sets M u and Fu will be of con­
cern here. 

METHOD 1 

The analysis of method 1 utilizes. the simulator data 
which results from a simulation of the network in its 

fully faulted configuration, under the application of the 
input sequence ~. The theory involved with this method 
is presented in Appendix A. 

In the effort to increase fault coverage, method 1 con­
siders all internal signal lines as candidates for direct 
monitoring. Any signal line which, under direct moni­
toring can detect one or more of the faults contained in 
the set Fu is a candidate for direct monitoring. After 
this analysis has been performed for all internal signal 
lines there exists a set of signal lines, each element of 
which was effective in increasing the fault coverage. 

This set of signal lines is then subjected to a classic 
cover analysis. The result of this cover analysis will be 
a set of signal lines S8 which has a near minimum 
number of elements and yields maximum increase in 
fault coverage. When using method 1 the designer must 
then make each signal line contained in S8 a primary 
output for testing. On some networks it was found that 
this method was more desirable than method 2, however 
even though the set Sa can sometimes be optimized 
further this method is generally inferior to method 2. 

Two major disadvantages to method 1 are: 

(1) simulation of the fully faulted network is re­
quired, and 

(2) there is no upper bound placed upon the number 
of additional primary outputs required by this 
method. 

METHOD 2 

This method performs analysis on data provided by a 
fault free simulation of the network under the applica­
tion of the ~ sequence. The set of undetected faults Fu 
is partitioned into Fuo and FUl to correspond to un­
detected saO and sal type faults. The data for those 
signal lines which can be associated with faults of Fuo 
are subjected to a time domain analysis to determine 
the set of all signal lines on which individual -faults of 
Fuo can be detected simultaneously. This is done for all 
time periods associated with a change on the input 
vector. The resulting sets associated with these time 
intervals can be logically connected to a single output 
pin, <1>(0). 

A parallel analysis is performed for the signal lines 
associated with the faults of the set FU1. The result here 
is an additional output pin <1>(1). 

The result from this method is two Ilew output pins, 
one associated with saO faults, the other with sal faults, 
which yield maximum fault coverage under the input 
sequence ~. The theoretical development of the al~ 

gorithm which generates the <I> functions is presented 
in Appendix B. 

I 
I 



Procedures for Increasing Fault Coverage for Digital Networks 377 

In addition to the two primary outputs required by 
this method, two additional inputs, 10 and II, are needed 
to facilitate the detection of faults within the ~(O) 
and ~ (1) networks. 

The major advantages to method 2 are: (1) only 
fault free simulation is required, (2) regardless of the 
size of the network, a maximum of four additional 
external contacts is required. 

Several techniques have been discussed for decreasing 
the maximum below 4 additional contacts discussed 
above. lO 

1
',1,: SE::::::li:::I:::~::~:ditionru extenwl con-

tacts from methods 1 or 2, when considered as new 
primary outputs, partition M U into two disjoint subsets, 
MUd (detected) and M Uu ( undetected) . A similar 
partition exists on Fu; that is, for each m i contained in 
MUd, thenfi contained in FUd and for each mi contained 
in M Uu, then Ii contained in Fuu • If the external con-

I tacts, which have been added to facilitate this partition 
are considered to be the r components of an output 
vector P, then for the application of X on ~ the results 
are: 

(1) for each mi contained in MUd, pi~pO (where pk 

is the output sequence of P vectors from mk 

under application of X) . 
(2) for each mi contained in M Uu, pi = po. 

Application of the FDT sequence X to ~ has been 
I successful in detecting all single faults except those 

which result in the set M uu. Since these faults could 
not be detected by direct monitoring of the signal line, 
it is apparent that under the application of X to ~, the 
signal line associated with fault ji, for each ji contained 
in Fuu , did not assume the, proper value to allow for 
detection of ji. As an example, to facilitate detection of 

Z(k-L+l) X (k-l) X(k) 

X (k-L+l) 
Z(k) 

cO (k-L+l) cO (k-l) CO(k) 

Y(k-L+l) y(k-L+l)Y(k-l) y(k-l) (k 

Y(k) 

Figure l-General space domain model 

singular cover 

bed e 

III 1 

o x x 0 

x 0 x 0 

d 
c b==D~ ___ - e 

x x 0 0 

Figure 2-8ingular cover for an AND gate 

the fault, line a (sal), the FDT sequence must force 
line a in mO to assume the value 0 at least once. The 
problem is to develop a heuristic which will allow 
modification of X so as to enable detection of the faults 
ji contained in Fuu • The heuristic technique presented 
here borrows on the theory which has developed around 
the use of the classic d-algorithm.1 The similarity will 
be seen between this method and the consistency test 
or backward drive segment of the d-algorithm. 

Following Breue:r6 it is suggested that the time domain 
analysis of the system ~ be mapped into its corre­
sponding special equivalent. This mapping can be 
accomplished if, for each new input vector, a new copy 
of ~ is allowed. Since it is the goal to force a given value 
on a particular line in mO, the multiple copies of mO will 
be labeled CO(k), CO(k-1),----CO(k-L+l). The 
length L of the new sequence X rri i generated in this 
manner can be dynamically determined within reason­
able restraints. The space domain analysis can be under­
stood by observing Figure 1. 

The copies of the machine are interconnected in such 
a way that in addition to the original input vector, 
COCk-d) has as inputs on its Y(k-d) lines the state 
variable vectory (k-d-l) from copy Co (k - d -1) . 

Assume that it is necessary to generate an input 
sequence X m i of length L to aid in detecting ji con­
tained in Fuu , a sal fault on line a. First, assign line a in 
COCk) the value 0 and attempt to drive this signal from 
COCk) back through all copies to CO(k-L+1}. 

The method for accomplishing the backward drive 
will now be discussed., For all gates along the signal 
paths which control line a of Co (k) , the singular coverss 

must be formed. An example of the singular cover for 
a 3 input AND gate is given in Figure 2. 

The singular cover for Co (k) is formed between inputs 
and signal line a. The required value on line a is then 
driven backward to the inputs of COCk) by performing 
intersections on the singular covers of the gates along 
the path. All parallel paths must be intersected simul­
taneously. However, intersections need ,not be made 
with singular cover vectors for gates whose outputs are 



378 Fall Joint Computer Conference, 1972 

unrestricted. The rules for intersection are: 

lAO=0=OAl 

xAO=O=OAx 

xAl=I=IAx 

If at any time during the backward drive a 0 results, 
then an inconsistency exists and a retrace is required 
beginning with a new vector from the appropriate 
singular cover. 

If ~ is asynchronous, care must be taken when 
picking vectors from the singular cover for intersection. 
It must be assured that D[X(k-r) -X(k-r+l) ]~1 
(where D is the Hamming inter-vector distance). As an 
example, if X(k-2) = [Oxxl] and X(k-l) = [Olxl], 
D = 1. This, however, may force the reevaluation of 
D[X(k-l) -X(k)]. 

When the backward drive to the inputs of COCk) is 
completed, the values required on the input vectors 
X(k) and Y(k), which is being input from the CO(k-l) 
copy, is Y(k) = [xxx . ... x] (unrestricted), then the 
result is a sequence ffmi of length L = 1. However, if 
Y(k) ¢[xxxx ... x], the backdrive must continue 
through CO(k+l). This procedure continues until at 
some level (k-L+l), Y(k-L+l) = [xxx ... xl This 
strategy is required so that the sequence which is 
generated is not state dependent. Therefore, the se­
quence ~m i is forced to produce the desired result on 
line a regardless of the state of ~ when ~m i is applied. 
If, due to network configuration, information concerning 
machine state is known, this requirement can be appro­
priately relaxed. If at the (k-r) level the condition 
Y (k - r) = [xx ..... x] is not satisfied, the procedure 
must continue to the (k-r-l) level. However, this 
process must not be allowed to continue indefinitely. 
One criterion for stopping the process short of success 
would be to determine some cost effective constant R 
and require that L~R+l. 

If this technique yields a sequence ~m i and if ~ 
is synchronous or combinational, ~m i is certain to assign 
the proper value to line a; that isif~mi=X(k-L+l), 
X(k-L+2), . .. X(k-l), X(k) is applied to mO be­
ginning at time t=tQ, line a will assume the desired 
value at t=to+L (with L assigned time units). If ~ is 
asynchronous, the space domain model fails; thus, the 
technique is heuristic, and ~mi must be simulated to 
check on its validity. In either case, if ~mi is valid, the 
new FDT, which covers the set of faults, (fi+F-Fuu) , 
is ~~mi. That is, fCm i concatenated to the end of ~. 
If there are other faults, p contained in Fuu , which are 
not covered by fC~m i then this procedure would be 
repeated for p. There is no guarantee that the ~m i 
found in this manner is optimal. The length of ~m i 

is dependent upon the choice· of. vectors. from the 
singular covers. 

After all sequence modifications of the form ~mj have 
been produced, the total modifications are then simu­
lated with ~, to determine their success. If the ~mPs 
are successful these results must be combined with 
either method 1 or method 2. 

CONCLUSION 

Summary 

Two techniques have been presented which yield 
modification to the general digital network to facilitate 
maximum fault coverage under a given input sequence. 
Method 2 accomplishes the network modifications with 
a minimum impact upon the surrounding environment 
with which the network must interface. 

The technique for providing input sequence modifica­
tions will have little value if the original input sequence 
was designed by an accepted fault detection. test 
generation algorithm. However, if the original. ~ se­
quence was developed by a less effective technique and 
if ~ lends itself to space domain analysis, this technique 
is very useful. It seems evident that if the designer 
purposely exercises the trade offs made available by' 
these techniques, an acceptable level of fault coverage 
can be realized on any general digital network. Although 
these techniques are useful on all types of networks, it 
seems apparent that they are of extreme importance in 
the asynchronous sequential area since it is in this area 
that previous techniques fail. 

Results 

The TEGAS9 digital logic simulator was utilized in 
collecting data to evaluate the secondary techniques. 
This system is implemented on an IBM 360/50 system 
in Fortran IV and can simulate 32 different network 
fault configurations with each pass through the network. 

The simulator presents the network data in a form 
which is readily usable by the secondary techniques. I 

The signal line values can be readily interrogated at I 

any time to determine fault coverage. Although some I 

of the actual data analysis for the secondary techniques I 

was done manually, this process is being program 
implemented and interfaced with the TEGAS simulator. 

The computer run time required by the simulator is 
dependent, not only upon the element count for the I 

network, but also upon network structure. Typically, 
asynchronous networks with 15-30 elements will require 
1-5 minutes of computer time for simulation with an 



Procedures for Increasing Fault Coverage for Digital Networks 379 

~, 
.~. 
~,. 
I. 

input sequence of length 10. It is expected that when 
the secondary techniques have been program imple­
mented and interfacedr this time will increase by 
something less than 35 percent. 

I 

;,' 

Ii 

APPENDIX A 

This appendix will present the theoretical foundation 
underlying method 1. 

Consider the set of all signal lines contained in ;m: 
to be S = (S1, S2, ..... Sm). S contains all primary 
inputs, primary outputs, feedback lines, and all internal 
connection lines. For each siE S, two logical faults can 

il, be associated; that is, si(SaO) and Si(Sal). The total 
number of faults can be collapsed across each network 
element; but since this in no way influences the theory 
of solution, it will be ignored until it can be utilized to 
expedite data analysis. 

For each Si E S there exists Ji E F and Ii E F and m i EM 
and mjEM. Observation of the output sequence 
Z = ZlZ2Z3 ••••••• Zw, for the application of X = 
X 1X 2X 3 ••••••• Xw to ;m: performs a partitioning of 
M and F. This partitioning can be applied to the set S. 
Consider the set Su (undetected) to represent the set 
of signal lines such that VsiE Su there exists at least 

II one Ii E Fu corresponding to a logical fault on Si. Sd 
; will be the subset such that VSjE Sd there exists exactly 

two faults, fk and il, E Fd which are associated with 
I· faults on signal line Sj. 

The value on signal line Si after the application of 
X k , in the X sequence, to machine m j

, will be represented 
by v(i, j, k). For the application of each input vector 
X k , . in the X sequence, first a comparison of v (i, 0, k) 
with v(i, j, k) is made for all j to determine which 
elements of M can be detected by Si under application 

, of X k • This must be done VsiE S. This entire process 
must then be performed for k= 1 to w. The result from 
this operation will be a set of fault coverage lists of the 
form Si, X k , mP, ml, ... mT

, where this list represents 
the fact that by observing line Si, while X k , in 

1\ the X sequence, is applied to ;m:, faulty machines 
III m p

, ml, ..... mT can be detected. It is upon these fault 

I'i coverage lists that the cover analysis must be performed 
,I to determine which signal lines must be monitored. 
II The rules for performing the cover analysis will now 
ill be considered. All signal lines which are primary outputs 
1.1 are, by definition, going to be monitored. Consider the 

I'".,'! set of all primary output lines to be Sz. For each siE Sz, 
Si is a primary output of ;m:. Thus, the removal of all 
faults which are associated with the fault coverage lists 
of the elements of S z before the analysis starts is 
necessary. VsiE Sz, there is associated a set of fault 

coverage lists of the form Si, X k , mp , m l ... mr. By 
combining all machines which are listed in the fault 
coverage lists for signal lines Si the set M Zi is formed, 
where Vm j EM Zi, mi can be detected by monitoring Si. 
Similar sets M z~ are formed Vk such that Sk E S z. It can 
be seen that the set Md= U(Mzi) for all i such that 
siE Sz (where U is the set union operation). In a similar 
fashion, sets MSi for all i, such that, siE (S-Sz) are 
formed. From each such set M Si, the elements which 
are common to M Si and M d are then removed. That is, 
MSi*=Msi- (MsiAMd) is formed (where A is a set 
intersection operation). There now exists a set of the 
sets of form MSi*, where V miEMs/, mjEMu and m j 

can be detected by monitoring Si. To decide which signal 
lines of the set (S- Sz) must be monitored, first a 
search for critical signal lines is performed. That is, 
Vm i EMu, for which m i is contained in one and only 
one Ms/, monitoring of Sj is required. All machines 
which are covered by any such line Sj must now be 
removed from the M Sk * for all remaining lines in 
(S- Sz). The cover analysis then proceeds using the 
following two rules: 

(1) The signal line with the highest value is the next 
line entered into the set S8' The value for any 
line is equal to the number of previously un­
detected faults which are covered by monitoring 
this line. 

(2) If several lines have equal value, the choice will 
be arbitrary with the only priority being as­
signed to state variable lines. 

The results of this analysis will be two sets of signal 
lines Sz and S8, where VsiE Sz, Si is a primary output 
and VskE S8, Sk is not a primary output. 

The members of S8 are the signal lines which will 
require additional primary outputs from the package 
to facilitate monitoring. 

If ;m: represents a general network, then VSk E S8, it 
is necessary to add an additional primary output. 

APPENDIX B 

This appendix presents the theoretical foundation 
underlying Method 2. 

The set M is partitioned into M d and M u by the 
application of X to ;m:. The elements of each M u and Fu 
are then further partitioned into two disjoint subsets­
Fuo, M Uo and FU1 and M ul-where Vm i EM Uo, the 
associated JiE Fuo is a saO type logical fault, and 
Vm j EM Ul, the associated Ii E FUI is a sal type logical 
fault. For each fault Ji E Fuo, there is an associated 



380 Fall Joint Computer Conference, 1972 

signal line Sk. So will be the set of signal lines associated 
with the faults of Fuo and similarly S1 and FU1. Since, 
in general, we may have both logical faults Ji and ji 
associated with a given line as elements of Fu, generally, 
S1ASo ~ 0. The signal lines Si, such that Si E (S1 U So) , 
are the lines which must be monitored. If under the 
input vector X k from ~, the signal line Si (where 
Si E So) = 1 in mO, then Si can be monitored to detect Ji 
(where JiE Fuo is one of the faults associated with Si) 
during Sk. Since there may be many such s/s for a 
given X k, there will be associated with each input vector 
two sets of signal lines, SXk(O) and SXk(1) where 
VsiESXk(O) the faultJi (where JiEFuo is a fault asso­
ciated with Si) can be detected by monitoring 8i during 
X k. Likewise, V8jE SXk(1), the fault ji (where jjEFu1 
is one of the faults associated with line 8j) can be 
detected by monitoring line 8j during X k • After the 
entire sequence has been applied to ~ and all of the 
sets of the type SXk(a) have been formed, a set S(O) = 
(SXk(O), SXk+r(O) ..... ) is formed. S(O) is formed 
by including sufficient elements SXk(O) so that V8iE So, 
for which there exists at least one SXk(O) E S(O). Thus 
JiE Fuo can be detected by monitoring 8i during X k. 
Similarly S(1) = (SX8 (1), SX8+r (1} .... ). 

The following notation is now defined. If we 
have a set R = (r1, r2, ra, ...... rk), then IT (R) = 
n(rI, r2, ... rk) = (rI"r2"ra" .... rk), where (.) repre-
sents the logical AND operation. Similarly, };(R) = 

(rI, r2 - - - - rk) = (rl +r2+ra+ - - - rk) where (+) is the 
logical OR operation. 

Utilizing the above notation, the functions 

<1>(0) = L: [n(SXi(O) , 10J 
S(O) 

<1>(1) = II [~(SXi(1), IIJ are formed. 
S(I) 

The 1 signals are conditioning signals which will be 
defined later. The <I>'s express the logic function which 
must be realized on the additional network outputs so 
as to cover the faults of Fu which are detectable by 
this method. 

In realizing <1>(0), it can be seen that each element of 
S (0) will define the input list to an AND gate. That 
is, VSXk(O) E S(O) there will be defined an AND gate 
AXk(O). Each such AXk(O) will have as inputs all 
elements of the set SXk(O) plus an additional condi­
tioning signal 10. The outputs of all such AXk(O) gates 
will completely define the input set for an OR gate 
<1>(0). The output of <1>(0) will represent one of the 
additional required primary outputs. 

Note: This discussion has been based, for simplicity, 
upon two level AND~OR logic. Certainly, the type 
logic elements actually utilized and the method of 

x1----t 
X 2 ----; 

+ 
,------1 

Figure 3-Example network 

c 

interconnection is unrestricted so long as the function 
realized"is unaltered. 

A similar two level OR-AND structure can be 
described for the <I> (1) function. Due to the parallelism 
between these two functions, the verbal description of 
<1>(1) is omitted. 

The 10 and 11 signal lines are used to facilitate fault 
detection of the added hardware. 10= 1 during the 
application of every X k to ~, for which SXk(O) E S(O). 
11 = 0 during the application of every X k to ffir, for which 
SXk (1) ES(1). It must be mentioned that if the 
network is such that every Xi of ~ has associated with 
it an SXk(a) E Sea) (for a=O or a= 1), then an addi­
tional input vector must be added to ~ to facilitate the 
detection of the gates in the <I> (a) network. That is, if 
line I a must be used to condition the gates of network 
<I> (a) during the entire ~ sequence, then an additional 
input vector must be added to ~ so that 1 a can be used 
to detect faults in the <I>(a) network. 

From the above discussion it can be seen that if the 
network is fault free, then <1>(0) = 1 VXi for which there 
exists an SXi(O) E S(O). However, if we have the fault 
fiE Fuo on the signal line 8iE So, then <1>(0) =0 for all 
X k , such that 8iE SXk(O). 

TABLE I-Faulty Machine List 

mi Specific Fault 

ml xl{sal) 
m 2 Xl (saO) 
m3 x2(sal) 
m4 X2(saO) 
m5 x3(sal) 
m6 x3(saO) 
m7 a (saO) 
m8 a(sal} 
m9 b(saO} 
mlO b(sal} 
mll c(saO) 
m12 c(sal) 

I 

I 
I 



Procedures for Increasing Fault Coverage for Digital Networks 381 

A sa fault on the output of gate AXk (0) of the <1>(0) 
network will result in <1>(0) =0 during X k • Also, <I>(O)saO 
will be detected by <1>(0) =0 during an X k for which 
SXk(O) E S(O). If there exists an Xr such that 
SXr(O) ~ S(O), then setting 10=0 during Xr yields 
<1>(0) =0 for mO; but <1>(0) will equal 1 if any gate in the 
<1>(0) network is sal. 

A similar argument can be given for the output values 
and the faults within the <I> (1) network. 

APPENDIX C 

This section contains three example problems: Example 
1 illustrates method 1, example 2-method 2, and 

example 3 illustrates the sequence modification tech­
nique. 

Example 1 

Method 2 will be illustrated using the network of 
Figure 3. 

Table I associates with each possible single logic fault 
a machine number mi. 

For the input sequence OC=X1X~3X4= (111) (101) 
(001) (011), Table II shows the values of all signal 
lines of the network shown in Figure 1. The table 
includes data for the fault free and all single fault 
machines. Note: 

TABLE II-Simulator Output Table 

i = machine number (mi) Signal 
Unes o 1 2 3 4 5 6 7 8 9 10 11 12 ll'ault Coverage Lists 

Xl 

(111) 

X 2 

(101) 

X3 
(001) 

c 

assume line c = 1 at start. 

1 
1 
1 
1 
1 
1 
1 
o 
1 
1 
1 
1 
o 
o 
1 
o 
1 
1 
o 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
o 
1 
1 
1 
1 
1 
o 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

o 
1 
1 
1 
1 
1 
o 
o 
1 
o 
1 
1 
o 
o 
1 
o 
1 
1 
o 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
o 
1 
1 
1 
1 
1 
o 
1 
1 
1 
1 
1 

From Table II, it can be seen that since 

Md=[m6, m9, mIl] then 

MX1*=[ml, m2] 

MX2*=[m3, m4] 

MX3*=fJ 

Mb*=fJ 

1 
o 
1 
1 
1 
1 
1 
o 
1 
1 
1 
1 
o 
o 
1 
o 
1 
1 
o 
o 
1 
o 
1 
1 

1 
1 
1 
1 
1 
1 
1 
o 
1 
1 
1 
1 
o 
o 
1 
o 
1 
1 
o 
1 
1 
1 
1 
1 

1 1 
1 1 
o 1 
1 0 
o 1 
1 1 
1 1 
o 0 
o 1 
1 0 
o 1 
1 1 
o 0 
o 0 
o 1 
o 0 
o 1 
o 1 
o 0 
1 1 
o 1 
1 0 
o 1 
1 1 

1 1 
1 1 
1 1 
1 1 
1 0 
1 1 
1 1 
o 0 
1 1 
1 1 
1 0 
1 1 
o 0 
o 0 
1 1 
1 0 
1 0 
1 0 
o 0 
1 1 
1 1 
1 1 
1 0 
1 1 

111 
111 
111 
111 
101 
101 
1 1 1 
000 
1 1 1 
1 1 1 
101 
101 
000 
000 
1 1 1 
000 
101 
101 
000 
111 
1 1 1 
1 1 1 
101 
101 

Xl, Xl, m2 

X2, Xl, m' 
Xa, Xl, m G 

a, XI,mT 

b, Xl, m G, m 9, m ll 

c, Xl, mll 
Xl, X 2, m2 

X2, X2, m3 

Xa, X2, m G 

a, X2, m2, mT 

b, X 2, mG, m 9, mll 

c, X2, mll 
Xl, Xa, ml 
X2, X3, mS 

Xa, Xa, m G 

a, Xa, ml, m3, mS 

b, Xa, mG, m9, mll 
c, X a, mG, m 9, mll 

Xl, X., m l 

X2, x., m. 
Xa, X 4, m G 

a, X 4, m4, mT 

b, X 4, m G, m 9, m ll 

c, Jt4, mll 

The cover analysis is shown in Table III. 
From Table I it can be seen that by monitoring signal 

line a, all faults coverable by this method are detected. 
By monitoring line a along with the primary output c, 

TABLE III-Cover Analysis 
Elements of Mu 

Signal Xl X X 

Lines X2 x X 

a X X X X X X 



382 Fall Joint Computer Conference, 1972 

all machines, except m 5, m lO, and m12, can be detected. 
Faults p, po, and p2 are undetectable under this input 

I 
sequence. 

Example 2 

Referring to the network of Figure 3, the following 
sets are enumerated to further clarify the theoretical 
discussion included in Appendix B concerning method 2. 

Md= [m6, m9, mll] 

Fuo= [Xl (saO) , X2(saO) , a(saO)] 

FUl=[Xl(sa1), x2(sa1) , x3(sa1), a(sa1), b(sa1), 

c(sa1)] 

Table IV contains the fault free simulation data. From 

AX1 (0) 

Figure 4-Networks leading to additional outputs 

TABLE IV-Fault Coverage Table 

Signal So Sl 
Lines mO Xl X2 a Xl X2 Xa a b c 

Xl 1 X 
X2 X 

Xl = (111) Xa 1 SXl (0) = [xl,x2,a] 
a 1 X SXl (1) = 0 
b 1 
c 1 
Xl 1 X 
X2 0 X 

X2 = (101) Xa 1 XS2(0) = [xl,a] 
a 1 X XS2(1) = [X2] 
b 1 
c 1 
Xl 0 X 
X2 0 X 

Xa = (001) Xa 1 SXa(O) = 0 
a 0 X SXa(l) = (Xl, X2, a) 
b 1 
c 1 
Xl 0 X 
X2 1 X 

X4 = (011) Xa 1 SX4(0) = (X2) 
a 1 SX4(1) = (Xl) 
b 1 
c 1 

cp (0) 

cp (1) 



I 

I 
.~,i , 

Procedures for Increasing Fault Coverage for Digital Networks 

TABLE V-Singular Cover for Gate b(k) 

1 
o 
x 

c(k-1) 

1 
x 
o 

this table it can be seen that 

S(O) = (SXl(O)) or 

b(k) 

1 
o 
o 

label 

A 
B 
C 

Figure 5-Space domain model of Figure 3 

383 

ij S(O) = (SX2(O)), (SX4(O)) 

SCI) = (SX3(1)) 

Since the feedback line c(k-l) ~x when b(k) =1, 
the process must proceed to the (k-l) level. Therefore, 
CO(k-l) is added to Figure 5 and the singular covers 
listed in Table VI are formed. 

Ii 

The networks which lead to outputs <J?(O) and <J?(I) 
are shown in Figure 4. S(O) = [SX2 (O) , SX4(O)] IS 

used to give an example of a two level result. 

Example 3 

To illustrate the sequence modification technique, 
an example follows based upon the network of Figure 3. 

Assume that signal b(saO) is a fault which has not 
been detected. It is necessary to force a logical 1 on b. 
This procedure begins by turning to the space domain 
analysis and forming the singular cover of the network 
from line b to the inputs of copy Co (k ). The space 
domain model is shown in Figure 5. 

Table V shows the singular cover vectors for b(k) 
in COCk). 

The singular cover vector A from b (k ) , labeled 
Ab(kh can be intersected with either A or B of the 
singular cover of c(k-l). Since b is the gate which is 
influenced directly by the feedback line, the intersection 
between Ab(k) and Bc(k-l) is performed. This intersection 
will place less restrictions on the feedback line which is 
input to gate b(k). The results of the intersections are 
shown in Table VII. A * need not be intersected with 
any of the singular covers of b (k -1) since b (k -1) = 
[x]. A * is now intersected with either Aa(k-l) or Ba(k-l). 

The result is shown for Aa(k-l). This final vector has 
Y(k-l) =c(k-2) = [x]. Therefore, the procedure 
stops with L=2. The Xmi sequence is X 1X 2 = 

(xIx) (xxI). It can be verified by hand simulation that 
this sequence does indeed force line b to have a value 1. 

TABLE VI-Singular Covers for the Gates of Figure 5 

CO(k - 1) CO(k) 

xl(k - 1) x2(k - 1) c(k - 2) x3(k - 1) a(k - 1) b(k - 1) c(k - 1) label gate name 

x 1 1 A 
1 x 1 B c(k - 1) 
0 0 0 C 

1 1 1 A 
0 x 0 B b(k-1) 
x 0 0 C 

x 1 1 A 
1 x 1 B a(k-1) 
0 0 0 C 

TABLE VII-Intersection Table 

xl(k-1) x2(k-1) c(k-1) x3(k-1) a(k-1) b(k-1) c(k-1) X3(k) b(k) label description 

1 x 1 1 1 A* Ab(k) ABc(k-l) 
x 1 1 x 1 1 1 B* A*AAa(k-O 



384 Fall Joint Computer Conference, 1972 

REFERENCES 

1 JPROTH 
Diagnosis of automata failures: A calculus and a method 
IBM J Res Develop Vol 10 pp 278-291 July 1966 

2 M Y HSIAO D K CHIA 
Fundamentals of boolean difference for test pattern generation 
Proc 4th Annual Princeton Conf Inform Sci March 1970 

3 G R PUTZOLA J P ROTH 
A heuristic algorithm for the testing of asynchronous circuits 
IEEE Trans on Elec Comp Vol C-20 pp 639-647 June 1971 

4 M Y HSIAO D K CHIA 
Boolean difference for fault detection in asynchronous 
sequential machines 
IEEE Trans on Elec Comp Vol C-20 pp 1356-1361 Nov 1971 

5 WG BOURICIUS et al 
Algorithm for detection of faults in logic circuits 
IEEE Trans on Elec Comp Vol C-20 pp 1258-1264 Nov 1971 

6 M A BREUER 

A random and an algorithmic technique for fault detection test 
generation for sequential circuits 
IEEE Trans on Elec Comp Vol C-20 pp 1364-1370 Nov 1971 

7 A D FRIEDMAN 
Fault detection in redundant circuits 
IEEE Trans on Elec Comp Vol EC-16 pp 99-100 1967 

8 H V CHANG E MANNING G METZE 
Fault diagnosis of digital systems 
New York John Wiley and Sons 1970 pp 29-47 

9 D M ROUSE 
A simulation and diagnosis system incorporating various time 
delay models and functional elements 
PhD Dissertation University of Missouri-Rolla Rolla 
Missouri 1970 

10 L R HOOVER 
Secondary techniques for increasing fault coverage of fault 
detection test sequences for asynchronous sequential networks 
PhD Dissertation pp 45-64 University of Missouri-Rolla 
Rolla Missouri 1972 



System identification and simulation­
A pattern recognition approach* 

by W. J. KARPLUS 

University of California 
Los Angeles, California 

INTRODUCTION 

Recent years have seen continuing and increasingly-in­
tensive attempts to extend the art of simulation to areas 
which heretofore were considered too complex and too 
difficult to lend themselves to· conventional modelling 
and simulation techniques. These include such environ­
ment-oriented fields as air-pollution, water conservation, 
thermal pollution, etc., as well as systems belonging to 
the biological, the medical, the economic, and sociologi­
cal areas. For example, in 1970 the Office of Water 
Resources Research catalogued over 600 on-going 
research projects concerned with the modelling of water 
resource systems. The extension of simulation techniques 
developed in application areas such as control system 

I design, electro-mechanical systems, etc., to these new 
areas has often been disappointing, if not completely 
unsuccessful. This is due to the difficulty in constructing 
a sufficiently-valid mathematical model-a model which 
can be used for prediction with a reasonable amount of 
confidence. It is well-known, of course, that even under 
the best conditions, inverse problems such as system 

I identification problems, do not have unique solutions. 
That is, inevitably an infinite number of possible models 
will satisfy a specified set of excitation/response rela­
tionships. Where the identification process is further 
handicapped by uncertainties as to system structure and 

I inadequate experimental data, the pertinent question is 
I often not: "How good is the model?" but rather: "Is 

there any point to modelling at all?" 
It is the purpose of the present paper to suggest an 

approach to the derivation and utilization of mathemati­
cal models. This approach may be considered to he a 
generalization and formalization of what has broadly 
been called "gaining insight into the operation of a 
system," but is particularly intended to assist in the 

* The work described in this paper is supported by the National 
Science Foundation under Grant GK31463X. 

385 

formulation of relatively-valid mathematical models for 
subsequent simulation and in the specification of what 
additional data (in the form of observations and 
measurements of the system to be modelled) must be 
provided to permit meaningful modelling. To put the 
discussion into proper perspective, the conventional 
approach to modelling and simulation is first sum­
marized, followed by·a discussion of the weaknesses of 
this method when applied to highly-complex systems. 
The pattern recognition method is then outlined. 

CLASSES OF MODELLING PROBLEMS 

A variety of techniques is available for the analysis of 
systems. Where analytical solution and direct experi­
mentation upon a system are impractical, recourse is 
often made to simulation. Simulation is a numerical 
technique which takes the following steps: 

1. A system existing in the real world (the prototype 
system) is represented by a model. This model 
usually characterizes some interesting facets of 
the prototype system behavior by a set of 
equations. 

2. The model is implemented or programmed on a 
computer in such a manner that system inputs, 
system parameters and perhaps system structure 
can be conveniently varied and the effects of 
these variations studied. 

3. The computer is employed to perform a variety 
of experiments so as to provide the information 
that constitutes the basic objectives of the 
simulation. These experiments usually involve 
the prediction of the behavior of the prototype 
system under various conditions. 

The necessary first step in any simulation is, therefore, 
the formulation and validation of the model. The 



386 Fall Joint Computer Conference, 1972 

discussion of system modelling and the development of a 
comprehensive modelling philosophy is handIcapped by 
the fact that the types of models used, the raw informa­
tion available to assist in the development of the model, 
and the objectives of the eventual simulation depend 
strongly upon the specific application area and upon 
subfields within specific areas. The following distinctions 
are particularly important. 

In some applications, the modelling is of the so-called 
"black-box" variety, in which there is virtually no 
a priori knowledge as to the nature and structure of the 
equations characterizing dynamic system behavior. In 
other applications, the problem is one of modelling a 
"gray-box" of various shades of gray; here one starts 
from a knowledge of the general nature of the mathe­
matical mQdel and is concerned primarily with the 
determination of certain system parameters, initial 
conditions, and structural details. In some identification 
problems, the excitation/response data used to identify 
the gray-box are accurately known or specified and are, 
therefore, dependable starting points for the modelling 
process; in other situations, the" data to be used to 
identify systems are obtained by measurements on the 
system to be modelled and may be seriously corrupted 
by noise, sampling errors, and a variety of shortcomings 
in the information gathering effort. In that case, the 
term "estimation" is often used instead of the term 
"identification." Finally, a distinction must be made 
between systems in which the excitation/response 
observations are made "actively" and those which 
utilize "passively" obtained data. In active system 
identifications, experimental data are collected by sub­
jecting the system to be identified to a series of syste­
matic tests involving the application of specified 
excitations and observing in each case the resulting 
response. In passive identifications, on the other hand, 
the analyst is limited to using data which are generated 
in response to excitations over which the analyst 
exercises· no control and is, therefore, impeded from 
constructing key experiments to aid in the identification 
effort. Clearly the above considerations, that is how 
black the box, the extent to which excitation/response 
data are free from noise, and the extent to which active 
data gathering is possible, greatly affect the modelling 
process and the reliability and validity of the resulting 
model. 

The present discussion is focused on the modelling of 
a class of systems which are of interest in a variety of 
environmental studies and similar large-scale system 
problems. Consider, for example, the problem of 
modelling an underground water reservoir or aquifer.1 •2 

The water inputs to the underground porous medium, 
including rainfall and underground streams, are approx­
imately known, and the underground water level has 

been measured and recorded at a number of wells which 
have been drilled into the aquifer. It is desired to obtain 
a model and perform a simulation to assist in the 
determination of an optimum control policy to specify 
how much water can be withdrawn from the various 
wells so as to maintain the water level in the aquifer at a 
desired level. It is known that the fluid flow in a porous 
medium obeys the nonlinear parabolic partial differ­
ential equation, 

a ( ah) a ( ah) - T(x, y, h) ~ +- T(x, y, h) -
ax ax ay ay 

ah 
=S(x, y, h) at - Q(x, y, t) (1) 

where 
h=h(x, y, t) = hydraulic potential at any point 

(x, y) on the water table at time t 
and approximately represents the 
elevation of the water table above a 
reference plane. 

Q = Q(x, y, t) = accretion to the water table due to 
rainfall, lateral flow, wells, etc. 

T= T(x, y, h) = transmissivity, which is a measure 
of the fluid conductivity of the 
aquifer. 

S=S(x, y, h) = storage coefficient, which is a mea­
sure of the fluid capacity of the 
aquifer. 

The nonlinear parameters T(x, y, h) and Sex, y, h) are 
governed by local soil characteristics and are largely 
unknown. Likewise, the geometry of the field, the 
location of the boundaries of the aquifer in the x-y 
plane, is only very approximately known from geologic 
explorations. The only information available to permit ! 

an inference of these unknown functions are the well 
histories (the height of the water measured every few 
months) taken at a number of wells over a period of I 

years. These represent the raw data. It is the objective 
of the system identification process to derive a mathe­
matical model including particularly a specification of T 
and S and of the boundary configuration. 

In terms of the distinctions briefly discussed above, 
the modelling effort for problems of this type involves 
the solution of a "gray-box" problem since it is usually 
more-or-Iess accepted that the dynamic processes under 
study are characterized by nonlinear partial differential 
equations, including two or three space-variables and 
time as independent variables, in which the field ! 

parameters must be determined by the identification 
procedure. The response data are noisy, subject to 



NEW"'M 

PARAMETER MODIFI· 
CATION STRATEGY 

Figure I-Conventional parameter identification 

considerable sampling errors, and never sufficiently 
complete to satisfy the analyst. Usually, these data are 
passively-obtained, constituting responses to incom­
pletely-known excitations over which the analyst has no 
control. The ultimate objective of the modelling effort is 

I to generate a computer model which can be utilized, 
during the simulation phase, to investigate a variety of 
hypothetical control situations and which can be used to 
predict the response of the system to these control 
strategies. There are, of course, many system identifica­
tion problems which do not have these characteristics. 
I t is conceded, therefore, that the type of modelling 
discussed in this paper is directly applicable to only one 
class of a broad spectrum of modelling problems. 

THE CONVENTIONAL MODELLING METHOD 
I 

i!,1 The approach most often used in the construction of 
II models of the type discussed in the preceding section 

1
1

1,

' involves the iterative refinement of an assumed model, 
by comparing the response of the model with the 

'I, response of the prototype system and by modifying the 
model so as to minimize the difference between the two. 
This is illustrated in Figure 1 and discussed in con-

I' siderable detail by Balakrishnan3 and Bekey.4 The 
,,' following are the major steps in the conventional 

method: 

1. Formulation: The basic governing equations and 
all specific physical information applying to the 

System Identification and Simulation 387 

system under study are assembled, together ",rith 
all available excitation/response data. The basic 
equations generally have the vector form 

~ = j(c/>, u, as, t) (2) 

where c/> is the response vector, u is the excitation, 
and as is the system parameter vector. 

2. "Starting" Model: On the basis of all available 
evidence and insight, an initial hypothesis as to 
the model is made. This includes an initial 
specification of the governing equations, the 
structure or' geometry of the system, and the 
system parameters. The model equations have 
the general vector form 

~=j('I!, u, aM, t) (3) 

where 'I! is the response of the model to the 
excitation u, and aM is the model parameter 
vector. 

3. Implementation: The equations characterizing 
the "starting" model are programmed on a 
computer. The computer model is then subj ected 
to excitations similar to those recorded for the 
prototype system under study, and the response 
of the model to these excitations is obtained. 

4. Criterion: A criterion function is specified to 
serve as a measure of the extent to which the 
response 'I! of the model conforms to the response 
cf> of the prototype system being modelled. 
Usually this criterion function is defined by an 
expression of the type 

J(T, aM) = iT (cf>-'I!)' W (cf>-'I!) dt (4) 
o 

where W = W(c/>, 1/;, t) is a suitable weighting 
function, and T is the time interval over which 
the identification takes place. This criterion 
function J(T, aM) is calculated from the system 
and model responses. That is, the response of the 
model and the response of the system are 
compared. 

5. Decision: The objective of the identification 
procedure is to seek an optimum set of param­
eters aM which minimize the criterion function 
such that 

min 
J(T, aM) = J(T, aM) (5) 

The criterion function calculated in step 4 is. 
therefore, examined to see if it exceeds a 
specified minimum E. If it does not, the identifica-



388 Fall Joint Computer Conference, 1972 

tion is complete, the model is considered valid 
and employed for simulation. If the criterion 
function is not sufficiently small, the model must 
be modified. 

6. Modification: A computational procedure, usually 
in the form of algorithms, is specified. This routine 
defines the manner in which the model param­
eters aM are to be modified after each iteration, 
and it may involve gradient methods, random 
search, relaxation, etc. In any event, it acts to 
change the parameters of the model hopefully in 
a manner which results in a smaller J(T, aM). 

The conventional method of modelling is effective for 
the identification of systems which are "well-behaved." 
In particular it works well in situations in which the 
initial guess as to the model is very close to the prototype 
system, and where the excitation/response data are of 
very high quality. The method breaks down in many 
practical applications, however, for two principal 
reasons: 1. The first hypothetical model is not a 
sufficiently-close representation of a prototype system, 
and 2. The excitation/response data available from 
observations of. the prototype system are of such low 
quality that the attaining of a minimum in the criterion 
function cannot be taken with confidence as an indica­
tion of the validity of the model. 

To illustrate the weakness of conventional modelling, 
consider again the underground water resource model­
ling problem discussed above. Whereas Equation (1) can 
be assumed to apply reasonably well throughout the 
aquifer, the geometry of the field (buundaries of the 
porous medium), the initial conditions, the excitations, 
as well as the presence of maj or inhomogenieties are 
only incompletely known. The first hypothetical model 
is, therefore, likely to be substantially different from the 
actual system. The system response data which are to be 
used to improve this initial guess are represented by 
well-logs at haphazardly-spaced points in the field and 
constitute measurements of the dependent variable 
sampled at insufficiently-frequent intervals and sub­
jected to serious measurement errors. Nonetheless, the 
conventional modelling approach requires the iterative 
refinement of the initial model until a criterion function 
of the type of Equation (4) is minimized; that is, until 
the transient response curves of the model are fitted 
closely enough to the field data. As a result, even if after 
much laborious and elegant computation, one arrives at 
a model which provides a tolerable match of the field 
data, there remains considerable uncertainty as to the 
meaningfulness of the model and its usefulness in 
subsequent simulations. This unfortunate consideration 
applies to models and simulations in a wide variety of 
important areas of application. 

THE PATTERN RECOGNITION APPROACH 

The approach to modelling suggested in the present 
paper is based upon the following premise: the excita­
tion/response data available from experiments or 
observations of a prototype system contain a large 
amount of potentially-valuable and useful information 
which is not adequately utilized in the conventional 
approach to modelling. In the attempt to employ 
curve- or data-fitting methods to match the responses of 
a dubious model to highly error-prone experimental 
observations, many key features inherent in the experi­
mental data are averaged out, overshadowed, or simply 
not utilized. A reason for this lies in the application of 
the criterion function, such as Equation (4), during each 
iterative cycle, which involves an attempt to compare 
the "artificial" responses of the model with the "real­
world" responses of the system at each stage of the 
modelling process. 

The pattern recognition approach to modelling is 
similar in some respects to that employed by Duda5 and 
others in recognizing and classifying handwritten 
chara'cters. In that method, the pattern recognition 
problem is viewed as a sequence of four mappings as 
shown in Figure 2. The handwritten characters them­
selves constitute a so-called "object space" (z). By means 
of a video scan of the characters, followed by sampling 
and digitizing, the object space is mapped into a 
"representation space" (y) consisting of a sequence of 
binary numbers. Algorithms are then developed to map ! 

from the "representation space" into a "feature space" 
(x). This mapping, termed feature extraction, involves 
ignoring most of the available samples and the focusing 
of attention on a few key sampled values which are 
sufficient to distinguish the characters from each other. 
Finally, there follows a mapping from the "feature 
space" to the "decision space" (d), a classification 
operation in which the features that have been extracted 
are used to decide the identity of a character under 
examination. 

OBJECT SPACE 
SCANNING 

z SAMPLING 
DIGITIZING 

DECiSION SPACE 

d CLASSI FICATION 

REPRESENTATION SPACE 

V 

FEATURE SPACE 
x 

I--

... 
FEATURE 
EXTRACTION 

Figure 2-Successive mappings in pattern recognition 



,I,' 
/' 

lIt 
II: 

In character recognition, no attempt is made to devise 
a criterion function of the type of Equation (4) in order 
to identify characters. Rather the one-dimensional 
sequence of video signals is subjected to feature extrac­
tion, such that a small number of video samples are 
examined to determine whether they are black or white. 
The decision as to whether a given character is or is not 
the letter A, for example, is made on the basis Df 
whether these key characters, sometimes termed the 
"mask," are of the correct combination of black and 
white. This mask is developed by postulating a 
"starting" mask and by working with a "learning set." 
The learning set is a collection of handwritten characters 
obtained from representative collections of manuscripts. 
The "starting mask" and a decision algorithm are then 
used to examine the learning set, and the success or 
failure of the character identification is recorded. The 
mask and the decision algorithm are then modified and 
applied to the same sequence of char~cters. This is 
repeated for many different masks and decision 
algorithms. The mask and algorithm which manifest the 
best record of success are adopted as the pattern 
recognition algorithm, arid are then applied to unknown 
characters as required. 

The pattern recognition method of modelling has the 
same starting point as the conventional approach. 
Experimental system data (input and output measure­
ments) are assembled, and a first hypothetical model is 
formulated and implemented on the computer. At this 
point, the two approaches part company. In the pattern 
recognition approach, the model implemented on the 
computer is not regarded primarily as something tD be 
iteratively matched to reality (the system outputs). 
Rather it is considered as a "learning· machine" to 
develop feature extraction and classification algorithms 
which will eventually serve to extract pertinent informa­
tion from the "real world" system data. The primary 
objective of this first stage of modelling is not to 
progressively refine the model, but rather to develop a 
set of computing routines which can subsequently be 
utilized to analyze the data available from the system 
to be modelled. The results of this analysis then are used 
to formulate the "starting" model for conventional 
parameter identification. As shown in Figure 3, the 
modelling problem is therefore -subdivided into two 
stages: pattern recognition and parameter identification. 

The term "pattern" is used in the present context to 
connote general or global characteristics of the system 
being modelled. For any specific modelling problem, 
these patterns must be known in order to talk meaning­
fully of parameters and their identification. Accordingly, 
a list of patterns is prepared, and the nature of these 
patterns is to be extracted from available system 
observations (excitations/response data). Where possi-

System Identification and Simulation 389 

SYSTEM RESPONSE 

SYSTEM EXCITATION 
AND RESPONSE 

MODEL 
RESPONSE PATTERN 

PERTURBATION 

PATTERN 
RECOGNITION 

CONVENTI·ONAl 
PARAMETER 
IDENTIFICATION 

Figure 3-Steps in modelling 

ble, these patterns are formulated in such a manner that 
their recognition involves the answering of a yes/no 
question. For example, in the case of a distributed 
system such as that described by Equation (1), these 
questions might include: 

1. Is a given parameter (for example S) present in 
non-negligible quantities? That is, is it necessary 
to include that parameter in the model? 

2. Is this parameter constant, in the range of 
dependent and independent variables for which 
system observations are available? 

3. Is this parameter a function of the independent 
space variables, x and y? 

4. Is this parameter a function of time? 

5. Is this parameter a function of the dependent 
variable (nonlinear)? 

6. Does the magnitude of this parameter every­
where fall within a specified range? 

7. Considering the quality of available system 
observation data (number of measuring stations, 
sampling interval in time, and measurement 



390 Fall Joint Computer Conference, 1972 

errors) is it possible to derive a model of a given 
dimensionality? That is, do available response 
data permit the meaningful construction of a 
finite difference grid of a specified truncation 
interval? 

Similar questions can be asked regarding the geometry 
of the system, that is the location of field boundaries, 
and even the general structure of the basic equations. 
Usually in conventional modelling, all patterns of the 
type listed above are assumed initially, and a basic 
error in these assumptions invalidates all subsequent 
modelling efforts. In the pattern recognition method, 
a set of algorithms is developed with the express purpose 
of extracting the answers to these questions from 
available prototype system observations. The computer 
model is used to develop these computing routines. 

Each algorithm is designed to accept, as its input, the 
response data of the model and eventually response data 
of the system being modelled. The model is designed to 
provide data having the same sampling interval, spatial 
distribution, and measurement noise as the original 
system. The output of each algorithm is the answer to 
one question of the type posed above. Each algorithm is, 
therefore, a separate pattern recognition routine. This 
routine can conceivably involve transformations or 
spectral analysis, or it may involve cross-correlations of 
response data taken at different points in space, but will 
more often take the form of a "mask." Instead of 
processing all the samples obtained from all response 
functions, attention is focused on a few key sampled 
values. The yes/no decision is based upon the informa­
tion contained in these samples. The optimum mask, 
that is the combination of samples which are processed 
to determine whether the answer to a question is "yes" 
or "no," is determined experimentally using the comput­
er model. 

The pattern recognition algorithms used in modelling 
are developed in a manner basically similar to that used 
in character recognition. A "starting" algorithm is 
adopted either from experience or from heuristic con­
siderations. This algorithm is tried out on the model 
response transients, where these response functions are 
generated by exciting the computer model with excita­
tions similar to those which excited the prototype 
system. The algorithm also acts to "perturb" the model, 
so that the effectiveness of the algorithm over a number 
of similar yet different model configurations or param­
eter distributions (patterns) is determined. The algo­
rithm is then modified automatically or by an on-line 
operator and the process repeated. After a number of 
such experiments, that algorithm which proved most 
effective in identifying the desired pattern is selected. 
The same procedure is followed to obtain successful 

algorithms for identifying all of the other patterns of 
interest, so that eventually a library of algorithms is 
formed-algorithms which are tailor-made for the 
system being modelled and for the specific excitations 
and responses which are available from the physical 
system. 

Once this library is complete, attention is turned, for 
the first time, to the response data of the physical 
system. These data are now processed by the algorithms 
that were just developed. That is, the pattern recogni­
tion algorithms are employed to determine the patterns 
of the physical system. This process may demonstrate 
that the model used for "learning" differs radically from 
the system being modelled. Accordingly, this model is 
modified so as to give it the patterns which were found 
to be contained in the system being modelled. This 
whole process is repeated until the pattern extracted 
from the physical system corresponds reasonably closely 
to those assumed for the system being modelled. At that 
point, one can conclude that the model is "within the 
correct ball park," and the conventional parameter 
identification method can be employed to determine the 
fine structure of the model. 

The general approach is illustrated in Figure 4 and 
takes the following steps: 

1. Formulation: The basic governing equations and 
all specific information applying to the system 
under study are assembled, together with all 
available excitation/response data. The basic 
equations take the vector form 

;p = f( cp, U, as, (38, t) 

where (3s is a vector of patterns. 

(6) 

2. "Starting" Model: On the basis of all available 
evidence and insight, an initial hypothesis as to 
the model is made. The model equations have the 
general form 

(7) 

where aM is the model parameter vector and (3M 

is the model pattern vector. 

3. Implementation: The equations characterizing 
the "starting" model are programmed on a 
computer. Provision is made in this implementa­
tion for perturbing or modifying the patterns of 
the model under control of the pattern recogni­
tion (P .R.) algorithms. The model is to accept as 
input data the observations of the excitation, u, 
of the system being modelled. The model re­
sponse, 1/1, is given as nearly as possible the same 
characteristics as the system response, cp. That is, 
response data are read out from the same 



locations as those at which system response data 
is available, a similar sampling interval is 
employed, and if appropriate, noise is artificiallv 
added to the model output. 

4. "Starting" Pattern Recognition Algorithm: On the 
basis of previous experience and insight, a 
separate algorithm is provided for each of the 
patterns, (3M to be recognized. These algorithms 
may include masks for selecting key samples for 
further processing. 

5. P.R. Algorithm Implementation: The "starting" 
algorithms are programmed on the computer. 
These algorithms may contain loops which act to 
perturb or modify the patterns of the computer 
model so as to test the algorithms under a 
number of different situations. For example, if 
the purpose of the algorithm is to determine 
whether a given parameter is constant or not, 
that parameter is given a number of different 
constant values as well as caused to vary in a 
prescribed fashion. The modified patterns im­
posed by the P.R. algorithm are denoted by (3M.* 

6. P.R. of Model Response: The algorithm is 
employed to process the model response, y;, and 
to recognize the model patterns for each of the 
model perturbations. The patterns recognized by 
the algorithm are denoted by SM.* 

7. Comparison: For each pattern recognition run, 
the success or failure of the algorithm is deter­
mined by comparing the pattern of the model, 
(3M* with that determined by the algorithm, SM. * 

8. Criterion: A figure of merit for each algorithm is 
determined by totaling the successes and failures 
of the algorithm over all the experiments con­
ducted with that algorithm. 

9. Decision: A decision is made as to whether or not 
additional modifications of the P.R. algorithms 
should be attempted. 

10. Algorithm Modification: Either automatically or 
with the aid of an on-line operator, the P.R. 
algorithm is mo~ified. This modification may 
involve the re-specification of the mask, a change 
in the manner in which the samples are processed, 
or it may involve a more fundamental change in 
strategy. Evidently, the specific nature of this 
modification depends upon the patterns to be 
recognized by the algorithms. In any event, steps 
5 through 9 are repeated until no additional 
modifications are required. 

11. Selection: Provided no additional algorithm 

System Identification and Simulation 391 

modifications are required, that algorithm having 
the best percentage of success is selected and 
stored. 

12. P.R. of System Response: The selected algorithms 
are now employed to process the system re­
sponse, ¢, obtained from prototype system 
observations. That is, the algorithms are em­
ployed to recognize the patterns, (38, in ¢. 

13. Comparison: The patterns (38 recognized using 
the syste~ observations are compared with the 
patterns (3M initially assumed for the model. That 
is, it is verified whether the model used for 
algorithm development was "in the correct ball 
park." 

14. Decision: The results of the comparison of all the 
members of the pattern vectors (3M and (38 are 
analyzed to determine whether the "starting" 
model was close enough to the system being 
observed. If agreement between the two is 
adequate, that is, if the model has most or all of 

SYSTEMR_ , 

Figure 4-The Pattern Recognition (P.R.) modelling method 



392 Fall Joint Computer Conference, 1972 

the patterns of the physical system, the pattern 
recognization process is considered complete, and 
the computer model can be employed as the 
starting point for conventional parameter identi­
fication and eventually for simulation. 

15. Model Modification: If agreement between the 
model and the physical system is inadequate, the 
computer model is modified by giving it the 
patterns determined in step 12. Steps 5 to 14 are 
then repeated until adequate agreement is 
obtained. 

The most difficult steps in this method are the 
selection of the "starting" algorithm for pattern recogni­
tion and classification and the specification of the 
modification strategy of this algorithm. These depend 
strongly upon the type of patterns to be recognized, 
upon the computer model, and upon the nature of the 
response data. It is necessary, therefore, to build up a 
considerable amount of experience with this method for 
any specific application area. Occasionally it may turn 
out that a proven algorithm modification strategy does 
not lead to adequate convergence for a specific problem. 
This may then be taken as an indication that the quality 
of available response data is insufficient to permit 
meaningful pattern recognition. For example, the time 
sampling-interval may be too large, or response data 
may not be available for enough points in the space 
domain, or the signal-to-noise ratio may be too low. 
Under these circumstances, the computer model and the 
pattern recognition method can be employed to 
determine the approximate extent to which system 
observation data must be improved to make modelling 
possible. This can be accomplished by gradually im­
proving the quality of the computer model response (by 
sampling it more frequently, for example) until the 
algorithm modification strategy leads to successful 
convergence. The results of this computer experiment 

are then used as the basis for better and more complete 
field· measurements. 

CONCLUSIONS 

The pattern recognition method described in this paper 
is evidently not a panacea. The procedure is useful only 
for the identification of systems of "a certain shade of 
gray," and it leans heavily upon the ingenuity and 
insight of the analyst. It does, however, constitute a 
novel utilization of computer models-the development 
of a "learning set" and the determination as to whether 
the system response data are of sufficient quality to 
permit parameter identification. The approach has been 
used with some success in the modelling of underground 
water reservoirs of the type characterized by Equation 
(1) as well as in the study of aquifer pollution problems. 
The results of these studies will be reported in separate 
papers. 

REFERENCES 

1 W J KARPLUS V VEMURl 
Heuristic optimization and identification in hybrid field 
simulations 
Proc Fifth Int Congress of AlCA Lausanne Switzerland 
pp 345-350 1967 

2 V VEMURI W J KARPLUS 
Identification of nonlinear parameters of ground water basins 
by hybrid computation 
Water Resources Research Vol 5 pp 172-185 1969 

3 A V BALAKRISHNAN V PETERKA 
Identification in automatic control systems 
Automatica Vol 5 pp 817-829 Pergamon Press 1969 

4 G A BEKEY 
Systmn 1:den tification-an introduction and a survey 
Simulation Vol 15 pp 151-166 1970 

5 R 0 DUDA 
Elements of pattern recognition 
Adaptive Learning and Pattern Recognition Systems 
(J M MENDEll and K S FU, editors) Academic Press 
pp 3-33 1970 



'I 

! 
Horizontal domain partitioning of the Navy 
atmospheric primitive equation prediction model 

by E. MORENOFF 

Ocean Data Systems, Inc. 
Rockville, Maryland 

and 

P. G. KESEL and L. C. CLARKE 

Fleet Numerical Weather Central 
Monterey, California 

INTRODUCTION 

Development of the Kesel-Winninghoff multi-layer 
baroclinic primitive equation atmospheric prediction 
model began at the Fleet Numerical Weather Central, 
Monterey, California, in late 1968. The model, herein 
referred to as the Primitive Equation Model (PEM) , 
was initially written as a single processor version to be 
executed in one of the dual processors of one of the two 
FNWC CDC 6500 dual processor computer systems. 
This version, however, required slightly over six and 
one-half hours to compute a set of 72 hour predictions. 

Prior to its employment on an operational basis in 
September 1970, a four processor version of the PEM 
was developed which produced the same results as the 
single processor version in significantly less elapsed 
time. In particular, the PEM was partitioned to take 
advantage of all possible computational parallelism to 
exploit the four powerful central processing units 
available in the FNWC computer installation. The 
execution of the PEM for a 72 hour prediction run was 
thereby reduced from 405 minutes in the one-processor 
version to 135 minutes in the four-processor con­
figuration. 

A description of the partitioning of the PEM on the 
basis of the equation partition, the mode of operation 
of that version of the PEM, and the results attained 
through its employment were presented in earlier 
papers.l.2 At the conclusion of the first paper, plans 
were revealed for the development of a second multi­
processor version of the PEM, one in which the parti­
tioning was to be based on the horizontal domain 

393 

rather than the equation set. That effort has now been 
completed and a new version of the PEM, partitioned 
according to horizontal grid space considerations, has 
been operational at FNWC since October 1971, with 
significant improvements in terms of both elapsed time 
and central memory size requirements to generate the 
72-hour forecast. 

This paper summarizes the principal factors involved 
in the repartitioning of the PEM. First, the PEM, and 
the mechanisms by which the partitions of the PEM in 
each of the four process<?rs communicate with one 
another and their executions are synchronized, are 
reviewed. Next, the PEM structure and its partitioning 
are described. Finally, the results of the reduction to 
operational usage and future developmental efforts 
are presented. 

THE PRIMITIVE EQUATION MODEL 

The current version of the PEM better models the 
physical processes than the previous versions. Principal 
characteristics of the model are reviewed herein, in­
cluding those which led to the improvement in the 
forecast skill of the PEM. 

The governing equations of the PEM shown in 
Figure 1 are written in flux form in a manner similar to 
Smagorinsky et al.,3 Arakawa,4 Arakawa, Katayama, 
and Mintz,5 and Langlois and K wok. 6 The corresponding 
finite difference equations (which are not shown) are 
based on the Arakawa conservation technique. This 
scheme precludes nonlinear instability by requiring 



394 Fall Joint Computer Conference, 1972 

a ('lTu) 2 a (~) a (~)} + a (wu) + 'lTvf - m('IT ael> + RT a'IT) + D(u) + F(u) -m {ax + ay acr ax ax at m m 

a ('lTv) 2 a (~) a (VV'IT)} + 'IT a (wv) - 'lTuf - m('IT 2..<£.+ RT 2.2!.) + D(v) + F(v) -m {ax + ay aa ay at m m ay 

a ('ITT) 2 a ('IT~T) a ('lTvT)} + 'IT a (wT) + ~To w + D(T) + H(T) -m {ax + ay aa at m m p 

a ('lTg) 2 a ('lTuq) a ('lTvq)}+ 'IT a ('''q) + D(q) + Q (q) -m {ax + ay ---acr-at m m 

1 
a 'IT -j[m2 a (~) a (~)} + 'IT ~] do -rt { ax + ay m m dO 

a 

ael> RT 
aa -

0 

RT where 0 PI 'IT and w - -0 
'IT = P -

0 

D( ) lateral diffusion operator Q() moisture source and sink terms 
F( ) surface friction operator H() diabatic heating terms 

Figure I-The equation set 

that the flux terms conserve the first and second 
moments of any advected parameter, assuming con­
tinuous time derivatives. Total energy is conserved 
because of constraints placed upon the vertical differ­
encing. Total mass is conserved when integrated over 
the entire domain. Linear computational instability is 
avoided by meeting the Courant-Friedrichs-Lewy 
criterion. 

The Phillips7 sigma vertical coordinate is employed 
in which pressure is normalized with the underlying 
terrain-level pressure. At levels where sigma equals 0.9, 
0.7, 0.5, 0.3, and 0.1, the horizontal wind components, 
u and v, the temperature, T, and the height, z, are 
carried. See Figure 2. The moisture variable, q, is 
carried at the three lowest levels. Vertical velocities, 
w (defined as minus sigma dot), are carried at the layer 
interfaces (sigma equals 0.8, 0.6, 0.4, 0.2) and are cal­
culated diagnostically from the vertically-integrated 
continuity equation. At the top and bottom of the 
column the vertical velocities vanish identically. 

VARIABLES 

U,V T,z 
-------------

w ------
u,v,T,z 

w ------
u, v: T, z, q - - -------------
U v,T,z,q --

w -------------w 

u,V,T,z,q ---
p 

Figure 2-Diagram of levels and variables 

SIGMl\ 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 



Partitioning of Navy Atmospheric Primitive Equation Prediction Model 395 

'II' 

1:',1 

;il, 
{, The Clarke-Berkofsky mountains are used in con-

junction with both a Kurihara8 form of the pressure­
force terms in the momentum equations, and with 
slight amounts of lateral diffusion to eliminate the 
customary "noise" patterns over high, irregular terrain. 

The Richtmyer centered time-differencing method 
is used with a ten-minute time step, but integrations 
are recycled every six hours with a Matsuno (Euler 
backward) step to reduce solution separation. 

The earth is mapped onto a polar stereographic pro­
jection of the Northern Hemisphere. The grid lattice 

~, has 63 rows and columns, and the geographical equator 
is an inscribed circle. The mesh length is 381 kilometers 
at 60 degrees North (and about one half this distance in 
the extreme corners of the array) . 

A considerable part of the diabatic heating and 
moisture terms in the model was based on the work of 
Mintz and Arakawa as described by Langlois and Kwok. 
Climatological values of the earth's albedo are used. 
A Smagorinsky parameterization of cloudiness based 
on layered relative humidities is used in the radiative 
flux calculations. Dry convective adjustment precludes 
hydrostatic instability. Moisture and heat are redis­
tributed in the lowest three layers by use of an Arakawa 
parameterization of three types of cumulus cloud 

I,

! 1,1 ensembles. Convective precipitation is permitted in 
two of these three cloud types. Evaporation and large-

I 
scale (cyclones) condensation are important source-sink 

,,
', terms in the moisture conservation equation. Evapora­

tion over land, however, is based on a Bowen ratio, 
using data from Budyko. In the calculation of sensible 
heat fluxes over water, the FNWC-produced sea surface 
temperature distribution is invariant with time but 
updated for each forecast. Over land, the surface 
temperature is obtained from a heat balance equation. 
Surface stress is computed for the lowest layer. 

The type of lateral boundary conditions which led 
to best over-all results was the constant flux, restoration 
boundary conditions devised by Kesel and Winning­
hoff, and implemented in 1970. The procedure is as 
follows: A field (63 X 63 array) of restoration coeffi­
cients which vary smoothly from unity at and south of 
7.5 degrees North to zero at and north of 15 degrees 
North is computed once and saved. At the conclusion 
of each ten-minute integration step the (new) values of 
the state variables are restored back toward their 
values at the previous time step according to the 
amount specified by the restoration coefficient at each 
grid point. The net effect of this technique is to produce 
a fully dynamic forecast north of 15 North, a persistence 
forecast south of 7.5 North, and a blend in between. 
The blend region acts as an energy sponge for out­
wardly propagating inertia-gravity waves. 

The basic inputs for the model are the virtual tem­
perature and height distributions for the Northern 
Hemisphere at twelve constant pressure levels between 
the surface and 50 MBS, moisture distributions at four 
levels between the surface and 400 MBS, the sea surface 
temperature distribution, the sea level pressure dis­
tribution. These analyses are generated twice daily on 
an operational basis, and are derived from about 550 
upper air reports (temperature, pressure, moisture, 
winds) and 4,500 sea level observations. These reports 
are augmented by aircraft observations (mainly between 
30,000 and 40,000 feet) in large numbers, and satellite 
soundings (SIRS data) sporadically. 

INTER-PROCESSOR COMMUNICATIONS AND 
SYNCHRONIZATION 

The inter-processor communications and synchroniza­
tion mechanisms are identical to those employed in the 
version of the PEM partitioned on the basis of the 
equation set as reported in the previously referenced 
paper . These mechanisms are briefly reviewed in this 
section for purposes of clarity. 

The two FNWC dual-processor CDC 6500 computer 
systems can be linked with each other through the one 
million words of Extended Core Storage (ECS) 
operated in a mode such that the entire ECS is ac­
cessible by either CDC 6500 computer system. When 
the PEM is to be executed, the four programmed 
partitions of which it is comprised are assigned to and 
loaded in each of the four processors. One of the program 
partitions is designated as the master partition and the 
remaining three as the slave partitions by the use of 
appropriate ECS access codes and pass keys. If the ECS 
access code field indicates the partition to be the master, 
the associated pass key is interpreted as the name- of 
the ECS block storage assigned to the PEM. The slave 
partitions have no ECS assigned to them but are able 
to refer to the same ECS block as the master partition 
by use of the same pass key. 

Communications between the program partitions 
being executed in the different CDC 6500 computer 
systems are established through the aid of a FNWC 
developed Peripheral Processor (PP) routine, lSI, 
which links the two operating systems in each of the 
two computers. Hence, lSI provides a software, full 
duplex block multi-plexing channel between the two 
computers via ECS. Messages and/or blocks of data 
may be sent over this channel so that lSI may be used 
to call PP programs in the other computer or to pass 
data such as tables or files between the computers. 



396 Fall Joint Computer Conference; 1972 

Immediately following the initiation of the execution 
of the four program partitions in their respective 
processors, the operation of the three slave partitions is 
delayed until the master partition requests and has 
been assigned the necessary ECS block storage required 
by the PEM, and the synchronization mechanism is 
initialized. ECS block storage is requested by the 
master partition in the same manner as any conven­
tional job to be executed in the computer. 

Once obtained, the master partition labels the ECS 
block storage by passing an argUment comprised of an 
access code specifying its status as master and the 
desired pass key to the peripheral processor routine, 
ECS. The routine ECS searches the resident control 
point exchange area (CPEA) and, through lSI, that 
of the other computer, for a master with the same pass 
key. If one is found, the requesting program partition 
is aborted. If the other computer is inoperative or if no 
matching key is found, the label is established. 

When the operation of the three slave partitions in 
their respective processors is manually reinitiated 
following the successful' assignment of ECS block 
storage to the master partition and the initialization of 
the synchronization mechanism, each slave partition 
passes the argument comprised of its access code 
indicating it to be a slave and pass key to the peripheral 
processor routine, ECS. This time, ECS searches its 
own computer's CPEA for a master with a matching 
key. If none is found, the search is repeated in the other 
computer's CPEA via lSI. If still none is found, this 
fact is indicated to the requesting partition. If a match 
should exist in either computer, the original ECS will 
contain the address (ECRA) and field links (ECFL) 
of the requesting partition stored in its CPEA and will 
be given the ECRA and ECFL of the matching master 
partition. 

The mechanism by which the parallel execution of the 
multiple partitions in each of the processors are exactly 
synchronized is based on a general program linkage 
mechanism known as the Buffer File Mode of Opera­
tion.9•1o •1l The application of the Buffer File Mode of 
Operation to the FNWC multiple computer environ­
ment requires the Buffer Files to reside in a random 
access storage device jointly accessible by each of the 
computers. The ECS satisfies this requirement when 
operated in the manner described above. 

The nature of the information passed between any 
pair of partitions is whether or not one partition has 
reached a point in its execution where sufficient data 
has been developed to allow the other partition to 
initiate or continue its own execution. This is repre­
sented as a single "GO-NO GO" flag to be sensed by 
the second partition. Hence, the recirculating ring 

structure normally associated with the· Buffer File 
Mode of Operation reduces to a simple single one word 
block maintained in ECS. 

Finally, access to a Buffer File by a partition must 
be unidirectional. Any single Buffer File may only be 
written to by one partition and read from by another 
partition. Consequently, a pair of Buffer Files is as­
signed between any two partitions whose operation is 
to be synchronized. 

PEM STRUCTURE 

Each of the four partitions of which the PEM is 
comprised are identically structured. Each partition is 
considered in three distinct phases: the initialization 
phase; the integration phase; and the output phase. 
Whereas the computations associated with the integra­
tion phase are identical in each of the four partitions, 
those associated with the initialization and output 
phases vary from partition to partition. 

The phases are structured as separate overlays within 
each partition. The relationships which exist among the 
overlays of a particular partition and with the overlays 
in the other three partitions are illustrated in Figure 3, 
which is a representation of the master overlays asso­
ciated with each of the four partitions. The principal 
functions of the master overlays are to synchronize the 
calls for the execution of the overlays within the respec­
tive partitions with those in the other partitions, to 
dynamically adjust the field lengths of core storage 
required by the overlay to be called, and finally, to 
invoke the execution of the appropriate overlay. 

Overlay call synchronization among the different 
partitions is realized via requests by the master overlays 
in each partition to "set" a Buffer File (SCOMM) or 
to "read" a Buffer File (RCOMM). A five character 
Buffer File naming convention was established to 
facilitate identification of which partitions were in­
volved. The first two characters of the name serve to 
identify the Buffer File as being interstep ("IS"). The 
third character specifies whether a split ("S") or a join 
("J") is being signaled. The fourth and fifth characters 
specify the partitions writing and reading the Buffer 
File. Hence, Buffer File ISS14 is used by partition 1 to 
split its operation by initiating execution of partition 4 
in going from one time step to another. 

The initialization phase is invoked only once per 
72 hour forecast period. The integration phase is 
repeated in each forecast time step. Each thirty-sixth 
time step, the results of the preceding forecast hours are 
output and the integrations reiterated. The program 
loops extending from the DO statement through the 



Partitioning of Navy Atmospheric Primitive Equation Prediction Model 397 

Partition 1 Partition 2 Partition 3 Partition 4 

SCOMM(ISS12,3) 
START ....---. RCOHl1(ISS12, I} 

~~~~~r-----------------------~RCOMM(ISS13,l) 
OVERLAY 1 L...-""7""""------___ ~ __ __,.--------L ... RCOMM (ISS14, 1)

RCO[.M(ISJ21,3 >II--; _ SCOMM(ISJ21,l)
:~~J~~4-.~---___________ ~_ SCO~.M(ISJ31,1)

ACKNOV~EDG~~~~: _______________ ~ __________________ .-

RFL,167000.

OVERLAY 1
(Initial­
ization

RCOMJ.'-1 (ISJ21, 3) .

RFL, 14 5000.

OVERLAY 1
(Initial­
ization

SCOMM(ISJ21,1)

RFL,145000.

OVERLAY 1
{Initial­
ization

EXIT
OVERLAY 1 ~~ _______________________ S_C_0_MM ___ {I_S_J_3_1_,_1_> __ ___

DO 1035 I=1,LU1

SCOMM(ISS12,3)

. START

DO 1035 I=l,LIM

RCOMM(ISS12,1)

DO 1035 I=l,LIM

SCO~U"l (ISJ41, 1)

RFL,145000.

OVERLAY 1
(Initial­
ization

SCOMM(ISJ41,1)

DO 1035 I=l,LIM

~==~~2~------------~~ RCOMM(ISS13,1) I
OVERLAY L-.-r-------------~---------- ~ RCOMM (ISS14 f 1)

i
1

RCOMM(ISJ21,3)

I 1-'-: - SCOMM (ISJ21 ,1)
. ~~~ ,---------- SCOl-!M(ISJ31,1) ACKNOWLEDG;~4~ __________________ ~ _______________ ~~ SCO~~{ISJ41,1)

RFL,125000.

OVERLAY 2
(Inte­

gration)

RFL,125000.

OVERLAY 2
(Inte­

gration)

SCOMl'·1 (I SJ21 ,1)

RFL,125000~

'OVERLAY 2

(Inte­
gration)

RCOMM(ISJ21,3)

EXIT
"=0=V=E=RL-=-=-A=Y--=24. ::~~~~~~::::~~~~~~~~~~~~~~::-_S_C_0_MM __ (I_S_J_3_1_,_1_)_~

SCOMM(ISS12,3)
START ~~~ RCOMM(ISS12,1)

RFL.,125000.

OVERLAY 2
(Inte­

gration)

SCOMM(ISJ41,1)

~~~-~~----------------~~ RCOMM(ISS13,l) 
OVERLAY 3 L..-_____________ -:-_______ .,--_. _____ ~: til RCOMM (ISS 14 ,1) 

RCOMl1 (ISJ21, 3) : 

I E· . ( 11) ACKNO~lLEDG . ________ -:-__ S_C_0_MM ___ I_SJ_3 __ , __ ...l...-
SCOMM(ISJ21,1) 

RFL,155000. 

OVERLAY 3 

(Output) 

RFL,160000. 

(OvEiLAY31 
~~ 

RFL,160000. 

OVERLAY 3 

(Output) 

-SCOHM (ISJ31,1) 

SC01A.J.1 (ISJ41, 1) 

RFL,16COOO. 

OVERLAY 3 J 
(Output) 

Rear m~21 f ~. --. -SCONH (ISJ21 ,1) 
VERLAY 

--~----~----------~SCOMM(ISJ41,1) 

1035 CONTINUE 1035 CONTINUB 1035 CONTINUE 1035 CONTINUE 

Figure 3-Partition overlay structure 



398 Fall Joint Computer Conference, 1972 

Partition I 

SET-UP 

IF (RESTART) 
GO TO 9050 

COMPUTE/STORE 
~, In ?( , 

MAP, Z{P) 

SCOMM(ISS12,2) 

I START 
. WINDS 

INITIALIZE 
REMAINDER 

I 

:~ 

Partition 2 

SET-UP 

IF (RESTART) 
GO TO 9040 

COMPUTE/STORE 

Z, BETA (3) 

RCOMM(ISSI2,1} 

( WINDS ) 

Partition 3 

SET-UP 

IF (RESTART) 
GO TO 9040 

;~ RCOMM(ISS13,1) 

( WINDS ) 
o I 

RCOMM(ISJ32,1~D~ne SCOMM(ISJ32,1) 

I 

INTERPOLATE 
WINDS 

I 
RCOMM(ISJ21,1)~DOne SCOMM(ISJ21,1) 

I 

READ 
Z, BETA (3) 

9050 CONTINUE 9040 CONTINUE 

SCOMM (ISS12 , 3.) 

~--~ RCO~1(ISS12,1) 

I 

9040 CONTINUE 

PREPARE 
--~E~X~I~T--~--~-----------------~~~ RCOMM(ISS13,1) 

Partition 4 

SET-UP 

OVERLAY 1 ~------------------------~--------------~----~~RCO~M(ISS14,1) 

END 

IF (RESTART) 
READ· 

( Z, BETA ( 3) ) 

END 

READ 
( Z, BE'r A ( 3) ) 

END 

Figure 4-0verlay 1 partition synchronization 

READ 
(Z, BETA(3» 

END 



Partitioning of Navy Atmospheric Primitive Equation Prediction Model 399 

CONTINUE statement in each of the partitions of 
Figure 3 control the execution of the integration and 
output overlays. Note the variable upper limit of the 
number of executions of these program loops. This is 
manually set. The operation of the PEM may be 
suspended and reinitiated from the point following the 
completion of the most recent execution of the output 
ove1'lav. 

Finally, the RFL (REQUEST FIELD LENGTH) 
statements appearing in Figure 3 clearly indicate the 
variability of the main storage requirements of the 
overlays within each partition of the PEM. This 
variability is principally a result of the manner in which 
the overlays operate on the data fields present. The 
initialization overlays treat the data fields on a "full­
field" basis. The integration overlays, however, treat 
the data fields on a "quarter-field" basis. Lastly, the 
output overlays treat the data fields on both a full-field 
and third-field basis. The utilization of the data fields 
by the overlays will be elaborated on in the following 
section. The point to be made here is that the main 
storage requirements of the PEM are dynamically 
adjusted in the course of its execution to maximize the 
storage available to other programs which may be 
concurrently sharing the FNWC computer resources 
with the PEM. 

PEM PARTITION OVERLAYS 

In addition to the synchronization of the operation 
of the partitions of the PEM at the master overlay 
level, further synchronization is required among the 
subordinate initialization, integration and output over­
lays. This additional level of synchronization is realized 

'I" by the same Buffer File mechanism employed at the 

I 
master overlay level. 

:' Consider first the initialization overlays. As noted in 
\' the preceding section, the initialization overlays treat 
1,1 the data fields on a full-field basis and hence the parti­

tioning of these overlays is based on computational 
functions rather than spatial considerations. Intra­
overlay synchronization is consequently needed to 
insure the completion of each section of the initialization 
process in the appropriate partitIons before the next 
section is allowed to be initiated. Reference to Figure 4, 
for example, shows that the interpolation of the winds 
in the initialization process in partition 2 must wait for 
a confirmation that the initial wind computations in 
partitions 2 and 3 have each been completed. 

Figure 4 also illustrates the manner in which the 
PEM restart capability functions. In the event the 

Col.l Col. 63 

Figure 5-Horizontal doman partition 

Row 63 
Row 62 

Row m 

Row m-l 

Row k 

Row k-l 

Row n 

Row n-l 

Row 2 
Row 1 

operation of the PEM is being restarted, as manually 
noted by the operator, the computations within the 
initialization overlay are essentially completely by­
passed. In such a case the initialization overlay is used 
to pass those parameters needed for the continued 
operation of the PEM from partition 1 to the other 
partitions. 

During initialization, each partition operates on 
"full" fields (that is, on the complete 63 X 63 arrays). 
In the integration phase each partition operates on 
quarter fields. During the output phase both full fields 
and third fields are used, depending on the operations 
being performed. In the output phase, for example, 
transformation of ·coordinates (from sigma surfaces to 
pressure surfaces) are carried out in three processors (on 
third fields) while the fourth processor writes sixty 
checkpoint restart data fields on the restart tape. Once 
done, all four processors can then perform full-field 
filtering and/or smoothing oper,ations on one-fourth of 
the number of forecast fields which are written on the 
disk (for transmission to users) . 

In the integration phase, it is important to note that 
several alternate configurations were considered with 
respect to how the 63 X 63 data arrays could be most 
effectively partitioned. For example, the four-way 



400 Fall Joint Computer Conference, 1972 

Partitiqn 1 

SCOMM(1SS12,~3~)~~ 

Partition 2 Partition 3 I 
'j Partition 4 

gNiT. ITAT~ .. RCOMM (1SS12 ,1) 
~-~~~~-~----------------~--~~. RCOMM(1SS13,l) 
TI~ STEPL-~------------------~--------~------~~~RCOMM(1SS14,1) 

DO 10K=1,5 DO 10 K=1,5 DO 10K=1,5 DO 10 K=1,5 
I 

(WINDS) : (WINDS) (WINDS ) (WINDS) 
I 

RCOMM(1J21 (k) ,3) SCOMM. (IJ21 (k) ,1) I~: 
L..oI _W~1=N:..:..::D::.::.S~· -E· ---_I ----------+.. - SCOMM (IJ 31 (k) ,1) 

DONE .. I 

~~I------------------+--------------------- SCOMM(1J41(k),1) 
SCOMM(1S12(k);3) ~ RCOMM(IS12(k),1), 

I STORE I 110 RCOMM(IS13(k),1) 
WINDS L ___ +-____________ --____ ~ _________________ !~~ RCO~~(IS14(k),1) 

( STORE ) ( STORE ) ( STORE ) 

10 CONTINUE 10 CONTINUE 10 CONTINUE 

(COMPUTE) (COMPUTE ) (COMPUTE ) 

SCOl-IM (ISJ21, 1) 
SCOMM(ISJ31,1) 

SCOMM(1SJ41,1) 

... RCOMM(ISS12,1) 
• RCOMM (ISS13, 1) 

I "" RCOMM(ISS14,1) 

( STORE ) .1 ( STORE ) ( STORE ) 
I 

SCOMM(ISJ21,1) 
SCOMM(1SJ31,1) 

SCOMM(ISJ41,1) 

RCOMM(ISS12,1) 
R~OMM(ISS13,1) 

RCOMM(ISS14,l) 
OR EXIT L-~ __________________ ~ ________________ ~-, 

OVERLAY 2 

END END END END 

Figure 6-0verlay 2 partition synchronization 



Partitioning of Navy Atmospheric Primitive Equation Prediction Model 401 

partition based on quadrants was rejected because an 
array transformation would have been required to 
reassemble the quarter fields into contiguous ECS 
locations. A detailed analysis indicated that parti­
tioning the grid into four adjacent rectangular strips 
was the best possible scheme. See Figure 5. Using the 
partition method shown, nonoverlapping writes to ECS, 
extra-row reads from ECS for space differentiation, and 
time synchronization of partitions contribute both to 
economy and solution (no internal boundary problems). 

Assume that each partition is to calculate answers 
for n rows in the 4n X m total field. Now, because 0'. the 
need to compute horizontal gradients, it was necessary 
to read into central memory of each partition and to 
calculate the quantities to be differentiated on (n+2) 
rows (using second-order space differencing). The non­
overlapping n-rows from each partition are reassembled 
into total fields on ECS at the conclusion of each 
computational segment. This meant that the read/write 
first/last word addresses for data transfers to/from ECS 
were unique to each partition. 

One final consideration needs to be covered. If all 
grid points in the total array were of the same class 
(computationally speaking), each partition should 
calculate on exactly one-fourth of the number of rows 

1 in the total horizontal space. But, in this particular 
I model, three classes of grid points exist. South of 7.5 

degrees North, only restoration of former parameter 
values takes place. North of 15 degrees North, however, 
the model simulates more of the physical processes than 
in the region between 7.5 and 15 North (where it is only 
diabatic). By expressing all of the addresses and field 
lengths in terms of easily changeable variables, it was 
possible to let the computer determine the optimum 
number of rows to be calculated in each processor. In 
the computations of a typical integration time step the 

II, results of the preceding time step are transferred from 
permanent storage to temporary working storage asso­

I' ciated only with the particular partition. Following the 
, computations within the time step of each partition, the 

results are transferred back to permanent storage. 
It is important to note the number of strips into which 

the grid was divided was solely based on the number of 
1 Central Processing Units available in which to process 

the partitions. In the event, for example, ten or one 

I hundred Central Processing Units were available, then 
, the number of strips could have been selected as either 

'I,", ten or one hundred, respectively, and the number of 
partitions extended appropriately. 

Synchronization points within the integration overlay 
',·~'III·' among the four partitions of the PEM are illustrated in 

Figure 6. The following observations are relevant. 
;,1

1

1 First, the wind computations are repeated within a 
!i'l 

I 
,1,'1 
,~, 

II 

DO Loop present in each partition five times, once for 
each level of the atmosphere. In order to insure the 
PEM remains in synchronization in the event the 
execution of one of the partitions is temporarily inter­
rupted or suspended, a different pair of Buffer File 
communication cells is required for each execution of 
the DO Loop. 

Second, the oval COMPUTE box incorporates all the 
remaining computations associated with the time step. 
Each sixth time step these computations are modified 
to take into consideration the effects of diabatic heat­
ing. This includes incoming solar radiation, out-going 
terrestrial radiation, sensible heat exchange at the air­
earth interface, and evaporation. Each step the com­
putations are further modified to take into account 
condensation processes. 

And third, synchronization controls are provided to 
insure completion of all computations at a time step 
prior to allowing the results of that time step to be 
transferred to permanent storage by any of the parti­
tions. Similarly, controls are provided to insure the 
completion of the transfer of the results of the time step 
computation to permanent storage prior to allowing the 
next time step to be initiated in the integration overlays 
of any of the partitions. 

The output overlay is entered every thirty-sixth time 
step or sixth hour during the forecast period. The output 
overlay in partition 1 is devoted to duplicating onto 
magnetic tape from their permanent storage all data 
fields required to restart the PEM. At the same ~ime, 
the output overlays in partitions 2, 3 and 4 are post­
processing the output fields, that is, transforming 
coordinates, filling in values under terrain, filtering and 
outputting the resultant fields. The time required to 
prepare the restart tape is a small fraction of the time 
required to output the results of the previous thirty-six 
time steps and hence this part of the restart procedure 
does not appfeciablyextend the model's execution time. 

The synchronization of the execution of the output 
overlays in each of the four partitions is shown in Figure 
7. The routines contained in the square boxes labelled 
OUTPEI are amplified in Figure 8. Note that all pre­
processing of data must be completed before OUTPEI 
can be invoked in any of the partitions. Further note 
that in OUTPEI partition 3 assumes the role of master 
partition with respect to the operation of partitions 2, 
3 and 4. The computations within OUTPEI are per­
formed on a third-field basis, one-third of the data fields 
being processed in each of partitions 2, 3 and 4. OUTPEI 
prepares data fields for output five separate times 
during its execution and then calls on the routine 
OUTPE2(k) where k= 1, 2, 3, 4, 5 to actually output 
the data fields. Synchronization controls are provided 



402 o C puter Conference, 1972 FallJomt om 

Partition 2 

RCOMM(1SS12,1} 

PRE-
PROCESSING 

SCOMM(ISJ21,1} 

I Partition 3 
1 

I 

RCOMH (1SS13, I) 

PRE-
PROCESSING 

SCOMM(1SJ31,1) 

--... ~ RCOMM(1SS12 ,1) ~ RCOMM(ISS13,1} ~~~---r-=: 

I Partition 4 
I 
I 

I RCOMM(ISS14,1} 
I 
I 

PRE-I PROCESSING 
I 

SCOMM(ISJ41,1) 

RCOtJIM (18814,1) 

COPY 
RESTART 
FIELDS 
TO TAPE 

1 OU~El 1 OUTPE1 EJ I. 
0 

UTPEI 1 

~O~(ISnl'~E3~)~~=~S~C~O:~=(:I:8:J2:1::'1:}=~_~s~m __ MM_(_IS_J_3_1_,_1_)_T: ~~n~U,l) 
I SCOMM(ISS12, 3) • RCOMM(ISS12,l) I!> RCOMM(ISS13,l) '. RCOMM(ISS14,l) IL~EX~IT~f===~~====~ OVERLAY :3 

END 

("----_CR_UN _) 

END END 

o tion °t o synchromza I 3 partl IOn Figure 7-0ver ay 

END 



Partitioning of Navy Atmospheric Primitive Equation Prediction Model 403 

Partition 2 

COMPUTE 
1/3 FIELD 

1 

Partition 3 

COMPUTE 
1/3 FIELD 

SCOMM (ILS2 3,1) 1/3 FIELD 
COMPLETE JIIIr RCOMM(ILS23,1) I 

1/3 FIELD 

I 
CALL 

RCOMM(ILJ32,1)~OUTPE~(I) 

RCOMM (ILS43 ,1) .. COMPLETE 
I 

Partition 4 

COMPUTE 
1/3 FIELD 

SCOMM(ILS43,1) 

SCOMM(ILJ32,1) 

SCOMM(ILJ34,1) 
i 

CALL 
OUTPE2 (1) ~ RCOMM (ILJ34 ,1) 

I 

(OUTPE2(ll) 

SCOMl-1 (ILS2 3,1) 

CO¥.l.PUTE 
1/3 FIELD 

SCOMM(ILS23,1) 

I 

I 
I 

OUTPE2(1) 
COMPLET~RCOMM(ILS23,1) i 

I RCOMM(ILS43 1)~OUTPE2(1) 
, , COMPLETE 

I 
1/3 FIELD .. 
COMPLETE 

I 

COMPUTE 
1/3 FIELD 

I 

RCOMM(ILS23,1) ! 
I 

I 
CALL 

RCOMM (ILJ 32 , 1) ~ OUTPE2 (5) 

1/3 FIELD 
RCOMM(ILS43,1) ~ COMPLETE 

I 
SCOMM(ILJ32,1) I 

CALL 
SCOMM(ILJ34,1) OUTPE2(5) 

(OUTPE2(Sl) 

SCOMM(ILS23,1) 

END 

, 
I 

(OUTPE2(Sl) 
! I 

OUTPE2(5) ~ RCOMM(ILS23,1) , 
COMPLETE 

RCOMM (ILS4 3 1) .OUTPE2 (5) 
, CSI COMPLETE 

I 
END 

Figure 8-0UTPEl partition synchronization 

SCOMM(ILS43,1) 

COMPUTE 
1/3 FIELD 

SCOMM(ILS43,1) 

II- RCOMM(ILJ34,1) 

(OUTPE2 (S l) 

SCOMM(ILS43,1.) 

END 



404 Fall Joint Computer Conference, 1972 

Number of Effective* Composite 
Resolution Points S,eace Increment Factor** 

A. 5°/5 Layers 2450 300 0.41 

B. 2.5°/5 Layers 10082 150 3.38 

C. 2.5°/10 Layers 1(}082 150 6.76 

D. 1. 250/10 Layers 40898 75 55.03 

E. 1. 250/20 Layers 40898 75 110.06 

* Assumes some technique to artificially eliminate over­
specification at high latitudes. 

** Compared to the FNWC PEM. 

Figure 9-Global grid model hierarchy 

to isolate the output data preparation computations 
and the OUTPE2(k) calls within each partition. 

CONCLUSIONS 

The FNWC (Kesel-Winninghoff) Primitive Equation 
Atmospheric Prediction Model was repartitioned on the 
basis of horizontal grid space rather than equation 
partition considerations. Although the current version 
of the PEM has been partitioned to take advantage of 
the four processors of the FNWC two dual-processor 
CDC 6500 computer systems, the partitioning may be 
directly extended in the event additional processors are 
made available. Hence the current version of the PEM 
is ideally suited for operation on parallel processor 
computers such as the ILLIAC IV or the CDC 8600. 

As a consequence of employing the four-processor 
version of the PEM partitioned on the basis of hori­
zontal domain rather than computational burden con­
siderations, the same 72 hour meteorological forecast 
products were generated in 80 minutes rather than 135 
minut~. In addition, the main core storage require­
ments of the current model are significantly less than 
that of the earlier version. This is due, in part, to the 
introduction of an overlay structure in the current 
model and, in part, to the performance of computations 
during the integration overlay on a quarter-field basis. 

The current PEM has demonstrated a remarkable 
increase in forecast skill over the previous operational 
model. It models more of the physical processes better 
than ever before. But error analyses reveal that the 
forecasts still deteriorate rapidly in the smaller scales of 
motion being simulated because of spatial truncation. 
Spatial truncation can cause undermovement of some 
small-scale pressure systems by as much as twenty-five 
percent of the observed displacement. Another signifi­
cant source of error is the data base itself. In spite of the 

receipt of over 500 upper-air soundings every twelve 
hours and 4,000 surface observations every six hours, 
the data are too sparse over oceans and aloft to correctly 
specify the initial conditions. With the expected pro­
liferation of satellite probes of the atmosphere, this 
may not only minimize the initialization problem but 
also justify high-resolution global models for operational 
forecasting. 

A hierarchy of models of varying resolution and the 
associated computational burden that must be overcome 
have been consldered.12 The composite computation 
factor is normalized in terms of the size of the PEM 
problem being solved today on two CDC 6500 com­
puters. See Figure 9. 

Recall that the current PEM has the following 
attributes: five layers, 4,000 grid points per layer, 
hemispheric, 200 nautical mile mesh (at 60 degrees 
North), and ten-minute time steps. Figure 9 shows that 
latitude-longitude grids of increasing resolution (both 
horizontal and vertical) could lead to problems re­
quiring two orders of magnitude more computations 
than are currently being done operationally without any 
serious risk of over-specification (assuming large 
quantities of satellite soundings) . 

If one assumes a fifty percent efficiency for a com­
puter of the ILLIAC IV class, it might be possible to 
obtain about 500 Million Instructions Per Second 
(MIPS). FNWC's two CDC 6500 Computing Systems 
generate about 3.2 MIPS in the PEM. Thus, the 
number-crunching ratio suggests one might be able to 
tackle weather forecasting problems from 100-200 times 
the current problem and still get the answers to the 
users in the same amount of time. On the other hand, I 

timeliness is a consideration. One might, in the interim, I 

while waiting for satellite soundings, choose to calculate . 
using moderate resolution and get the products dis-
. seminated in a more timely fashion. The results of these 
new efforts involving the implementation of the PEM 
on computers of the ILLIAC IV class will be reported 
on in a later paper. 

REFERENCES 

1 E MORENOFF W BECKETT P G KESEL 
F J WINNINGHOFF P M WOLFF 
4-Way parallel processor partition of an atmospheric 
primitive-equation prediction model 
Proceedings of the AFIPS SJCC 1971 

2 P G KESEL F J WINNINGHOFF 
Fleet numerical weather central's four-processor primitive 1 

equation model 
Proceedings of the 6th A WS Technical Exchange I 

Conference US Naval Academy Technical Report 242 
197017-42 I 

I 

I. 



Partitioning of Navy Atmospheric Primitive Equation Prediction Model 405 

3 J SMAGORINSKY S MANAGE 
L L HOLLOWAY JR 
Numerical results from a 9-level general circulation model 
of the atmosphere 
Monthly Weather Review Vol 93 No 121965727-768 

4 A ARAKAWA 
Computational design for long term numerical integration of 
the equations of fluid motion: Two dimensional incompressible 
flow 
Journal of Computer Physics Vol11966 119-143 

5 A ARAKAWA A KATAYAMA Y MINTZ 
Numerical simulation of the general circulation of the at­
mosphere 
Proceedings of the WMO/IUGG Symposium of NWP 
Tokyo 1968 

6 W E LANGLOIS H C KWOK 
Description of the Mintz-Arakawa numerical general 
circulation model 
UCLA Dept of Meteorology Technical Report No 31969 

7 N A PHILLIPS 
A coordinate system having some special advantages for 
numerical forecasting 
Journal of Meteorology Vol 14 1957 

8 Y KURIHARA 
Note on finite difference expression for the hydrostatic relau'f)'11 
and pressure gradient force 
Monthly Weather Review Vol 96 No 91968 

9 E MORENOFF J B McLEAN 
Job linkages and program strings 
Rome Air Development Center Technical Report 
TR-66-711966 

10 E MORENOFF J B McLEAN 
Inter-program communications program string structures 
and buffer files 
Proceedings of the AFIPS SJCC 1967 175-183 

11 E MORENOFF 
The table driven augmented programming environment: 
A general purpose user-oriented program for extending the 
capabilities of operating ststems 
Rome Air Development Center Technical Report TR-
69-108 1969 

12 P G KESEL E MORENOFF 
The Navy's operational four processor atmospheric prediction 
model 
Proceedings of the NASA/ARPA ILLIACIV Symposium 
Naval Postgraduate School Monterey California 1972 





An analysis of optimal control system algorithms* 

by CAROL N. WALTER 

X erox Corporation 
Rochester, New York 

and 

GERALD H. COHEN 

The University of Rochester 
Rochester, New York 

INTRODUCTION 

Currently, there are methods available which were de­
rived in the field of computer science to analyze and 
evaluate algorithms implemented in computer pro­
grams. The subject of this paper will involve a com­
bination of three of these methodsl - 3 with a rather 
rigorous simulation of three invariant imbedding al­
gorithms in a manner strictly slanted toward their use­
fulness and importance in control system applications. 
The algorithms used to solve the problems and special 
solution formulations of the problems are presented 

I first. Then, the numerical routines which provided 
the most efficient implementation of the problems in 
their algorithmic form are explained. And last, the 
adaptation of the analysis techniques to the problems is 
shown to aid in understanding the final conclusions 
drawn. 

Some of the reasoning used in the selection of prob­
" lems and the method of comparing the algorithms may 

or may not be totally applicable to algorithm analysis 
in other fields. 

THE ALGORITHMS 

The invariant imbedding algorithms used for this 
evaluation were derived4- 6 from the fundamental matrix 
specifically to provide numerical solutions for linear 

I two-point boundary value problems. The principle of 
invariant imbedding was applied in the form of certain 
invariant matrices for solving subproblems imbedded in 

, xE [xo, L]. The axis nomenclature used for expressing 

, I 

the operations in space in the imbedded area is de-

* This research was supported in part by the Office of Naval 
Research under contract number NOOO14-68-0091. Such support 
does not imply endorsement of the content by the Department 
of Navy. 

407 

scribed by Figure 1 (xo indicates a variable left bound­
ary of increasing thickness). The final computation in 
all three algorithms is the solution of the . following 
transformed formulation of the state equation in terms 
of the two given boundary conditions: 

U(x) =1/I11(L, x, xo) U(xo) +Jl(L, x, xo) (1) 

Vex) =1/I2l(L, x, xo)U(xo)+J2(L, x, xo) (2) 

Algorithm I (One-Sweep Transformation) integrates 
the following transmission, reflection and internal 
source differential matrix equations (3, 6; 4, 5; 7, 8), 

'respectively, to provide values for the transformed 
matrix equations (1) and (2). 

P11(X, xo) =A11 (x)Pn (x, xo) 

-P12 (X, xo)A21 (x)Pn (x, xo) (3) 

P 12 (x, xo) =A11 (x)P12 (X, xo) +A12 (X) -P12 (X, xo) 

·A2l (X)P12 (x, xo) -P12 (x, XO)A22(X) (4) 

P2l (X, xo) = -P22 (x, xo)A21 (x)Pn (x, xo) (5) 

P22 (X, xo) = -P22 (x, XO)A2l (X)P12 (X, xo) 

-P22(X, XO)A22(X) (6) 

ill (x, Xo) = Fl(X) + [All (x) -P12 (x, Xo) A21 (x) ] 

.ill(x, xo) -P12 (X, xo)F2(x) (7) 

il2(x, xo) = -P22 (x, xo)[F2(x)+A21 (xhil(x, xo)] (8) 

Initial Conditions: P(~,~)=LH(~,~)=O (9) 

1/I11(L, x, xo) =Pn-l(L, x)Pn(L, xo) (10) 

1/121 (L, x, xo) = P 22-1 (x, xo) 

• [P2l (L, xo) -P2l (X, xo)] (11) 

Jl(L, x, xo) =Pn-l(L, x) [ill(L, xo) -ill(L, x) ] (12) 

J 2(L, x, xo) =P22-1 (X, xo) [il2(L, xo) -il2(x, xo)] (13) 



408 Fall Joint Computer Conference, 1972 

The additional equations (16), (17), (18), (19) are 
necessary to compute algorithm III (One-Sweep 

(L.x.xo) Riccati). 
x L 

Figure l-"Medium" nomenclature 

The following four steps required for computing al­
gorithm I are pictorially represented in Figure 2. 

(1) Integrate equations (3-8) from Xo to x with the 
initial conditions described by equation (9) ap­
plied at Xo, and store P 2l (x, xo), P22 (X, xo) and 
H2(x, Xtl) at each x. 

(2) Adjoin equations (3), (4), (7) with initial con­
ditions (equation 9) applied at x, and integrate 
from x to L to obtain Pn(L, x), PI2 (L, x) and 
H1(L, x) ¥x. 

(3) Integrate the complete set of equations from Xo 

to L to obtain the necessary values for equations 
(10-13) . 

(4) Solve equations (1) and (2) ¥x. 

Thus, the solution for each point is available after all 
of the sweeps (one sweep for each data point) have 
been completed. 

Algorithms II (Two-Sweep Riccati) and III (One­
Sweep Riccati) integrate the following Riccati dif­
ferential equations in the process of their solution steps. 

S21(X, L) =A21(X) +A22 (X) S2l(x, L) 

- S2l(x, L)Al1(x) (14) 

-S21(X, L)AI2 (X)S21(X, L) 

Initial Conditions: S2l(L, L) =0, 

where: 1/I2l(L, Xo, Xo) 1;;0=3;0= S2l(XO, L). 

H2(X, L) =F2 (x) -S21(X, L)F1(x) 

+A22 (X)H2(x, L) (15) 

-S21(X, L)AI2 (X) H2(x, L) 

Initial Conditions: H2(L, L) =0, 

where: J2(L, xo,xo) lio=3;0=H2(xo, L). 

Algorithm II implements the following steps: (Con­
sult Figure 3 for the flow diagram.) 

( 1) The first sweep, a backward sweep from L-Y.Co, 
requires that equations (14) and (15) be inte­
grated backward in space to enable equation 
(2) to be solved for V (xo) . 

(2) The problem now becomes an initial value 
problem (see Eq. 2). Therefore, the second sweep 
is a forward integration of the solution differ­
ential equations: O(x) and Vex) from xo~L. 

+A12 (xo)1/I2l(L, xo, xo) ] I~=io (16) 

Initial Conditions: 1/Ill(L, xo, xo) =1. 

Initial Conditions: 1/I21(L, xo, xo) = S2l(xo, L) 

Initial Conditions: J1(L, xo, xo) =0. 

iJJ2(L, x, xo) _ .1, (L -) [F (-) 
_ - - '1'21 ,x, Xo 1 Xo 

iJxo 

+A12 (Xo)J2(L, Xo, Xo) ] 13;=:&0 (19) 

Initial Conditions: J2(L, xo, xo) =H2(xo, L) 

Equations (16)-(19) hold ¥xo:::;x. 
Therefore, the steps required (consult Figure 4 for 

o .1 .2 

t t t 
I.C. I.C. I.C. 

B A A 

{

PI! (L,x) = 1 

A Pj2(L,x)= 0 

Hi (L,x)= 0 

.3 .4 

t t 
I.C. I.C. 
A A 

.5 .6 .7 

t t t 
I.C. I.C. I.C. 
A A A 

.8 .9 

t t 
I.C. I.C. 
A A 

Figure 2-Algorithm I-one-sweep transformation 

1.0=L 

t 
I.C. 
A 



·1

:·1:, 

" 

d 

1
1

1

,. I', 

\

1<'., 

" 

" 

, 

I.e. 

flJ(x) 
Iv(x) 

521 (Xo, Ll = V(Xo) 
U(Xo)=O 

1.0=L 

I.c. 
521(L,L):O 

Figure 3-Algorithm II-two-sweep Riccati algorithm 

the flow diagram) to compute solutions to algorithm 
III are: 

(1) Integrate the Riccati equations (14) and (15) 
from L backwards to x. At x adjoin equations 
(16) and (17) (where 1/I21(L, x, X{)=S21(X, L» 
and equations (18) and (19) (whereJ2(L,x,xo) = 
H 2 (x, L». Integrate all six equations backward 
from xto Xo. 

(2) Equations (1) and (2) produce an immediate 
solution for each x sweep for U (x) and V (x) . 

(3) Continue until the solution ¥xE [xo, L] has 
been obtained. 

B 

.1 
t 
I.C. 

B B B 

.5 

t 
I.C. 

B B 

,7 ,8 

t t 
I.c. I.C. 

B B B 

,9 I.O=L 

t t 
I.C. I.C. 
B A 

Figure 4-Algorithm III-one-sweep Riccati algorithm 

Analysis of Optimal Control System Algorithms 409 

PROBLEM IMPLEMENTATION 
CONSIDERATIONS 

Two problems were chosen to provide a worst case 
and a best case digital simulation of each algorithm. 
Problem I is the reduced system of ordinary differential 
equations for a lumped parameter control problem. 

[
U(X)] = [-1 
vex) -2 

Initial Conditions: u(xo) = 1 

veL) =0 

-1] [U(X)] 
1 vex) 

This problem does not require the matrix formulation 
property or the forcing function of the algorithms. 
Therefore, the computational form of each algorithm 
for Problem I will be of minimal complexity. Problem 
II, the worst case application, is a distributed optimal 
control system in the form of a hyperbolic system of 
partial differential equations. 

au(x, t) + au(x, t) = -u-v (20) 
at ax 

{
U(X, 0) =h(x) = 1, xE [0, L] } 

I.C. 
u(O,t) =g(t) = 1, tE [0, t] 

aV av 
-+-=-u+iJ 
at ax 

{

VeX, T) =0, xE [0, L] } 
I.C. 

veL, t) =0, tE [0, T] 

(21) 

The method of lines is used to transform the partial 
differential equations into a set of ordinary differential 
difference equations. Equations (20) and (21) are dis­
cretized in the time variable by the unique substitution 
of the forward difference approximation for au (x, t) / at 
and a backward difference for av(x, t)/at. Therefore, 
the resulting solution equations for algorithmic com­
putation are inhomogeneous and also require the matrix 
formulation of the algorithms (maximal algorithm 
implementation) . ' 

Forward 
Difference 

Backward 
Difference 

dUi+1(X) -1 
dx = ~ [Ui+1(X) +Ui(X)] 

-Ui+1 (x) - Vi+1 (x) (22) 

dVi(X) = -1 [Vi+1(X)+Vi(X)] 
dx At 

-Ui(X) +Vi(X) (23) 

where i = 0, ... , N -1, N = number of intervals be­
tween Xo and L. 



410 Fall Joint Computer Conference, 1972 

Figure 5-Runge-Kutta routine flow chart 

Problems I and II can be solved for the same data 
points along the x axis by realizing that when the 
method of characteristics is used for Problem II, it 
becomes identical to Problem I. All integration in 
Problem I is along the x axis; in Problem II these data 
points exist on the characteristic diagonal line 
(length = 1) . 

NUMERICAL ROUTINES 

The development of the actual computational form 
of the algorithms for both problems required a rather 
efficient manner of performing a fourth-order Runge-

Kutta integration which could be adapted to the 
matrix formulations necessary in Problem II. The 
classical fourth-order Runge-Kutta technique7 imple­
mented follows: 

Yn+l=Yn+%(k1+2k2+2k3+k4) ; 

k1=hf(xn, Yn) 

k2=hf(xn+~h, Yn+~kl) 

k3=hf(Xn+~h, Yn+~k2) 

k4 =hf(xn+h, Yn+k3). 

A special in-line Runge-Kutta routine (outline) was 
developed (refer to Figure 5 for a flow chart of this 
routine) to avoid the overhead of calling a subroutine 
and to make optimum use of the following two facts 
inherent in the integratable equations: 

(1) The independent variable Xn never appears to 
the right of the equals sign. 

(2) The coupled property of the invariant imbedding 
algorithm equations produces functions which 
are constant within an integration interval of the 
dependent variable. These functions change at a 
fixed value of the independent variable . as a 
function of the interval on which the boundary 
value problem is specified. 

A matrix inversion routine was required to implement 
algorithm I in Problem II. The IBM Scientific Sub­
routine MINV, which performs a matrix inversion by 
the Gauss Jordon Method with a Full Maximal Pivoting 
technique, was chosen for this requirement due to the 
following facts: 

(1) An accurate matrix inversion technique is more 
complex than an ordinary in-line routine. 

(2) The inversion was not required extensively 
throughout the program for algorithm I. 

ANALYSIS TECHNIQUES** 

The three methods of analysis implemented in the 
problem's computing characteristics were: 

(1) solvability analysis; 
(2) local time and storage analysis; 
(3) efficiency and optimality analysis. 

** All computations referred to in this section were made on an 
IBM 360/65 computer in Fortran G. 



Analysis of Optimal Control System Algorithms 411 

TABLE I-Digital Analysis-Problem I 

Storage 
Number of Execution Program Space Maximum 

Algorithms Executable Execution Program Space + Work Space Absolute Error 
Problem I Statements time (sec) 

I 106 0.09 

II 68 0.04 

III 73 1.21 

Solvability Analysis 

The first technique provides the basis for all of the 
analysis performed. The accuracy of the result of each 
algorithm is compared to the analytic solution of the 
respective problem, to determine if the algorithm 
yields the correct solution. The numerical method of 
error computation is used to obtain the error for each 
point in the solution. 
ERROR = E = Analytic solution value-algorithm 
value. l The second indication of the computational work­
ability of a problem is its stability. Algorithms I and III 
transform an unstable set of solution (system) equations 
to a stable set for their necessary integrations. However, 
algorithm II uses the original problem equations to 
obtain the final solution once the initial conditions have 
been computed. These equations may be unstable. 

Local time and storage analysis 

A local analysis2 to compare algorithms is one which 
investigates the important characteristics of some 
algorithm under "worst case" and "best case" input 
conditions. Therefore, using a local analysis, the three 
algorithms presented are evaluated in terms of execution 
time and storage for both problems. The criteria for 
determining the point of comparison for the three 
algorithms for each problem was chosen as the value 
of Ax (Runge-Kutta integration increment) where 
they exhibit the same chosen maximum absolute error 
(ME) (decimal accuracy) for a certain number of 
data points. *** 

ME= 1 E lmax 
A three-place-decimal-accuracy, local analysis for 
Problem I is shown in Table I. 

*** kth decimal accuracy (significant places) with the analytic 
solutionl is defined as: lEI:::; 1/2 X 10-k • 

(Bytes) (Bytes) ME = IElmax Llx 

22,288 26K 0.0000092 0.1 

21,440 26K 0.0000476 0.1 

21,600 26K 0.0004870 0.00625 

In Problem II the same approximate (I E Imax. =0.074) 
one-decimal place of accuracy comparison with the 
analytic solution was the criteria for comparison be­
cause for At < 0.1 (discrete time increment) , the matrices 
became ill conditioned in Algorithm I. Refer to Figure 6 
for the matrix form of the solution equations for Problem 
II. Conditioning the matrices would only cause further 
computational complexity and longer execution time 
( cost) and add nothing to the comparison besides 
increased decimal accuracy (refer to Table II for the 
local analysis results) . 

Efficiency and optimality 

The efficiency-optimality analysis is presented in 
Pager3 in the theoretical terms of a Turing Machine. 
The theory begins with the basic premise that a function 
j<n) is partial recursive over a set of arguments S. This 

UI (X) 

U2(X) 
U3(X) 
U4(X) 
U5(X) 
U6(X) 
U7(X) 
U8(X) 
U9(X) 
'1 

~O(X) 
~I (X) 

~2(X) 
~3(X) 
~4(X) 

~5(X) 
~6(X) 
V7(X) 
~8(X) 
~9(X) 

II 0 10-01_ 1 0 ... 10-11 1 
10-11 0-1 

10-11 I 0-1 
10-11 I 0-1 

10-11 I 0-1 

O 10~g_11 1 0 0-6_1 
10-11 f 0-1 

- - - JQ-Ilt- - - - _ 0 

~ ~I 0 0 rl-ll~-:?_Io 0 
-10 1 11-10 

-10 1 II-:?_IO 

O -I~IO 10 11-10 

-I~IO I II-:~IO 
-10 I II 

N. 1/6t-10, (1/6t1' 11-11 

Figure 6-Matrix formulation 

U I(X) 
U~(X) 

U3(X) 
U4(X) 
U5(X) 
U6(X) 
U7(X) 
U8(X) 
U9(X) 
UIQfX 
VO(X) 

VJ(X) 
V2(X) 
V3(X) 
V4(X) 
V5(X) 
V6(X) 
V7(X) 
V8(X) 

9(X 

+ 
I 
o 
o 
o 
o 
o 
o 
o 
o 

-I 
o 
o 
o 
o 
o 
o 
o 
o 
o 



412 Fall Joint Computer Conference, 1972 

TABLE II-Digital Analysis 

NO. OF STORAGE SPACE . TIME 
EXECU- EXECU- PROGRAM MEASURE 

TION EXECU- TION PRO- SPACE MAXIMUM (BYTE . SEC.) 
TABLE TION GRAM + WORK ABSOLUTE ~(Zi,Xl' .. . Xn) 
STATE- TIME(1) SPACE SPACE(2) ERROR i = #- of 

ALGORITHMS ilX MENTS (SEC.) (BYTES) (BYTES) ME = IElmax ALGORITHM 

PROBLEM I 

TWO-SWEEP 0.1 68 0.04 21,440 26K 0.0000476 1,040 
RICCATI 

ONE-SWEEP 0.1 73 0.11 21,528 26K 0.0073400 2,860 
RICCATI 

ONE-SWEEP 0.1 106 0.09 22,288 26K 0.0000092 2,340 
TRANSFORMATION 

PROBLEM II 

TWO-SWEEP 0.05 227 8.35 37,816 56K 0.0744596 467,600 
RICCATI 

ONE-SWEEP 0.025 300 294.04 53,336 60K 0.0740608 17,642,400 
RICCATI 

ONE-SWEEP 351M 
TRANSFORMATION 0.05 91S 169.24 95,904 lOOK 0.0746680 16,924,000 

(1)ACCURATE TO ± 0.01 SECONDS (via University of Rochester Computing Center, Subroutine TIMER) 

(2) ACCURATE TO ± 2 K BYTES 

means that there is a Turing Machine Z :1 

f(n) (Xl, .•. ,Xn) = U[miny Tn(Z, Xl, ... ,Xn, y) ] 

¥ (Xl, ... , Xn) E S, (24) 

where Z calculates f over S. Consulting Davis,s this 
infers that not all input arguments will allow the 
computation in a certain Turing Machine Z to go to 
completion. Therefore, only certain arguments, or 
certain problems, provide input strings to Z which 
can be successfully computed. The timing involved 
to compute argument (Xl, ... ,xn ) for Turing Machine 
Z is E (z, Xl, ... , Xn). The space M (z, Xl, ... , Xn) is the 
sum of the problem space and the work space. The 
probability figure p (Xl, ... ,xn ) is the probability that 
it will be necessary to compute f(Xl, ... , Xn). Then, 
p (Xl, .•. , Xn) is > 0 only for (Xl, ..• , xn) in the domain 
of f. The space-time measure 'Y p (z) of a Turing Machine 

Z is given by the following relation: 

'Y.(z) = ~ L",~", p(x" ' .. , x.)p.(z, X" ••• ,x.) ] 

(25) 

where c = number of computations (problems) (argu­
ments) that satisfy equation (24). 

The function Jl. (z, Xl, ... , xn ), the space-time measure 
of a computation of a Turing Machine Z for argument 
(problem) (Xl, ... , Xn), is an increasing recursive 
function of both E (z, Xl, ... , Xn) and M (z, Xl, ..• , Xn). 

A pplication of efficiency-optimality 

For an algorithm (computer program), a practical 
application of this theory is used. Since there are 



~II 

certain input arguments for which the computation 
will not go to completion, only two problems (argu­
ments) are used for each of the three algorithms (com­
putations) to obtain the space-time measure I'Pl'e(Zi). 

In this practical usage, the following application of the 
theory is implemented: 

(1) Zi represents each algorithm; i= 1,2,3. 
(2) ri represents the problems (arguments) that are 

included in the partially recursive alphabet; 
j=l, c=2. 

(3) Pti(XI, ... , Xn) for each ri are assumed to be 
~ 1 and equal to each other, (Ptl (Xl, ... , Xn) ~ 
Pt2(XI, ... , Xn). rl represents Problem I, the 
simplified form of an extensively used control 
problem, a "best case" application of the 
algorithms. Problem II (r2) represents the 
complex version of an optimal control problem 
used quite extensively in the field of chemical 
engineering, a "worst case" application of the 
algorithms. This approximation has been made 
since it would be very time consuming to obtain 
a statistical calculation of the probability of 
usage for these problems. Therefore, the effect 
of the probability in the calculation of I'Pte(Zi) is 
represented by a constant kj • 

(4) The rj for each algorithm were written in a very 
efficient manner (separate programs of the 
same algorithm for each problem). Therefore, 
the program space changes for each !: j to more 
efficiently implement the algorithms. This pro­
cedure agrees with Pager's3 definition of two 
Turing machines having the same behavior if 
they perform the same sequence of tasks for 
each argument. 

Equation (27) is now expressed In the following 
generalized form: 

Optimality of Zi = I'Pr e (Zi) 

(26) 

(27) 

Then, a local comparison of the efficiency-optimality 
i of the three algorithms is performed using the maximum 

error criteria (ME) (approximately one-decimal-place 
I' accuracy). Refer to Tables II and III for the efficiency­

optimality results for both problems. 

Analysis of Optimal Control System Algorithms 413 

TABLE III-Efficiency-Optimality Analysis 

ALGORITHMS 

ONE-SWEEP 
TRANSFORMATION 

TWO-SWEEP 
RICCATI 

ONE-SWEEP 
RICCATI 

RESULTS 

OPTIMALITY 
(SPACE TIME 
MEASURE) 

"(Pte (Zi) 

8,498,170 

234,320 

8,822,630 

EFFICIENCY 

0.01176 X 10-5 

0.4267 X 10-5 

0.01132 X 10-5 

It is apparent that the problems chosen are solvable 
with these algorithms since the solutions are stable 
within the boundary conditions chosen, even though 
both problems have unstable characteristic roots. The 
local storage and time analysis proved that algorithm 
II required the minimum execution storage and time 
for both problems, due to its minimal amount of manip­
ulation of original data; algorithm III required the 
maximum storage and algorithm I, the maximum 
time. Algorithm I was the most accurate when a com­
parison was made for a certain decimal accuracy in 
Problem 1. The efficiency-optimality analysis indicates 
that algorithm II is the most optimum and efficient 
(smallest optimality measure and largest efficiency 
measure). Algorithms I and III, respectively, are 
second and third in optimality and efficiency. A slight 
anomaly results here because algorithm II should be 
less accurate than algorithms I or III for a given dX 
(Runge-Kutta integration increment) since the inte­
gration performed is with unstable solution equations. 
This is true for algorithm I in Problem I and for al­
gorithm III in Problem II. Evidently, the three types 
of error encountered in these digital solutions, original 
data error, roundoff error, and truncation error, mask 
the theoretically proven instability of algorithm II in 
comparison with algorithms III and 1. This is logically 
deduced since the manipulations of algorithms III and I 
are subject to the largest amount of original data-error 
buildup of the three algorithms. The error buildup for 
algorithm II would have been substantially larger if the 
imbedding interval was greater than X= 1. 



414 Fall Joint Computer Conference, 1972 

Finally, it can be stated that the two types of storage­
time analysis yielded consistent results and, therefore, 
either method would have sufficed. 

REFERENCES 

1 A RALSTON 
A first course in numerical analysis 
(New York) McGraw-Hill Book Company 1965 

2 D E KNUTH 
Mathematical analysis of algorithms 
Stanford University Computer Science Department 
STAN-CS-71-206 March 1971 

3 D PAGER 
On the efficiency of algorithms 
Journal of the ACM Vol 17 No 4 October 1970 pp 708-714 

4 E D DENMAN G H COHEN 
One and two sweep methods of solving linear two-point 
boundary value problems 
USC Department of Electrical Engineering 
Technical Report No 70-39 August 1970 

5 G H COHEN C N WALTER 
Hybrid computer solutions of partial differential equations 
using invariant imbedding techniques 
Sixth Annual Princeton Conference on Information Sciences 
and Systems March 1972 

6 C N WALTER 
An analysis of two-point boundary value problem algorithms 
University of Rochester Department of Electrical 
Engineering Master's Essay December 1971 

7 C F GERALD 
Applied numerical analysis 
(Philippines) Addison-Wesley Publishing Company 1970 

8 M DAVIS 
Computability & unsolvability 
(New York) McGraw-Hill Book Company 1958 



Computer simulations of the metropolis 

by BRITTON HARRIS 

University of Pennsylvania 
Philadelphia, Pennsylvania 

The history of modern computer simulation of urban 
affairs represents the confluence of a number of trends 
which came to maturity in the middle of this century. 
Probably the oldest of these tendencies is the emphasis 
on planned urban development which has existed for 
millennia and which in the last century has demon­
strated considerable vitality as a reaction to the excesses 
of the industrial revolution and the poverty and squalor 
of nineteenth-century cities. A second strand is the 
development of economic and sociological theory which 
goes a considerable distance in explaining some aspects 
of the organization and form of metropolitan settlement 
and its growth. These theories have a long history, but 
have matured principally during the 1920's and 1930's. 
Finally, as a methodological catalyst, the development 
of the automobile, of a Federal Bureau of Public Roads 
dedicated to providing facilities for it, and of the large­
scale metropolitan study based on the origin-and-desti­
nation survey have together made possible the crystal­
lization and further growth of simulation methods. 
These methods are thus proximately based on the 
engineering attitude and computer technology of the 
large-scale transportation study, but they are in a posi­
tion to draw on a number of other important streams of 
intellectual development. 

The transportation planning effort as carried out in 
large metropolitan area studies produced or laid the 
basis for three major advances in planning methods, all 
related to simulation. First, through the use of origin­
and-destination studies and through the consideration 
of small-area detail, these studies emphasized the cre­
ation of large data banks. The bringing to perfection of 
such data banks has become a matter of nagging con­
cern in the fields of urban management and urban 
planning, but for a variety of reasons adequate reser­
voirs of data have not yet been accumulated. Data 
is incommensurate as to area definition and activity 
definition. It is uneven in coverage across political 
jurisdictions. It lacks important elements such as de­
tailed employment location and accurate descriptions 
of man-made structures. There are no time serIes 

415 

data and diverse data sets are frequently available 
for years which do not match. The major transpor­
tation studies have solved most of these problems 
(except time series data) on a one-shot basis. Second 
although it is frequently not recognized, transpor­
tation studies have taken an essentially behavioral 
view of transportation demand, although a very naive 
one. Over the last ten to fifteen years, there has been a 
growing recognition that a behavioral understanding of 
the reasons why certain decisions (to travel, to move, 
to build, etc.) are made and how they are influenced by 
the environment and by public policy is the key to a 
useful understanding of the urban organism. Such 
understandings are being expanded from the simple 
descriptive level to more subtle and complex views of 
more diverse and extensive types of behavior. Third, 
on the basis of these data and a limited behavioral un­
derstanding, transportation analysts were able to con­
struct very large-scale simulation models of transporta­
tion behavior. These models can predict the use of trans­
portation systems in substantial detail under varying 
assumptions. In considering the merits of this achieve­
ment, one must note the very large size of the systems 
involved and the fact that these systems have been 
treated in a fairly holistic fashion. Two special aspects 
of this whole development deserve slightly more ex­
ten'ded discussion. 

We should have expected, since we are discussing 
transportation planning, that the developments of the 
50's and 60's could have produced a very extensive im­
provement in plan-making methods themselves. The 
simulation models which I have referred to under the 
third point above are essentially models for predicting 
behavior and the impacts of change and policy on these 
predictions. Almost nothing in the transportation litera­
ture bears on the question of producing a plan. One 
might have expected that the engineering approach to 
transportation planning would have generated opti­
mizing techniques based either on the analytical solu­
tion of the conditions for an extremum or on search 
methods defined in some form of mathematical pro-



416 Fall Joint Computer Conference, 1972 

gramming. Actually examples of this are extremely 
rare, and transportation planning takes the form of the 
evaluation of a limited number of alternatives which 
are generated in very conventional ways. 

The other observation is almost superfluous, having 
to do with the utilization of computers. The very large 
masses of data which are available for any city, and 
particularly as the outcome of a transportation study, 
moved research rapidly from punched card storage to 
tape storage and computer manipulation. At the same 
time, with increasing computer power, the analyses 
which were conducted became more sophisticated. 
Finally, the very large simulation models themselves re­
quire, for a transportation system alone, computer time 
on the order of hours rather than tenths of hours. In­
evitably the appetite of simulation model designers 
requires more and more core and frequently more and 
more computer time. 

Against this background, let me discuss briefly several 
different dimensions of variation which apply to the 
computer simulation of urban growth and change. 

I assume that properly designed computer simulations 
can be used in a two-edged way-either as an aid to 
scientific investigation or as a means of making predic­
tions which will vary under different assumptions about 
the state of the real world, the growth of technology, 
and the policies which are pursued by government, 
corporations, and households. I take the general view 
that policy manipulations are becoming increasingly 
disaggregated both as to the means which they employ 
and the objectives which they pursue. This means es­
sentially that the most useful sets of simulation methods 
may have to do with a fairly detailed portrayal of the 
phenomena. I believe that there is room in general for 
considerable skepticism as to the accuracy of the simula­
tion models which are used for policy explorations. In 
the extreme case, one may fall back on the alternative 
view that, even with inaccurate predictions, the use of 
models helps to define the nature of the problem and 
the construction of models helps to develop deeper in­
sights into the theoretical and practical issues which 
are involved. 

The essential advantages of large-scale computer 
simulation models lie, first of all, in their extensive 
bookkeeping and computational capabilities. These 
aspects may escape direct theoretical· comprehension 
and hand manipulations. By extension, computer-based 
models can in principle take into account extensive in­
teractions between different parts of the urban system 
and can trace the repercussions of events widely over 
space and time. This capability clearly depends on the 
ability of the analyst to identify the interactions in the 
first instance. 

We may now turn to two principal aspects of the sub­
ject matter which are dealt with in these computer 
simulations. 

The first distinction has to do with the difference be':' 
tween inter-urban and intra-urban simulations. Inter­
urban and inter-regional simulations are necessary to 
provide a basis for action in any particular sub-area of a 
large country. Projections of the probable growth of 
the Philadelphia metropolitan region or of the State of 
California, hopefully under various policies, is a neces­
sary background to planning for the metropolis or the I 

state. Such projections are best made in the multi­
regional context so as to take into account the competi­
tion and interactions which occur at the national scale. 
Single projections, including those proposed by J. H. 
Forrester in Urban Dynamics, are extremely unreliable 
because they isolate the entity from its environment. I 

Projections in this class fall into the realm of regional 
geography, regional science, and classical locational I 

economics. I personally am much more concerned with 
intra-metropolitan locational. patterns, given the prior 
determination of levels of growth, composition of in­
dustry, and income. It is of course true that certain in­
ternal decisions affect these levels of growth, but in my 
view there is not yet an adequate basis for modeling 
this feedback. I am concerned therefore in the balance 
of this paper principally with the interaction between 
intra-metropolitan policies of all types. and the growth 
and development of the metropolis within its own gen­
erously defined boundaries. 

A second maj or distinction can be made along a spec­
trum of phenomena-physical, economic, social and 
political. As we move along this continuum, phenomena 
become more and more difficult to simulate because the 
theoretical models which describe them become less 
and less quantitative and to an extent more purely 
descriptive. In the physical realm, for example, and in­
cluding the physical development of the biosphere, we 
can simulate fairly well such matters as hydrology, 
meteorology, and pollution. We can also, as I have sug­
gested, simulate economic behavior such as the use of 
transportation facilities and choices of residentialloca­
tion. There are difficulties in these predictions which 
arise not from our lack of understanding of the phe­
nomena, but from the existence of externalities which 
make certain aspects of projections more dependent on 
large-scale random events. l\1a,ny of the behaviors of 
businesses and households in the metropolitan area are 
at least quasi-economic; their use of public facilities, for 
example, can be interpreted in the paradigm of eco­
nomic behavior. Nevertheless, as activities become in­
creasingly social, as in the achievement and employ;. 
ment of education, skills, and upward mobility, predic-



I 

I 

tion becomes more difficult and less accurate. Similar 
and stronger remarks can be made about political be­
havior. Finally, social, political, and racial considera­
tions interact with many otherwise straightforward 
phenomena. The rise and fall of neighborhoods, the 
preservation and deterioration of the housing stock, 
and many other economic or quasi-economic behaviors 
are in the city immersed in these higher-level social 
systems. 

It should be apparent that a thread constantly run­
ning through all of these subject matters is the location 
of activities in space, their competition for sites, and 
their interaction with other activities both near and far 
by transportation and communication. Our theories 
and models of communication are much weaker than 
our theories and models of transportation. It is difficult, 
however, to see how we can possibly separate the over­
whelming majority of the urban phenomena . that we 
wish to simulate from their spatial distribution or from 
their interactions. Communication and transportation 
models therefore occupy a central place in the simula­
tion process. 

Simulation in the sense in which I discuss it here does 
not consist at all of Monte Carlo or single-event simula­
tions and, indeed, has very few stochastic properties. 
Some, and indeed a majority, of existing models assume 
some sort of probabilistic laws governing human be­
havior, but such large numbers of individuals are being 
dealt with the division of people amongst various modes 
of behavior is in itself deterministic. In consequence of 
this type of assumption, the outcome of two successive 
runs of most of these models with the same inputs would 
be identical. I personally believe that this is desirable 
because large-scale events which might drastically alter 
the evolution of a metropolitan area should properly be 
explicitly under the control of the investigator. It fol­
lows from the foregoing discussion that many simula­
tion models could be expressed in analytical form. 
Owing, however, to their very large size and nonlinear­
ity, the solution of the analytical form of the models is 
usually outrageously difficult. A great deal of the com­
putation involved in simulation is therefore one or 
another form of iterative solution to large and complex 
systems. 

The probabilistic interpretation of behavior is inti­
mately related to questions of disaggregation and re­
aggregation, and to the distinction between descriptive 
and behavioral models. A simple example would be the 
analysis of the distribution of shopping trips amongst 
shopping centers. A linear programming solution would 
assign most individuals to the nearest center, but this is 
obviously not what takes place. The original models 
dealing with phenomena of this type were descriptive 

Computer Simulations of the Metropolis 417 

in the sense that they attempted to replicate behavior 
without paying detailed attention to people's motives 
and decision-making processes. These matters are now 
coming under increased scrutiny, with the result that 
the analyst is faced by a bewildering array of behaviors 
and attitudes. Quite apparently, while this understand­
ing of behavior may provide in principle a sounder basis 
for the construction of simulation models, it must be 
accompanied by the evolution of rules of aggregation 
which govern the deduction of mass phenomena from 
individual behavior. In principle, any model, no matter 
how highly aggregated, should have been derived in any 
one of a number of possible ways from an understanding 
of the behavior of decision-making units. This is a pro­
found and complex problem which has only begun to 
receive adequate attention. 

Probably the most interesting, difficult, and subtle of 
all of the issues involved in modeling revolves around 
the question of static versus dynamic models. This prob­
lem affects the basic structure of models, the mode of 
simulation, and the types of policy conclusions which 
can be drawn. Directly and indirectly the issues in­
volved appear in many of the disputes which arise from 
modeling. 

The more sophisticated computational, econometric, 
and mathematical discussions which arise over this is­
sue have a somewhat more naive but very useful coun­
terpart in the planning profession. Quite simply, twenty 
years ago the profession was strongly oriented toward 
the production of a "comprehensive plan" which 
envisaged some future state of affairs toward which 
the efforts of planned development should be directed. 
This conception has been roundly criticized on many 
grounds. The definition of a future state apparently 
left no room for further development beyond that 
date. The preoccupation with future conditions left 
present difficulties untended. The future state might 
indeed be incapable of achievement either because it was 
too costly, 'or because institutional obstacles existed, or 
because the path to it might be blocked by the be­
ha vior of individual decision-makers. In the light of all 
of these and many other criticisms, the idea of the com­
prehensive plan has fallen into some disrepute, and 
much more attention has been thrown on planning 
methods which emphasized the path of development, 
the most immediate measures which will relieve present 
difficulties, and the modes by which various segments 
of the population are impacted by and involved in the 
planning process and the implementation of plans. This 
second procedure is much more process-oriented and 
more apparently socially aware. It is also more oriented 
to the practical problems of consensus and implementa­
tion, and hence apparently more realistic. 



418 Fall Joint Computer Conference, 1972 

In my own view, the planning orientations of these 
two approaches are complementary rather than compet­
itive. The difficulty with the more recent and more 
dynamic view is that it is not guaranteed to lead to an 
acceptable or viable future state. It does not provide 
any means of defining an image of the future toward 
which the metropolis and its population can aspire. As 
an experimental vehicle, a dynamic model could be very 
clumsy since it is "forward-seeking" rather than 
"backward-seeking." On the other hand, the compre­
hensive plan defines some future optimal state subject 
to the possible difficulty that "you can't get there from 
here." 

The relationship of these two approaches to formal 
and mathematical aspects of modeling should be ap­
parent. The comprehensive planning model is entirely 
compatible with the idea of optimizing through a mathe­
matical program. It turns out that the locational and 
organizational problems of cities are incredibly difficult 
to solve in this mode because they provide very large­
scale, non-linear, integer programming problems with 
many local optima. Nevertheless, viewing the problems 
in this light provides important insights into design 
methodology. In certain cases, portions of the problem 
may be quite properly cast in a programming format. 
This is especially true of the predictive portion of 
models where market behavior is involved. Generally, 
however, even here the models are best solved by 
iterative procedures. 

The dynamic approach to planning corresponds in an 
intuitively simple way with dynamic or growth models 
cast in the form of differential or difference equations. 
Once again, the typical system of equations would be 
extremely large, non-linear, and complicated. Models 
of this type are supposedly represented most clearly by 
the Dynamo system of J. H. Forrester, but in fact 
versions of such models have been used in many types 
of forecasting for metropolitan areas long prior to 
Forrester's Urban Dynamics. Such models have a 
verisimilitude which makes them very popular with 
professional planners and decision-makers, and an ele­
ment of mathematical sophistication which makes them 
attractive to operations researchers and analysts. As I 
have sketched above, their operation is somewhat diffi­
cult for purposes of policy testing. At the same time, 
their calibration is particularly difficult from the point 
of view of data requirements because at least two points 
in time are required in fine-area detail. From an econo­
metric point of view, many more data points would be 
desirable, but this is in general utterly impractical. 

There are various points of contact between static 
optimizing models and dynamic models. One of these is 
entirely utopian in the present state of the art, but 

should be borne in mind as a future possible line of 
development. This would be to use the criterion func­
tion of an optimizing model to optimize not over metro­
politan arrangements (as in the static case), but over 
the choice of policies, using the dynamic model as an 
embedded predictor in the dynamic programming con-· 
text. Because of the very large number of possible policy 
combinations, this approach is presently infeasible, but 
it may have some future value. 

More practically, the relation between dynamic and 
static models may be explored along a different line. 
The performance of a dynamic model may be regarded 
as an effort by the system to achieve equilibrium, al­
though if changing outside circumstances and driving 
functions are available, this target equilibrium will be 
a moving one. In general, it is almost certainly reason­
able to expect for the metropolitan region that some 
"sensible" equilibrium exists. The alternatives are ex­
ponential growth, collapse to an extreme configuration, 
or continuous oscillations. While none of these is im­
possible, they are not intuitively attractive. It there­
fore seems likely that one or more stable equilibria can 
be defined for most dynamic models. This is intuitively 
obvious for the Forrester model, given its output, and 
this equilibrium has been identified and analyzed. If 
for a dynamic model the equilibrium can be expressed 
analytically, it can also be explored for sensitivity to 
changes in parameters and to changes in policies. In 
principle there is no reason why such a model should 
not be "run backwards" so that policy variables would 
be set at a level required to maximize some welfare 
function. Such a backward-seeking model would be 
useful but of less general value than the dynamic pro­
gramming model just described. It is very difficult to 
achieve because of the size, non-linearity, and possible 
existence of multiple optima in many large dynamic 
models. 

Viewed in the light of the preceding paragraph, the 
distinction between static and dynamic models is not 
as great as might at first appear. An example of the 
blurring of this distinction might be found, for example, 
in the Lowry model of residential location, which is 
widely used and which has been developed in different 
directions by a number of workers. In the first place, 
while this model makes no direct claim to optimize, its 
equilibrium properties tend to suggest that some such 
process is at work at the behavioral level. More complex 
models containing market behavior and explicit op­
timization (such as the Herbert-Stevens model of resi­
dential location) probably produce similar results to 
Lowry's. It follows from these quasi-equilibrium prop­
erties that efforts to make the Lowry model dynamic can 
produce a succession of static equilibria which depend 



on changes in the over-all conditions which the modp,} 
must meet. These successive equilibria mayor may not 
preserve part of the previous decisions made in earlier 
runs of the model. Finally, Lowry himself saw a certain 
resemblance in successive iterations of the model which 
were needed for solution purposes, a rough analog of 
the time-phased physical development of the Pittsburgh 
region. On the basis of such resemblances there is in­
deed a substantial confusion in lay circles between 
iterations which are designed to solve the model at a 
single moment, and iterations over time which should 
more properly perhaps be called recursions. 

There may be important statistical consequences of 
the similarity between static and dynamic models. In 
equilibrium the sub-areas of a metropolitan region 
would have constant composition, and either constant 
population or constant rates of growth. This would im­
ply that in each area the internal forces leading to 
change in different directions would be exactly in bal­
ance. For a linear model, therefore, some combination of 
independent variables would be precisely collinear 
across all areas. Such a combination of equilibrating 
forces might be identifiable from cross-sectional rather 
than time series data. In this case, the principal roles of 
time series data would be quite different from their 
usual one. They would establish mainly the rate of ad­
justment to the equilibrium. It is important to note 
that if a growing organism like the metropolitan area 
has a set of internal forces of this kind which tend to 
lead to an equilibrium, then the multiplication of error 
in a projection tends to be minimized. The model is in a 
sense self-correcting, to the limits of the accuracy with 
which the relative importance of the various factors 
has been estimated. In rapidly growing areas or for 
slowly moving locators, the gap between equilibrium 
and the observed situation may be quite large and the 
errors may be not only substantial but biased. All of 
these remarks affect principally operational considera­
tions and do not deny the basic relationship between 
static and dynamic models. 

Mathematical neatness suggests that all variables in a 
model be treated symmetrically so that all equations for 
every locator look very much alike. If this kind of treat­
ment is possible,a monolithic model may be developed 
which makes all types of projections at once. This is 
the case with the Forrester model of Urban Dynamics, 
the EMPIRIC model of the development of the Boston 
metropolitan area, and to an extent, the Lowry model. 
The difficulty with such monolithic concepts comes from 
a number of sources. First, for very large numbers of 
classes of locators or very fine small-area detail, the 
size of a unified model becomes outrageous, especially 
since the number of interactions tends to rise with the 

Computer Simulations of the Metropolis 419 

square of the number of variables. Second and more 
important, various different activities may have dif­
ferent modes of development which suggest the desira­
bility of substantially different models linked together 
in some reasonable fashion. 

A fair amount of experimentation has already been 
done with such linkages, and their" character is clear on 
both practical and theoretical grounds. Essentially what 
may be expected to happen is that in studying any 
particular sub-system or large coordinated group of 
locators in the metropolitan region, the results of the 
activities of other locators are taken to be a part of the 
environment for the sub-system under study. At a later 
point in the process, the results of the activities of this 
locator become parts of the environment for other 
locators and influence their behavior. These interactions 
may be worked out by iteration at each single point in 
time, or they may be lagged and carried through suc­
cessive steps in the recursion. 

A major advantage of this type of subdivision of the 
problem is that highly diverse locator behaviors can be 
dealt with properly by distinctive models. It appears, 
for example, that a large part of retail trade location 
responds very rapidly to market conditions and is well 
represented by an equilibrium model. Residential 
locational choice is better represented by a model in 
which only a certain number of movers seek equilibrium 
and where this relocational behavior of a small propor­
tion of the population represents a lagged dynamic ele­
ment. Industrial location and the location of certain 
centralized services like banking are much slower to re­
locate than are households and require a still different 
model. One might expand this list very considerably, 
showing how public services of various types, household 
formation and dissolution, and various social phenom­
ena each require their own type of model, and how these 
models may be operated in sequence and linked through 
a computerized data base which simulates the environ­
ment for all of them. Such a conception of modeling is 
flexible and easily amended. It is simple to define in 
principle and somewhat tedious to develop in practice 
or describe in detail. 

A coordinated model system in which a variety of 
models interact with each other does not prejudge the 
issue of whether the total model will be dynamic or 
static. Such a group of models can be iterated to 
equilibrium and thus solved as a total system. Alterna­
tively, the inclusion of a single dynamic model dy­
namizes the entire system. 

I have not developed in any detail the concept and 
methodology of planning model design since this is 
substantially less mature than simulation. I define a 
planning model as a model which produces a plan, as in 



420 Fall Joint Computer Conference, 1972 

the case of a mathematical programming method, or 
which greatly assists a planner in producing a plan. 
Planning models are difficult to manage because of the 
large combinatorial searches which are involved, and it 
seems likely that this activity will best be left to a de­
signer or decision-maker intervening in an interactive 
computerized system. This computerized system will 
have to have embedded in it simulation and evaluation 
models which can predict the results of the designers' 
efforts, but owing to the nature of the interactive process 

, an.d the extent of the searches which are required, it 
seems likely that such simulations will have to be 
greatly condensed and simplified. In my view, we are 
perhaps in danger of proceeding too rapidly with inter­
active processes, without exploring the implications of 
the simplified simulations which they use. 

The foregoing review has attempted to highlight some 
of the principal issues which surround the design of 
shnulation models of urban metropolitan areas. These 
models currently exist in rather sophisticated forms and 
make heavy demands upon model design capabilities 
and upon computer power. Indeed it is altogether con­
ceivable that the development of methods in this field 
will result in a substantial reduction of these demands at 
comparable levels of performance. The principal issues 
which I have discussed and which are subject to further 
research and investigation may be listed as follows: 

1. The extension of substantive investigations into 
social and political spheres. 

2. The investigation of elementary behavioral pat­
terns coupled with an appropriate understanding 
both of disaggregation and of rules for aggrega­
tion or reaggregation. 

3. An expanded understanding of the different 
structures, performan.ce, characteristics, and 
uses of static and dynamic models. 

4. The development of systems of linked models. 
5. The development of planning models and inter­

active planning methods, together with the ap­
propriately subordinate use of simulation as a 
part of these methods. 

APPENDIX 

Selected readings in urban simulation 

Alonso, William. Location and Land Use-Toward a 
General Theory of Land Rent. Cambridge: Harvard 
University Press, 1964. 

Berry, Brian J. L. Department of Geography Research 
Paper No. 85. Commercial Structure and Commercial 
Blight. Chicago: University of Chicago, 1963. 

Chapin, F. Stuart, Thomas G. Donnelly, and Shirley F. 
Weiss. A Probabilistic Model for Residential Growth. 
Chapel Hill: University of North Carolina, Institute 
for Research in Social Science, in co-operation with 
U.S. Department of Commerce, Bureau of Public 
Roads, May 1964. 

Chapin, F. Stuart, and Shirley F. Weiss. Factors In­
fluencing Land Development, Chapel Hill: University 
of North Carolina, Institute for Research in Social 
Science, in co-operation with U.S. Department of 
Commerce, Bureau of Public Roads, August 1962. 

---. Some Input Refinements for a Residential Model. 
Chapel Hill: University of North Carolina, Institute 
for Research in Social Science, in co-operation with 
U.S. Department of Commerce, Bureau of Public 
Roads, July 1965. 

Forrester, Jay H., Urban Dynamics, M.LT. Press, 
Cambridge, 1969. 

Harris, Britton. "The Uses of Theory in the Simulation 
of Urban Phenomena," Journal of the American Insti­
tute of Planners, Vol. 32, September 1966. 

---. Highway Research Record No. 26: Land Use 
Forecasting Concepts. Washington: National Acad­
emy of Sciences-National Research Council, High­
way Research Board, 1966. 

---. "Some Problems in the Theory of Intra-Urban I 

Location," Operations Research, Vol. 9, September­
October 1961. 

---. "A Model of Locational Equilibrium for Retail 
Trade." Paper presented at a Seminar on Models of 
Land Use Development, Institute for Urban Studies, 
University of Pennsylvania, October 1964. Mimeo. 

---. "Inventing the Future Metropolis." Paper pre­
pared for the Catherine Bauer Wurster Memorial 
Public Lecture Series, sponsored by the Harvard 
Graduate School of Design and Massachusetts Insti­
tute of Technology. May 1966. Mimeo. 

--. "The City of the Future: The Problem of Opti­
mal Design." Paper presented at 13th Annual Meet­
ing, Regional Science Association, St. Louis, Mo., 
November 1966. Mimeo. 

Herbert, John, and Benjamin H. Stevens. "A Model 
for the Distribution of Residential Activities in Urban 
Areas," Journal of Regional Science, Vol. II, No.2, 
1960. 

Journal of the American Institute of Planners. Special 
issues: Urban Development Models: New Tools for 
Planning, Vol. 31, May 1965; Land Use and Traffic I 

Models, Vol. 25, May 1959. 
Lowry, Ira S. A Model of Metropolis. Memorandum 

RM-4035-RC. Santa Monica: The RAND Corpora­
tion, August 1964. 



I 

---. Seven Models of Urban Development: A Struc­
tural Comparison. P3673. Santa Monica: The RAND 
Corp., September 1967. 

Muth, Richard F. "The Spatial Structure of the Hous­
ing Market," Papers and Proceedings of the Regional 
Science Association, Vol. 7, 1961. 

Orcutt, Guy, John Korbel, Alice M. Rivlin, and Martin 
Greenberger. A Microanalysis of Socio-Economic 

Computer Simulations of the IVIetropolis 421 

Systems: A Simulation Study. New York: Harper, 
1961. 

Seidman, David R. A Linear Interaction Model for 
111 anufacturing Location, Penn-J ersey Transporta­
tion Study. Philadelphia: Delaware Valley Regional 
Planning Commission, 1964. 

Wingo, Lowdon, Jr. Transportation and Urban Land. 
Washington: Resources for the Future, Inc., 1961. 





The protection of privacy and security in 
criminal offender record information systems 

by STANLEY ROTHMAN 

Consultant 
Manhattan Beach, California 

INTRODUCTION 

In this paper we will single out those aspects of the 
problem of protecting privacy and security in informa­
tion systems that are special to law enforcement. 

FEDERAL-STATE RELATIONSHIP 

The National Crime and Information Center, which 
extends from the FBI to the state, county, and city 
level, has been expanded to contain and exchange 
criminal histories. The rules under which state and 
local governments participate in this system are under 
debate, a debate that may extend to a law suit by the 
State of Colorado against the FBI. The substance of 
the conflict is the ruling that any computer participat­
ing in this on-line exchange of criminal histories must 
either be dedicated to law enforcement or under the 
management control of law enforcement. The signifi­
cance of this is as follows: 

a. Neither the FBI nor the Federal Government 
control local law enforcement. 

b. There are at least a dozen states that can only 
afford a shared service bureau installation. 

c. Management control of non-enforcement rec­
cords, such as welfare or health, by law enforce­
ment will cause another debate, a very loaded 
one. 

Other technical requirements are dedicated com­
munications lines and non-dial-up terminals. 

PROJECT SEARCH 

The Law Enforcement Assistance Act has for some 
time, thru Project SEARCH, sponsored development 

423 

of technology, a model state act and administrative 
regulations for the protection of privacy and security 
in this exchange of criminal histories. However, this 
work is strictly advisory. All fifty states now partici­
pate in the work, but there is guarantee of neither 
unanimity nor state legislative approval of the results. 

LAW ENFORCEMENT 

Law Enforcement is the principal participant in 
this system to date. Thus, the system operates twenty­
four hours per day, seven days per week. Eventually 
the courts, prosecutors' offices, probation, parole, 
prisons, and the entire criminal justice system will 
participate. 

The information system competence of law enforce­
ment is highly variable. They are in general too de­
pendent on the equipment manufacturers. Their 
information systems have to serve many other pur­
poses than enforcement, such as credit, military clear­
ance, and licensing. They have some experience in 
handling "need-to-know" type restrictions for vice 
records, but the whole idea of restricting access to 
arrest records that do not have convictions will take 
some getting used to. 

Law Enforcement must manage personnel within 
Civil Service regulations. Thus, screening out people 
with a criminal record, criminals in the family, or 
firing an employee for violating administrative se­
curity regulations is difficult. Similarly the use of the 
polygraph as a control is subject to fifty different sets 
of state laws. 

A large number of law enforcement installations 
still operate manual files and these must be protected, 
perhaps even more stringently than automated ones. 
This is because they may have a terminal that receives 
criminal history information even if they do not have 
a computer that is linked to the network. 



424 Fall Joint Computer Conference, 1972 

One further requirement that is not unique but is 
important is the facility for research in criminal rec­
ords. Longitudinal studies have to be done of the 
criminals in their progress thru the criminal justice 
system. These studies require added protections 
because of their potential for violating the privacy 
of the criminal. 

THE THREAT 

Within this context of ambiguity and good inten­
tions there are the threats to law enforcement informa­
tion systems that are very real and very specific. They 
are: 

a. The anarchist who wants to disrupt, destroy or 
embarrass the system; 

b. The criminal who would like to remove a file 
or query the file of another criminal; 

c. The private detective, bank officer, newspaper 
reporter, or employer who would like to check 
for a criminal history; and 

d. Civil disorder. 

The access can be gained either with some difficulty 
from outside the system or thru misuse of people with 
legitimate access. All of these threats have taken 
place at one time or another. The most common threat 
is the bribery of system employees and police officers. 
The technical threat has been documented elsewhere 
and is little different than the technical threat to 
any computer-communications system. One of the 
differences is the extent to which it is worthwhile to 
protect against wire-tapping and electromagnetic 
radiation. Until an organized crime intelligence ex­
change is automated this added expense is not justified. 
This is not so much a judgment on the cost of the 
protections as it is an estimate of the small value of 
most of this traffic. 

With the exception of juvenile records, most of 
the information in criminal records is a matter of 
public record. It is uniformly agreed that errors in 
these records should be corrected. However, since 
these records are widely disseminated, the dissemina­
tion records must be maintained to direct the distribu-

tion of the error corrections. This by itself is a con­
siderable task. An unusual requirement is that under 
some circumstances all evidence that a criminal record 
existed must be removed. 

CONCLUSION 

There are several thinl~s that can be said about the 
solution to these problems. First of all, the achieve­
ment of a commercially available secure operating 
system is vital to resolving the debate about the rela­
tive security of shared versus dedicated installations. 
I suggest that the computer manufacturers pay atten­
tion to the requirement for a secure operating system. 
There is every evidence that these federally sponsored 
non-military agencies will unite at the Federal level to 
produce binding procurement specifications that could 
be influential. 

While many manufacturers have been working on 
absolute identification of terminal users thru voice, 
fingerprint or handwriting recognition, I would like 
to underscore the importance of success here. It is 
the key to the control of one-man remote terminals. 

A problem area that has so many requirements, 
purposes, decision makers, and an incomplete tech­
nology-the technology of computer protection-ends 
up with procedural protections. These are inherently 
weak because they depend upon human diligence. 
It is for this reason that the management control of 
shared installations that contain criminal records 
requires the added protection of the discipline that is 
traditional with the police. 

Lastly, while Law Enforcement has been particu­
larly farsighted by working on this problem well in 
advance of an uproar like that created by the pro­
posal for a National Data Center, the achievement of 
a secure, nation-wide criminal history exchange that 
protects privacy could well take a good deal more 
time and trouble. In part this is because of the absence 
of concrete cost trade-offs studies that tell us how 
much reduction in risk our security measures buy. 
However, even more important is the fact that such 
an exchange requires a uniformity of state laws govern­
ing the use of criminal histories. Such uniformity will 
be difficult to achieve. 



Security of information processing-Implications from 
social research * 

by ROBERT F. BORUCH 

Northwestern University 
Evanston, Illinois 

INTRODUCTION 

Many social research programs are characterized by a 
stringent requirement that identifiable data collected 
on the subjects of research be kept confidential. This 
requirement, coupled with the increasing number of 
sensitive, sometimes controversial research efforts, 
has stimulated social scientists' interest in legal, admin­
istrative, and technical methods for assuring that con­
fidentiality is maintained. We concern ourselves pri­
marily with the technical methods in this paper, treat-

I ing "security" as a partial operationalization of the 
notion of confidentiality. ** 

Specifically, we should like to sketch those problems 
met in social research which are relevant to security­
oriented activities in information processing. In the 
following remarks, some of the distinctive features and 
needs of large-scale social research are outlined. Then, 

I~' 
!j, the research design, data collection, maintenance and 

dissemination stages of the research system are ex­
amined to discover now the interests of social research 
and those of security-oriented information processing 

, might intersect vis-a-vis the problem of assuring con­
I fidentiality. 

,[ 

* Work on this topic has been supported by NSF Grants GS320-
73X and GI29843. Naturally, the views expressed here do not 
necessarily reflect those of the sponsoring agency. Some of the 
observations made in this paper are an extension of earlier 
research reports, notably (1). 
** Confidentiality here refers to the status of information, a con­
dition under which access is formally restricted to certain 
agencies or individuals. Security refers to the administrative, 
technical, and legal devices used to assure that the formal 

1'1 restrictions are met; i.e., security is an operational definition of 
the concept of confidentiality. 

425 

THE CHARACTER OF SOME SOCIAL 
RESEARCH PROGRAMS 

Maintaining confidentiality and security of data are 
likely to be important objectives in a variety of social 
research efforts. In the section, examples of these are 
furnished and the factors which appear to be impor­
tant in distinguishing research archives from other 
kinds of information systems are described briefly. 

Focuses of the research 

In order to establish a manageable topic area, sup­
pose we restrict attention to large-scale social research 
which results in a computerized information system 
containing data on identified research subjects. Some 
form of identifiers (e.g., names and addresses) are essen­
tial when individual subjects must be tracked over 
time to investigate biological and social development, 
to appraise the cumulative impact of drugs or alcohol 
abuse, etc. These so-called "longitudinal studies" are 
frequently conducted, and although many are quite 
small, some involve repeated in-depth measures on 
over 100,000 individuals over a 10 or 20 year period. 

The research topics which can be expected to generate 
some concern about privacy, confidentiality, and se­
curity cut across all the social sciences. In political 
science, for example, whether an individual voted or 
not is frequently a provocative topic for inquiry and a 
negative response usually constitutes "sensitive" infor­
mation. Human factors psychologists, often involved 
in accident research, focus on seat-belt wearing behav.,. 
ior; in some highway surveys, spot checks are made of 
drivers' alcohol use. Each type of information may have 
a stigmatizing character. Epidemiologists, of course, 



426 Fall Joint Computer Conference, 1972 

frequently need to acquire longitudinal data on inci­
dence and spread of venereal· disease, on illegal abor­
tion, and on other socio-biological deviations from the 
norm. Social psychology, traditionally concerned with 
relatively innocuous laboratory experiments, has be­
come associated with research on white-collar crime, 
on mob violence, and on helping behavior in critical 
situations (e.g., bystandar apathy to a street corner 
mugging). Large-scale research in economics and la~ 
has, in recent years, accumulated much longitudinal 
data on individual's spending behavior, deviations be­
tween actual and reported taxable income and other 
sensitive topics. (For references to work in each area, 
see Reference 1.) 

In the past, confidentiality has not been so crucial 
and generalized a concern because the size of the re­
search efforts had been small and visibility of the 
studies low. Perhaps more importantly, the academic 
orientations seemed to have been associated with rela­
tively innocuous data on anonymous individuals or 
subjects tracked over very short time intervals. During 
the past five years, the size and visibility of social re­
search projects such as those described above has in­
creased dramatically, particularly in the policy research 
and evaluation areas.2 •3 As in commercial data collec­
tion activities, accidental disclosure and deliberate 
penetration of research files can have serious conse­
quences: research subjects may be embarrassed or 
harassed and the research programs would undoubtedly 
suffer. Although the empirical risks here are sometimes 
no better documented or appraised than risks in com­
mercial data collection enterprises seem to be, the issue 
is serious enough for both Federal and private grant 
agencies to develop guidelines on collection and main­
tenance of identifiable data on individuals (see refer­
ences in Reference 2). The social researcher's interest 
in establishing the security of information stems from 
increased visibility of research, from these formal legal 
requirements, and from the ethics and the realities of 
research. Our ability to collect data will suffer consider­
ably unless we conscientiously and conscionably recog­
nize the need for security. 

A rchival data: Functional distinctions relevant to 
security 

How might we describe the functional character of 
social research data archives and those features which 
appear to be important for the sake of security? As a 
first approximation, we might consider a rough con­
tinuum of computerized data banks which contain 
personal records, defining the continuum such that one 

end represents an auditing function and the other rep­
resents a research function. Personnel records and in­
telligence systems typify the first extreme, where each 
identifiable record serves as a basis for making evalua­
tive judgments about the individual on whom the 
record is kept, and for taking direct and personal action 
which directly affects the individual. 

The research-oriented systems generally serve not as 
a vehicle for decision and action about an individual, 
but for appraising the group's condition with respect 
to some social theory or with respect to the effective­
ness of a program with which the group is involved. 
The American Council on Education's Higher Educa­
tion Data Bank,4 and Project Talent2 exemplify this 
activity. Each collects identifiable data on thousands 
of students annually. Most of the data are innocuous by 
any standards, but some pertain to campus protest 
activity, alcohol use or other sensitive behavior. Iden­
tifiers serve as an accounting device, and the data are 
not meant for use as a basis for evaluative decisions 
about individuals. 

The functional distinction-audit versus research­
has some rather important implications for minimizing 
the likelihood of disclosure or the utility of data should 
the data be deliberately appropriated for nonresearch 
purposes. Identifiers, even if collected, do not need to 
be as accessible as statistical data for research purposes. 
Special strategies for separate handling of identifiers 
and statistical records can be developed and have been 
used to minimize risk of disclosure (see Intrasystem 
Linkages, below). Statistical records in audit systems 
usually must be quite accurate, but in the social re­
search systems, imperfections generated by the method 
of data collection are recognized and estimated, not for 
the individual, but for the group as a whole. In fact, 
to undermine the utility of individual records, without 
jeopardizing the integrity of the total data seriously, 
random error whose parameters are known can be inocu­
lated into the data. * This strategy, evidently inappro­
priate for commercial record systems, seems to hold 
some promise in research concerning topics such as use 
of contraceptives and illegal abortion, 5 

* Some research designs can be set up such that each respondent 
injects his response with random error in a manner prescribed by 
the researcher. For example, in a question requiring a yes-no 
response, the researcher might instruct the subject to roll a die 
and to lie if a "1" shows and to tell the truth if 2, 3, or 6 shows. 
The known likelihood of false positive and negative responses in 
the paradigm can be used to obtain unbiased estimates of 
parameters in data analysis. The presence of randomized error in 
the record system would presumably reduce embarrassment, and 
threats of unauthorized or legal disclosure, since individual 
records cannot be used for unambiguous judgments about 
individuals on whom records are kept. 



I~ 

Linkage problems also differ a bit depending on func­
tion. In the research systems, one often wishes to merge 
identifiable data collected by different agencies. Unlike 
merges in many audit systems, the separate agencies 
each may have their own rules and practices regarding 
disclosure of individual records but may be willing to 
share data if rules about confidentiality are not compro­
mised. The researcher must then devise special strategies 
to link data without breaching these rules and without 
compromising the promises of confidentiality made to 
individuals on whom records are kept. Specialized 
methods have been developed (see remarks below 
on Intersystem Linkage) but more work needs to be 
done. 

The legal status of information in social research also 
differs from data in the audit system. In some states, 
socio:"medical research records, some educational and 
psychological records are protected from even legal in­
terrogation by a testimonial privilege. More often, 
however, they are not so protected and some mecha­
nisms have been devised to undermine the data's legal 
utility or to minimize its legal accessibility. The inocu­
lation of random errors probably meets the first ob­
jective; specialized froms of data linkage and mainte­
nance (Intrasystem Linkages, below) help to meet the 
second. These legal differences are related to security 
needs in general, and since processing is typically con­
ducted with computing machinery some particular 
features of information processing technology may also 
be relevant here. 

Each of these differences imply some of the special­
ized needs of the research data archive in contrast to 
the audit information system. In the next sections of 
this paper, the collection, processing, and mainte­
nance stages of the research system are described in a 
bit more detail and linked to methods for assuring se­
curity of data. 

DATA COLLECTION 

In the simplest case, data are elicited by the re­
searcher and an individual's response transmitted back 
to the researcher through various intermediary groups. 
The intermediaries often include local administrators, 
staff members of scanning/mark sense processing units, 
and key punch operators as well as the researcher's 
personal representatives. For the sake of security, many 
social researchers are attempting to reduce the possi­
bility of disclosure to intermediaries, particularly by 
reducing the numb~r of intermediate stages between 
eliciting information and the provision of response. 

Security of Information Processing 427 

Questionnaire surveys 

In order to eliminate the possibility of disclosure 
during survey administration, some plans require the 
respondents to put the completed questionnaires into 
locked and addressed boxes which would be sent di­
rectly to the data processor. In some cases, represent­
atives of various interested and disinterested groups 
can and do monitor the collecting, packaging, and mail­
ing of completed questionnaires. 

Even more simply, questionnaires or interview docu­
ments have been designed so that one section, contain­
ing identification and code number, can be detached 
from the other, containing responses and an identical 
code number. Either the respondent at the site of the 
surveyor the researcher at later stages of the survey 
process can actually separate the two components of 
information. The identifying information can then be 
held by the respondent or by a monitoring agency (e.g., 
group of respondents or representatives of the host 
agency) and submitted to the researcher after the sta­
tistical information is compiled. The code numbers 
permit later linkage of statistical data with information 
collected later in the research process. 

Rather than require individuals to respond directly 
on a questionnaire, some researchers are making more 
use of perforated, but otherwise standard EAM cards as 
a vehicle for recording data. In requiring that the re­
spondent merely punch his responses out on the card 
and return it by mail, any intermediate handling of 
identified records is reduced. And, we can couple this 
strategy with the use of nominal or numeric aliases to 
further enhance security. The principal problems with 
this approach seem to be subjects' reaction to the cards 
and limitations of the card format on permissible re­
sponse options. Human engineering studies would prob-· 
ably help to ameliorate some of these problems. 

Remote terminals 

One idea which seems to have some merit involves 
the use of remote terminals as a kind of voting booth for 
repeated surveys of certain groups of individuals. That 
is, rather than have respondents furnish data via ques­
tionnaire or telephone, we might require that they do 
so through "social reporting units" in which opinions 
and self-descriptions can be i~put directly to storage 
by an individual. Remote input devices might be par­
ticularly useful in organizational settings where con­
tinuous monitoring of individual's attitudes, activities, 
expectations, and status are essential for research on the 
effects of policy changes or of organizational innova­
tions. 



428 Fall Joint Computer Conference, 1972 

The voting booth or other remote input methods 
might, for example, be applied usefully to public hous­
ing appraisal where good data on resident's status is 
essential to economic studies.6 ,7 Othera pplications 
may include welfare recipient's reporting, transporta­
tion depot surveys, or surveys of any well-defined group 
(e.g., hospital, military, prison or student groups), 
whose members can provide useful input data to the 
social research reservoir. In many such reporting sys­
tems, a guarantee of anonymity is necessary for honest 
and continued reporting; however, tracking the de­
velopment of individuals is also a frequent requirement. 
These two needs suggest creation of systems in which 
the technically unsophisticated respondent can make 
inputs easily and without being jeopardized by the 
opinion or factual information he offers. The numeric 
alias or password systems already developed appear to 
be relevant here. Some are persuasively secure, e.g., 
permitting the respondent to form his own transform of 
a random number of identifiers supplied by the com­
puter. The human factors problems in getting people 
to use and to adhere to their personal, private trans­
forms will probably outweigh the technical problems in 
implementing such a system, but these do not seem to 
be intractable. 

DOCUMENT PROCESSING 

Anonymous reporting, responding under alias identi­
fiers, and using specially constructed questionnaires 
(or having respondents inoculate their response with 
random error), usually minimize if not eliminate the 
likelihood of unauthorized disclosure at later stages in 
the research system, including document processing. 
But these strategies may be inappropriate or too expen­
sive for particular kinds of research. Very large and very 
expensive field experiments, for example, are an impor­
tant means of evaluating economic and other govern­
mental programs; intensive and long term longitudinal 
surveys of small samples contribute to our knowledge 
of human development.3,8,9,lo Both kinds of studies 
typically require exhaustive cross-checking capabilities, 
very complex merge operations, and other activities 
which appear to justify the joint processing of statis­
tical and identifying information. The use of aliases 
in these cases may be completely inappropriate and 
the use of specially constructed documents may make 
cross-checking the validity or completeness of response 
very expensive. 

In these circumstances, the social researcher usually 
meets several problems. For one thing, document pro­
cessing agencies often have neither written policies nor 

formal administrative regulations regarding the treat­
ment of sensitive data. Similarly, the paucity of infor­
mation on the establishment of and adherence to codes 
of ethics in the document processing industry is serious 
concern to many researchers; since the document pro­
cessing is frequently (perhaps necessarily) tied to com­
puter operations, the concerns apply to this area as 
well. 

When no administrative or ethical codes are espoused 
by the service agency that the researcher must employ, 
it may become necessary for the researcher and the data 
processor to reach some formal contractual agreement 
on the treatment of data. At a minimum, such agree­
ments should require that identifying data and response 
data be separated at an early stage, that the documents 
be destroyed soon after processing, and that the respon­
sibilities and consequences of negligence on the part of 
the service agency be carefully defined. At present, 
insuring that such a prescription is adequate can be 
difficult because legal precedents and specification of 
negligence and liability in a document or data-process­
ing environment have not been fully established. The 
current explorations of these legal problems may clarify 
the situation (see references in References 2 and 11). 

MAINTENANCE AND DATA LINKAGE 

When identifying information must be collected with 
data, the device most frequently used by social research­
ers for minimizing accidental disclosure or deliberate 
interrogation of identifiable records is physical separa­
tion of identifiers and statistical data. Each separated 
file usually contains code numbers which permit later 
merging operations and the identifier file is often kept 
in vault storage. A few social research agencies have 
applied some of the Department of Defense administra­
tive and mechanical requirements for security, and the 
agencies often require computer service groups with 
which they deal to use the same regulations where feasi­
ble.4 ,l1 

More elaborate schemes for minimizing the likelihood 
of disclosure have been developed and are being used. 
Many of these strategies can be divided into three 
groups depending on the purpose of maintaining iden­
tifiers: schemes for intrasystem linkages, for intersystem 
linkages, and for combined audit-research systems. 

I ntrasystem linkages 

Intrasystem linkages refer to a single agency's col­
lecting and merging data on the same sample of individ­
uals over an extended time period. In longitudinal 



I 
studies of students' political activism, for example, data 
are frequently collected in identified form. It is reason­
able to expect that nonresearchers may be interested 
in examining identifiable data. The researcher with no 
legal testimonial privilege (i.e., without the ability to 
resist subpeona), would normally like to minimize or 
eliminate the possibility of disclosing sensitive data to 
even legal authorities when he has promised confiden­
tiality to his respondents. 

An interesting operational resolution of this problem 
is the American Council on Education's LINK FILE 
SYSTEM.4,l1 The strategy was developed to assure the 
confidentiality of longitudinal data on college students, 
data which includes limited but identifiable informa­
tion on disruptive campus protest activities. It works 
in the following way. 

Mter identified questionnaires are returned by stu­
dents, the researchers split the information into two 
segments. The first contains statistical data with one 
of arbitrary numerical codes attached to each record; 
the second contains students' names and addresses 
linked to a second set of code numbers. A third file 
matches the first and second set of numerical identifiers 
(aliases). This code linkage is kept in a foreign country 
with an agency contracted to maintain the linkage fo~ 
later data merges; the, agency is also required by the 
contract not to return the linkage to the researchers 
under any circumstances. In followup studies, the re­
searcher's name and address file is used to distribute 
questionnaires. The associated numerical aliases are 
substituted for names during document processing and 
this file is then shipped to the contract agency. The 
agency replaces the numerical identifiers in this file 
with the first set of identifiers, using its code dictionary. 
Then, this follow-up file is returned to the research 
agency for merging follow-up data with the original 
data, using the numerical identifiers common to both 
files (i.e., the first set of arbitrary numerical identifiers). 

The system is certainly flawed in that it can be under­
mined in some cases by the research staff, by the agency 
holding the code linkage file, and by legal agencies with 
international ties (see the Hoffman and Turn critiques 
described in Reference 11). But it is a useful prototype 
which may help us learn a bit more about how to de­
sign and implement a system which will assist in pro-

I,
' tecting social research data. It does provide a concrete 

target for the check list strategy given by Peterson and 
Turn,12 to determine susceptibility of the data to legal 
interrogation and corruptibility of the system by its 
creators as well as by outside agencies. The difficulty of 
using encoded identifiers (arbitrary identification num­
bers) in physical protection for files and of protecting 
against indirect disclosure overlap considerably with 

Security of Information Processing 429 

problems III intersystem linkages which we consider 
next. * 

Intersystem linkages 

Intersystem linkage refers to the researcher's merg­
ing his own identifiable research records with records 
maintained under other auspices. As an example, con­
sider the (true) example of an economist who obtains 
data on spending behavior and wishes to correlate these 
with items from income tax returns. The linkage of 
both sets of records raises difficulties of two kinds. On 
one hand, the researcher's provision of identifiable infor­
mation to the IRS for merge purposes may violate his 
promise to his respondents assuring the confidentiality 
of the data. On the other hand" the researcher cannot 
obtain identifiable data from the IRS for merging be­
cause IRS regulations generally prohibit such disclosure. 

The so-called insulated linkage process for merging 
data is an illustrative resolution of these two problems. 
To link the files, the researcher first cryptographically 
encodes all statistical data in his own records. He then 
supplies the joint records (encoded statistical data cou­
pled with identifiers), to the other archival agency. The 
latter then merges its own files with the researcher's 
file, basing the merge on the identifiers appearing in 
both files. When the merge is complete, identifiers are 
deleted and the resultant file, consisting of unidentified 
statistical records from both agencies, is then returned 
to the researcher. This system has been used in actual 
merge operations' with some success and is one of a 
general class of strategies for linking data under secu­
rity restrictions.ll 

Again, a linkage strategy of this sort can sometimes 
be rather vulnerable, and additional mechanisms must 
be invented to minimize deliberate efforts to interrogate 
identifiable data in either file. To corrupt the system, 
the researcher could, for example, encode a duplicate 
set of identifiers in his file, allowing identifiers to mas­
querade as statistical data. Presumably this strategy 
can be' rendered useless by having the archival agency 
not only merge the data but also summarize it. The pro­
vision of summary data then may permit only indirect 
disclosure efforts by the researcher. But if the researcher 
uses a very simple encryption scheme, such as system­
atically substituting one character for another in the 
records, the archival agency may be able to penetrate 

* Indirect disclosure involves using a twenty questions strategy to 
deduce new information about an identified individual when the 
interrogator has statistical as well as identifiable records on the 
individual. 



430 Fall Joint Computer Conference, 1972 

the substitution scheme and in fact examine the re­
searcher's identifiable records. 

In both the intrasystem and intersystem linkages, 
social researchers need more guidance on appraising 
the vulnerability of the strategies. Aside from making 
more thorough appraisals as outlined, for example by 
Peterson and Turn,12 we should obtain better insights 
into more systematic ways of detecting and inhibiting 
the likelihood of indirect disclosure, and the utility of 
cryptographic encoding in these applications. 

Combined audit-research systems 

Some organizations, governmental ones especially, 
have both audit and research missions and the informa­
tion maintained in their computers reflects this dual 
objective. Trust may be a reasonable basis for assuring 
that researchers will not improperly explore identifiable 
administrative records or that nonresearchers will not 
interrogate identifiable research records. More formal 
restrictions on access and disclosure may be warranted, 
however, particularly where the data vary considerably 
in sensitivity, and administrative or personnel moni­
toring 'procedures are difficult to implement. 

Some of the researcher's needs here can be charac­
terized as having two dimensions. On one hand, he has 
some need for a flexible, hierarchical system of protec­
tion for his own data which can be tailored to the pyra­
midal nature of its sensitivity. Innocuous and public 
data might then be kept secure with the cheapest form 
of protection possible, e.g., existing administrative 
checks on personnel and the physical plant. More sensi- . 
tive information such as sources of income, psychiatric 
and hospitalization records, personal habits and beliefs 
would justify more secure (and presumably more ex­
pensive) mechanisms including those reviewed by Hoff­
man,14 say, in his state-of-the-art survey. Some flexi­
bility is essential if the researcher is to keep pace with 
both changing public opinions regarding the sensitivity 
of stored information and the changing substance of 
research. These requirements may be met with the de­
velopment of hardware modules or micro-coded instruc­
tional sets which the researcher himself can use as build­
ing blocks for made-to-order protection of data with 
different levels of sensitivity. 

On the. other hand, the audit portion of a combined 
audit-research system may warrant authority hierar­
chies for access to data which are geared to adminis­
trative and researchers' needs. Normally the social re­
searcher wishes to meet his research objectives without 
incurring the responsibility or liabilities associated with 
access to joint information and without forcing a com-

promise of the original conditions (e.g., a promise of 
confidentiality) under which information was originally 
supplied to an audit agency. The Shared File System 
(APL) developed by David Booth15 appears to have 
some relevance to this problem; it involves the use of 
access authorization codes associated with particular 
primitive (and unmodifiable) commands and particular 
roles. Presumably, research needs can be accommo­
dated well by tailoring the system so that the researcher 
can operate with restricted functions in restricted work 
spaces and arrays, while locked out of his administra­
tive or research colleagues' work spaces, and unable to 
examine or modify other functions and files stored in 
the same equipment. 

DISCUSSION: POTENTIAL USE OF A DATA 
BANK REGISTRY AND DEVELOPMENT 
AGENCY 

A paper as brief as this one must be cannot hope to 
give a detailed appraisal of the social scientists' needs 
in their efforts to maintain the confidentiality and se­
curity of the data they maintain. As a framework for 
summarizing those needs, suppose we consider the cur­
rent proposals for a national registry of computerized 
data banks. The proposals are in the interest of develop­
ing mechanisms for solving problems in the security 
area and they may be helpful at the design as well as 
implementation stages of social research. 

It has been suggested that such a registry, coupled 
with a development agency, be created for the purpose 
of documenting the nature of computerized information 
systems, the kinds of personal data maintained in such 
systems, and the rules and practices which pertain to 
storage of data. Alan Westin's proposed "data bank on 
data banks,"16 John Kemeny's plan for a National 
Computer Development Agency,17 and other sugges­
tions for monitoring large-scale data collection 8,18,19 
seem to imply documentation functions of this sort. 
We can anticipate that such plans, if implemented, will 
be of considerable interest and use to social researchers, 
especially if they include the kinds of information listed 
below. 

POLICY AND PRACTICES IN DATA 
COLLECTION 

Given the diversity of social research programs, no 
single policy or managerial practice is likely to satisfy 
all public and private requirements for assuring confi­
dentiality of data. Statistical methods for minimizing 
likelihood of identification, legal constraints against 



access as disclosure and administrative methods for 
assuring confidentiality have been developed, but they 
have been organized and appraised in only a few in­
stances.2,5,20 Regrettably, these strategies have not been 
tied well to more computer-bound technical devices 
such as those described by Hoffman,14 Peterson and 
Turn,12 and Goodfellow.21 An agency with an informa­
tion clearinghouse function, coupled with a develop­
ment mission, would be quite helpful in documenting, 
consolidating, and organizing information in the fol­
lowing categories. 

Legal solutions 

Local, state, and Federal statutes relevant to privacy 
and bonfidentiality of data; court precedents, adminis­
trative regulary powers; empirical data on problems in 
enforcement of codes, and adherence to guidelines fur­
nished by government agencies to social researchers 
regarding rights of privacy and conditions of disclosure. 

Administrative approaches 

Link file systems,4 insulated data banks,l1 and other 
similar strategies for eliciting and merging sensitive 
data; vulnerability, utility, and frequency of the 
strategy's use; cost data. 

Statistical/Mathematical Solutions 

Documentation on applications of error inoculation5 

and other approaches to depreciating probability of 
indirect disclosure ;13,20 costs and benefits of applications. 

Technical mechanisms 

Types of cryptographic encoding appropriate for 
computer applications; their cost and vulnerability; 
catalogs or listings of hardware and software security 
devices; possible relevance of new devices to specialized 
research needs (such as remote terminal application 
mentioned earlier; see also Reference 22). 

Empirical studies 

There is some real value in consolidation of data on 
people's resistance to data collection and to social re­
search. Complaints about the collection of information 
and against organizational disclosure practices, con­
cerns about the magnitude of data maintained, etc., 

Security of Information Processing 431 

need to be well-documented. Although some empirical 
data exist, there is currently no single source on which 
the researcher may draw to establish the likelihood of 
privacy problems in the conduct of his research and to 
anticipate the costs of resolving them. 

In many cases, questions can be phrased to minimize 
embarrassment and/or threats of sociolegal action 
against a respondent. Some of the relevant strategies­
elimination or generalization of the inquiry, approxi­
mations to direct questions-are fairly well docu­
mented.2 Small "item pools" or computerized retrieval 
systems containing questions which pertain to the same 
general behavior, but with varying levels of sensitivity 
and intrusiveness do exist. But data on both strategies 
and item pools are widely dispersed. There is still a 
great need for large, accessible item pools which have 
been tested for objectionability, intrusiveness, and 
susceptibility to error. 

Validity appraisals and secondary analysis 

Frequently, social researchers elicit anonymous in­
formation from previously identified samples or require 
research subjects to use an alphanumeric alias (in short 
term longitudinal studies), so as to minimize if not 
eliminate any risks that data will be used for nonre­
search purposes. An information registry would be of 
considerable help in appraising validity of sampling and 
credibility of reporting in such efforts. Suppose, for ex­
ample, a medical sociologist, who usually has no testi­
monial privilege for the data he collects,. relies on mailed 
or telephoned responses to his questionnaire on illegal 
methadone use. He might encourage the use of aliases 
to assure that his data are not appropriated (legally 
or otherwise) for harassment of his subjects, but he 
still needs to anticipate the redundancy of his data, and 
to appraise its validity since he does depend on volun­
tary responses. The researcher could do so if a data bank 
register furnished information about the existence of 
medical records, census data, police intelligence sys­
tems, etc., which contained relevant statistical data on 
the population from which subjects were sampled. And 
if identifiers were actually obtained he could merge his 
own data with existing files without violating access 
restrictions using some special administrative strategies 
which might also be documented in the same registry. 

SUMMARY 

The objective of maintaining security of social research 
data is an operationalization of the concept of "confi­
dentiality" in social research. The problems in meeting 



432 Fall Joint Computer Conference, 1972 

the objective depend on where the research falls on a 
hypothetical audit-research continuum for the data, 
on the kinds of process being used to elicit the data, and 
on the level of identifiability of records necessary in the 
research. Major differences between audit and social 
research approaches to security problems stem from the 
social researcher's infrequent need to maintain joint 
identifying and statistical records, and the opportunity 
to use modified (alias) identifiers and modified response 
data (i.e., inoculated with random error in a controlled 
process). 

Aside from benefiting from systematic appraisal 
methods such as those described by Peterson and 
Turn,12 social researchers might do well to capitalize 
on other research efforts connected with security in in­
formation processing. Linkage systems and similar 
devices mentioned earlier depend very much on en­
cryption schemes for assuring integrity of the system. 
The encryption transforms used in the examples cited 
have been limited to simple substitution of one charac­
ter for another or simple linear transforms of original 
numerical characters. Perhaps certain kinds of trans­
position or additive transforms, as yet unfamiliar to the 
social scientist, can be adapted to this kind of problem 
to assure greater security. Certainly, the development 
of algorithms which help in checking whether indirect 
disclosure is possible or likely would be well received by 
managers of the re~earch data banks. Translating the 
structure of data sets into simple algebraic equations 
is a skill which is usually beyond the social scientists' 
own expertise. Judging from Fellegi's13 work and cur­
rent activities by Turn,23 such algorithms are likely to 
require a great deal of techinal attention to efficiency, 
to heuristic alternatives to searching large sets of equa­
tions (data sets), to determining the likelihood of in­
direct disclosure, tasks in which the social must be edu­
cated by the computer technologist. 

Certainly, if proposals for national data registries 
and development centers are implemented, social scien­
tists will have the opportunity to reduce redundancy 
in collection and maintenance of identifiable data. A 
centralized information source may help to stimulate 
more interest and expertise in technical solutions to 
problems in this area. Since most social research in­
volves data which are heterogeneous with respect to 
their sensitivity and publicity, the researcher will bene­
fit most from technological developments which asso­
ciate more protection with increasing levels of sensi­
tivity, and authority access designs which recognize 
these levels. 

REFERENCES 

1 R F BORUCH 
A n annotated bibliography of randomiz.ed field experiments 

in policy research 
Background paper for Social Science Research Council's 
Committee on Experimentation Northwestern University 
1972 

2 R F BORUCH 
Maintaining confidentiality in educational research: 
A systemic analysis 
American Psychologist 1971 26 pp 413-430 

3 T K GLENNAN 
Using experiments for social research and planning 
Monthly Labor Review February 1972 

4 A W ASTIN R F BORUCH 
A "link" file system for assuring confidentiality of research 
data in longitudinal studies 
American Educational Research Journal 1970 7 pp 615-624 

5 R F BORUCH 
Administrative, statistical, and legal solutions to the problem 
of assuring confidentiality in social research 
Paper presented at Statistics Department Colloquium 
University of Chicago 1972 

6 J ROTHENBERG 
Urban economics 
In Nancy D Ruggles (Ed) Economics: Report of the 
behavioral and social science survey (NAS and SSRC) 
N J Prentice-Hall 1970 

7 H BLACK E SHAW 
Detroit's social data bank 
In A F Westin Information technology in a democracy 
Cambridge Harvard University Press 1971 

8 E B SHELDON 
Social reporting for the 1970's 
Chapter 7 Report of the President's Commission on Federal 
Statistics Washington DC US Government Printing 
Office 1971 

9 W D WALL H L WILLIAMS 
Longitudinal studies in the social sciences 
London Heinemann 1970 

10 D T CAMPBELL 
AdministratiJe experimentation, institutional records, and 
nonreactive measures 
In W M Evan (Ed) Organizational experiments Laboratory 
and field research New York Harper and Row, 1971 

11 R F BORUCH 
Strategies for eliciting and merging confidential social research 
data 
Policy Sciences September 1972 (in press) 

12 H E PETERSEN R TURN 
System implications of information privacy 
Proceedings of the 1967 Spring Joint Computer Conference 
American Federation of Information Processing Societies 
1967 

13 I P FELLEGI 
Question of statistical confidentiality 
Journal of the American Statistical Association 1972 67 
pp 7-18 

14 L J HOFFMAN 
Computers and privacy: A survey 
Computing Surveys 1969 1 pp 84-103 

15 D F BOOTH 
File security for a shared file, remote terminal system 
Paper presented at the Conference on Computers, Privacy, 
and Freedom of Information (Mimeo) Queen's University 
1970 

16 A F WESTIN 
Civil liberties and computerized data systems 



In Martin Greenberger (Ed) Computers, communications, 
and the public interest Baltimore The Johns Hopkins 
University Press 1971 

17 M GREENBERGER (Ed) 
Computers, communications, and the public interest 
Baltimore The Johns Hopkins University Press 1971 

18 President's Commission on Federal Statistics 
Report of the President's Commission 
Washington DC US Government Printing Office 1971 

19 G B F NIBLETT 
Digital information and the privacy problem 
Paris Organization for Economic Cooperation and 
Development 1971 

20 M H HANSEN 
Insuring confidentiality of individual records in data storage 
and retrieval for statistical purposes 
Proceedings of the 1971 Fall Joint Computer Conference 

Security of Information Processing 433 

American Federation of Information Processing Societies 
1971 

21 B B GOODFELLOW 
Projections of the impact of technology on the development of 
large data base information systems 
Position paper presented at the Conference on Computers: 
Privacy and freedom of information Queens University 
Kingston (Canada) May 21-24 1971 

22 N M BRADBURN 
Survey research in public opinion polling with the information 
utility-promises and problems 
In H Sackman and N Nie The information utility and 
social choice Montvale (New Jersey) AFIPS Press 1970 

23 R TURN N Z SHAPIRO 
Privacy and security in data banks: Measures of effectiveness, 
costs, and protector-intruder interaction 
Proceedings of the 1972 Fall Joint Computer Conference 
American Federation of Information Processing Societies 
1972 





Privacy and security in databank systems­
Measures of effectiveness, costs, and 
protector-intruder interactions* 

by REIN TURN and NORMAN Z. SHAPIRO 

The Rand Corporation 
Santa Monica, California 

INTRODUCTION 

The nearly seven years of concern with data privacy 
and security in computerized information systems have 
produced a variety of hardware and software techniques 
for protecting sensitive information against unau­
thorized access or modification.1- 7 However, systematic 
procedures for cost-effective implementation of these 
saf eguards are still lacking. 

The data security design and implementation process 
will remain more art than science until adequate 
theoretical foundations are laid and analytical tools 
developed for a "data security engineering" discipline. 
Needed in particular are measures for evaluating the 
effectiveness of data security techniques in various 
threat and implementation environments; methods for 
estimating the costs of implementing the safeguards in 
various classes of information systems; and tradeoff 
relationships between these and other relevant variables. 
Equally important is the ability to estimate potential 
losses. 

This paper strives to contribute to the formulation 
of data security engineering in the areas of personal 
information databank systems: a model of the personal 
information databank system is presented; the nature 
of the interactions of the databank security protector 
with potential intruders is explored; and the amount of 
security and implementation costs associated with 
several classes of data security techniques are discussed. 

* The research reported in this paper was supported by the Na­
tional Science Foundation Grant No. GI-29943. Any views or 
conclusions contained in this paper should not be interpreted as 
representing the official position or policy of the National Science 
Foundation or The Rand Corporation. 

435 

THE DATABANK SYSTEM 

The term databank implies a centralized collection of 
data to which a number of users have access. A com­
puterized databank system consists of the data files, the 
associated computer facility (processors, storage de­
vices, terminals, communication links, programs and 
operating personnel), a management structure, and 
assorted "interested parties." 

Structure 

If the function of a databank system is to collect, 
store, retrieve, process, and disseminate personal data 
on individuals (or organizations), the databank system 
includes the following elements: 

• Subject, a person or an organization about whom 
data are stored in the databank system. He may 
have provided the data voluntarily, in a quasi­
mandatory fashion to obtain benefits or privileges, 
or as required by law. Data on him may also have 
been collected without his knowledge or consent. 

• Controller, an agency or institution (public or 
private) with authority over the databank system 
and its operations. The controller authorizes the 
establishment of the databank system, specifies 
the population of subjects and type of data 
collected, and establishes policies for the use, 
dissemination, disclosure, and protection. 

• Custodian, the agency and its personnel in physical 
possession of the data files, charged with the 
operation of the databank system, and responsible 
for enforcing the policies established by the 
controller. 

• Collector, the agency and personnel who collect 
the data and transmit it to the custodian. 



436 Fall Joint Computer Conference, 1972 

Confidentiality Data 
Security 

Figure I-The Databank System 

• User, a person or agency authorized by the con­
troller or the custodian to utilize specified subsets 
of data for specified purposes, subject to the dis­
closure and dissemination policies of the databank 
system. 

Other parties interested in the data and its uses include: 
• Intruder, a person or agency either deliberately 

attempting to gain unauthorized access to the 
databank system or making unauthorized use of the 
data normally available to him as an authorized 
user, or accidentally doing so. 

• Society, the population within which the subjects 
have rights and obligations, and whose welfare 
also affects the welfare of the subj ects. Large 
classes of databank systems are needed to support 
studies of the society, and administer and assess 
social benefit programs. 

Figure 1 illustrates the structure of a generalized 
databank system and displays the more prominent 
lines of communication between its elements. Note, 
however, that the elements of a databank system need 
not be unique. Multiple roles and overlap in functions 
are common in existing databank systems. For ex­
ample, the controller, custodian, and user may be the 
same agency or group of persons. 

The role of a subject in the databank system is to 
provide the "raw material" (i.e., personal information 
about his characteristics, background, and activities) 
for the databank operation. The roles of the other 
databank system elements are to store and process 
these data, and to make the data available to users for 
making decisions affecting a specific subject, groups of 
subjects, or the entire society. It is also their responsi­
bility to protect the data against misuse, intrusion and, 
when appropriate, the society's claim of the "right to 
know." 

Privacy and security 

Privacy, confidentiality, and security are terms that 
refer to the philosophical, legal, and technical aspects 
of the subject's interactions with other elements of 
the databank system. 

• Privacy is the right of an individual to determine 
for himself what personal information to share 
with others, as well as what information to receive 
from others. 

Relevant questions for examining possible invasions 
of privacy by the data collection activities of a data­
bank system include:8 What personal information 
should be collected and stored to support the users of a 
specific databank system? To what extent should 
personal information from different sources be inte­
grated to give a unified view of the individual? Who 
should be allowed to use the data and for what pur­
poses? 

• Due process, in the context of personal information 
databank systems, deals with the right of the 
subject to know the information stored about him 
in a databank system and to challenge the veracity 
of such information. 

The relevant questions here include: Should an 
individual be entitled to know that information about 
him is being collected and stored? Should he be allowed 
to challenge the presence, accuracy, and completeness 
of this information? Westin8 points out that answers to 
questions dealing with privacy and due process are 
political, not technical, to be worked out by balancing 
the value of civil liberties against the needs of the 
society. 

• Confidentiality refers to the special status given to 
sensitive personal information in the databank 
system to minimize potential invasions of privacy. 
Disclosure of confidential data is restricted to users 
and only for purposes authorized by the controller 
or the subjects themselves. Confidentiality is 
achieved by legal and procedural means,9,lO,1l and 
by implementing techniques of data security. 

• Data security refers to the protection· provided to 
the databank system against deliberate or acci­
dental destruction, and unauthorized access or 
modification, of the data. In the context of this 
paper, data security refers to technical and pro­
cedural means for protecting the data from in­
truders. 

I' 
1 



I 

Within the databank system, the controller deter­
mines the nature of personal data to be gathered and a 
method of collection that satisfies the right of individuals 
for due process and establishes policies and procedures 
for data confidentiality. The collector and custodian 
have the responsibility to enforce the confidentiality 
policies and to provide procedures and technical safe­
guards for data security (see Figure 1). 

Classification 

I' The nature of the databank ownership, the principal 
use of the data, and the characteristics of the computer 
facilities strongly affect the complexity of the data 
security problem. It is useful, therefore, to establish a 
classification system that reflects data security require­
ments. 

• Public-Private-Public databank systems are 
operated by government agencies. The controller, 
custodian, and users are legislative, judicial, or 
executive entities. Private databanks are operated 
by corporations or institutes within applicable 
laws. For example, the operation of credit in­
formation bureaus is regulated by the Fair Credit 
Reporting Act of 1970. 

• Statistical-Dossier-Statistical databanks are 
operated to produce statistical summaries. In­
dividuals are not identified in the output, but 
identification may be needed in the databank to 
permit either periodic updating of longitudinal 
studies or linking with other databanks. In dossier 
databanks, personal data are used to take action on 
specific individuals. Precise subject identification is 
important. Dossier databanks can be used for 
statistical purposes. The converse, however, is not 
necessarily true. 

• Centralized-De centralized-A centralized databank 
consists of one databank. In a decentralized data­
bank, there are several physically separated 
databanks, each containing a part of the overall 
data collection. The several databanks mayor may 
not be connected by a communication network. 
For example, the U.S. Internal Revenue Service 
maintains a decentralized databank system of 
income tax information. 

• Dedicated-Shared-In a dedicated databank imple­
mentation, the computer facility is used exclu­
sively to serve the databank. In a shared system, 
other databanks or computer applications use the 
same computer facilities. 

• Off-line-On-line-An on-line databank permits 
direct real-time interaction of a user with the data 

Privacy and Security in Databank Systems 437 

through a terminal. Access may be direct or 
indirect. In the latter case, a databank employee 
acts as an intermediary. In an off-line databank, 
the user is neither in control of data processing nor 
knows when his data request is processed. 

These classifications permit ranking databank systems 
in order of increasing complexity of potential data 
security problems, ranging from the public, statistical, 
centralized, dedicated, off-line databank systems (e.g., 
the U.S. Census Bureau), which can be expected to 
have relatively simple data security problems, to the 
private, dossier, decentralized, shared, on-line databank 
systems (exemplified by commercial credit bureaus and 
the future computer utilities), where every conceivable 
data security problem is likely. 

Threats and countermeasures 

Threats to data privacy, confidentiality, and security 
in a personal information databank system may arise 
from all elements of the databank system. For example, 
without the consent of the subjects, the controller may 
change disclosure rules; the custodian, collector, or 
users may disregard confidentiality procedures or use 
data for unauthorized purposes; the databank per­
sonnel, users, or even the subjects themselves may 
become intruders; and the databank equipment or 
programs may fail and cause accidental disclosures or 
data modification. 

Technical means by which the intrusion may be 
perpetrated include deception, nullification, circum­
vention of existing protective features, and wiretapping 
of communication links. Whether or not the intrusion 
threats actually materialize depends on the nature of 
the data stored, the potential value of the data to the 
intruder, the risks he is willing to accept, and the 
resources he is willing to invest. 

Countermeasures against the various threats include 
legal sanctions to deter confidentiality violations by 
the personnel and authorized users of the databank 
system, application of irreversible transformations on 
data in statistical databanks, and implementation of 
access control, threat monitoring, and cryptographic 
techniques.l.2.7.12 

The design criteria for data security systems include 
effectiveness, economy, simplicity, and reliability. 
Although social policy may prefer protection of con­
fidentiality at any cost, the rational approach to security 
system implementation is to protect only the data worth 
protecting. The following section outlines a model of the 
economic interactions of a rational protector of the 
databank system and a rational, profit-motivated 



438 Fall Joint Computer Conference, 1972 

intruder. This model can be used to discuss the design 
of cost-effective data security systems for various 
classes of databank systems. 

A MODEL OF PROTECTOR-INTRUDER 
STRATEGIES 

Consider the case where economic profit motivates an 
intruder to attempt penetration of a personal informa­
tion databank system. In particular, assume that the 
intruder wants to compile a "mailing list," L, of N 
information items, each of which has the market value 
k. The total market value, V, of the list L is then 

V=kN (1) 

To perpetrate the databank penetration, the intruder 
makes an investment, X. If the intruder requires a 
minimum profit, rX, r>O, then his maximum invest-
ment to obtain the list L is . 

X=kN/(1+r) (2) 

where it is also assumed that this intrusion is an isolated 
event that does not significantly benefit from previous, 
nor contribute to future, intrusions. The possibility of 
selling multiple copies of the list could be easily accom­
modated. The intruder's investment, X, is an expected 
value and should take into account the probability of 
failure and the risk that the databank's deterrence and 
retaliatory mechanisms may lead to additional costs. 

To counter this intrusion threat and others, the 
protector of the databank system expends Y resources 
for data security measures. This investment should 
reflect the value of the protected information to the 
subjects, to the protector himself, and to potential 
intruders. Thus, prudent investment decisions of the 
protector would be: 

• Not to commit large resources to protect infor­
mation of little value to the potential intruders, 
even if the subjects are very strongly against the 
possible acquisition of this information by the 
intruders. 

• Not to expend large resources to protect infor­
mation whose release would not greatly disturb the 
subjects, even if the information would be valuable 
to the intruders. 

• To commit most resources to protect information 
that is valuable to the intruders, and whose acquisi­
tion by the intruders would be very detrimental to 
the subjects. 

Consider the protector-intruder interaction further. 
Let / (X, Y) be the expected amount of information 

obtained by the intruder when he expends X amount of 
resources to overcome the Y amount invested by the 
protector. l(X, Y) is an expected value since the 
probability of success for the intruder is not necessarily 
unity. For example, the intrusion may be thwarted 
because of the intruder's incomplete information about 
the databank's security system or even by a computer 
error. 

As is apparent from the previous discussion of the 
nature of X and Y, l(X, Y) is not a simple function of 
X and Y. However, some of its elementary properties 
are 

• 1(0, Y) =/(X, 00) =0, for X, Y>O; 
• 1 (X, Y) is monotone non-decreasing In X and I 

monotone non-increasing in Y. 

Let feN) be the value to the intruder of N units of 
information and g(N) be the cost to the protector and 
subjects of the same N units of information, occurring 
as a result of the intruder acquiring this information. 
Then, for given X and Y, the expected net profit of the 
intruder, veX, Y), is 

veX, Y) =f(I(X, Y))-X (3) 

while the net loss to the protector and subjects, u(X, Y),' 
IS 

u(X, Y) =g(I(X, Y))+Y (4) 

Given sufficient information regarding the expendi­
tures of the protector, Y, and the nature of the security 
system implemented, an intruder may vary his invest­
ment, X, to maximize the expression (3). A rational 
protector would utilize his estimates of the value of 
protected information, the technical feasibility of 
threats, and the likely resources of the intruders to vary 
his expenditures, Y, to minimize the expression (4). 
It follows that if f, g, and 1 are suitably differentiable 
in a region containing X and Y, the selected values of 
X and Y will satisfy 

f'(l(X, Y))a(X, Y)/aX=l (5) 

g'(/(X, Y))al(X, Y)/aY=-l (6) 

where the prime denotes differentiation. 
If one or more of the functions 1, f, or g are not 

differentiable in the region containing (X, Y), then the 
expressions ( 5) and ( 6) must be replaced by more 
complex conditions. 

To use the above interaction model, analytical or 
empirical expressions are required for 

• The value of personal information to the intruder 
(i.e., the functionf(N». 



I 
I 

• The value of personal information in the databank 
to the protector (i.e., the loss function g(N)). 

• The amount of security provided by various data 
security techniques (i.e., the expected expenditures, 
X, of intruder's resources). 

• The costs of implementing the security barriers. 
• The tradeoff relations between the amount of 

security (intruder's cost) and the protector's cost. 

These items are difficult to determine and are often 
sensitive to the particulars of a databank security 
system and the information protected. There are, 
however, certain general features that can be discussed 
in qualitative terms. 

VALUE OF PERSONAL INFORMATION 

Securing personal information in a computerized 
databank system requires estimating the value of 
protected information to the potential intruders, the 
subjects of the data themselves, and the protector­
custodian of the databank system. In general, this is a 
difficult task involving emotional as well as economic 
considerations. The following discussion represents 
only a preliminary exploration of this problem. 

Value to potential intruders 

A flourishing market for information has always 
existed. The value of trade secrets, marketing informa­
tion, new product plans, and customer lists that are 
acquired by intruders in industrial espionage operations 
amounts to millions of dollars annually.13.14 

The value of personal information to potential 
intruders is more difficult to estimate. A personal 
information market exists for mailing lists of names and 
addresses of persons satisfying selected criteria. These 
are used mainly for mailing advertising literature or 
making sales calls, but they are also sought for political 
and even criminal purposes. The mailing list rates for 
advertising purposes are approximately $10 per 1000 
names ;15 this price increases with sophistication of 
selection criteria. Currently, the sale of name and 
address lists compiled for public information is not 
illegal and is practiced at all levels of government 

Ii agencies. However, Federal legislation is pending26 to 
I make illegal such sales without the consent of the 

II, subjects involved. 
I' The value of information on specific individuals can 

II be expected to vary from next to nothing to thousands 
i,\ of dollars, depending on the prominence of the in­
'iii dividual, the nature of the information, and his suscepti­
Iii, bility to blackmail, political smear, or litigation. 
,: 

Privacy and Security in Databank Systems 439 

Given the relatively high cost of penetrating the 
security barriers or subverting the employees of a data­
bank system, it is likely that intrusions involving 
personal information are likely to be bulk operations­
large numbers of information items would be obtained 
per intrusion, or many intrusions would be attempted 
to amortize the initial expenditures. 

Prime-target personal information includes informa­
tion held confidential by Federal or state statutes 
(criminal justice, public health, psychiatric, financial 
status, family background, etc.). Such information 
could be utilized for perpetrating frauds, high pressure 
sales, and blackmail. Illicit "purging" of records for a 
fee, or planting of fabricated information, may be 
attempted. 

Court records, statistics on fraud and blackmail, 
and mailing list prices may provide the initial empirical 
data on the value of personal information to the 
intruders. 

Value to the subject 

The value to the subject of protecting his personal 
information can range from very little (for much of the 
population who, at most, would be annoyed by sales 
literature or salesmen's telephone calls), to thousands 
of dollars for those vulnerable to blackmail or character 
assassination. Indeed, the value to intruders of the 
latter type of information stems directly from the value 
that the subjects place on the same information, as 
evidenced by their willingness to pay. 

The value of information of certain categories (e.g., 
family background) may be a time-varying function of 
contemporary mores. Empirical data on value of 
information can be gathered from statistics on the use 
of unlisted telephone numbers and the effects of fees for 
this service; the insurance premiums paid by munici­
palities, banks, credit bureaus, and other personal 
information handlers against "invasions of privacy" 
lawsuits; the willingness of individuals to accept money, 
and how much, in exchange for releasing personal 
information; and surveys of attitudes concerning 
privacyP 

Considerable collections of such statistics, and 
correlation with various population groups, are required 
to establish even first-order guidelines on estimating the 
value of personal information to individuals themselves. 

Value to the protector 

The value of personal information in databank 
systems manifests itself to the protector as: 

• The legal liability of the custodian to damages 



440 Fall Joint Computer Conference, 1972 

incurred by subjects whose data has been divulged 
to intruders through inadequate security measures 
or through personnel negligence. This reflects 
itself in the insurance premiums and payments for 
damages that the databank may have to make in 
addition to insurance coverage. 

• The pressure on the custodian by the controller 
may result in firing of personnel, cuts in budget, 
restrictions of operations, etc. The dollar values of 
such losses could be estimated from analogous 
actions taken against agencies other than data­
banks. 

• The cost of re-creating the files in cases of data 
destruction. 

It is apparent that the functions feN) and g(N), 
representing the value of N items of information to the 
intruder, the protector and the subjects, respectively, 
cannot quantitatively provide for all possible situations. 
In a more complete protector-intruder interaction 
model, N would be a multidimensional vector whose 
components represent types of information, rather 
than a scalar. 

AMOUNT OF SECURITY AND COSTS 

The amount of security provided by a data security 
technique refers to effectiveness against intrusion. As 
suggested previously, an intruder's expected expenditure 
of resources in overcoming a security barrier may be a 
suitable measure. 

Before attempting to penetrate a databank security 
system, an intruder must: 

• Obtain sufficient information about the databank 
system to determine whether it contains the 
desired information; what data security techniques 
are applied; what is the probability of. success; 
and what are the penalties for failure. 

• Formulate an acceptable intrusion plan to satisfy 
the cost constraints, and provide acceptable 
probabilities for success and risk. 

• Gain physical access to the databank system either 
directly through a terminal, communication links, 
computer, etc., or indirectly through an employee 
of the databank system. 

• Penetrate into the databank; nullify or circumvent 
the data security techniques to gain access to the 
information; acquire the information for subse­
quent analysis; and escape detection and reactive 
measures sufficiently long to complete the action. 

The objectives of a security system are to deter a 

profit-seeking intruder by raising the intrusion cost to a 
level that reduces his expected profits to an unaccept­
able level, and to prevent access by intruders not 
economically motivated through effective access control 
and threat monitoring techniques. Effective integrity 
management programs must be implemented to main­
tain personnel loyalty and reliability of equipment and 
software. 

These three classes of data security techniques must 
be applied against intruders to: 

• Deny information about the security system. It may I 

not be possible, or even not desirable,18 to maintain 
secrecy about the security techniques used, but the 
specific access codes and keys must be kept from 
all but a few authorized personnel. 

• Prevent unauthorized access to the computer system 
(terminals, communication links, processor, data 
storage devices), the protected data files within 
the computer, and to specific data processing 
operations. 

• Detect intrusion attempts; discriminate among 
threats; sound alarm; and take responsive action. 

• Maintain integrity of the databank system by 
reducing opportunities for personnel subversion, 
increasing hardware and software reliability, and 
controlling any changes in software or hardware. 

The amount of security 

The burden of preventing intrusion is borne by the 
access control techniques. Threat monitoring is used 
mainly to reduce the time available for perpetrating the 
intrusion and for post facto investigation. 

The basic elements of access control are: 

• Authorization of persons to access the computer 
facility, terminals, data files, and processing 
operation. 

• Identification of a person· seeking access. 
• Authentication of his identity and access au­

thorization. 

Not all databanks have implemented all of the above 
steps as part of the access procedure-in some, the 
mere possession of a valid password is considered 
sufficient. 

The enforcement of access control techniques may be 
assigned to computer facility personnel, performed by I 

hardware devices, or implemented in software. 
To defeat an access control technique, an intruder I 



must be able to accomplish one of the following: 

• Acquire or forge the proper identification and 
authentication passwords or keys. 

• Curcumvent or disable the access control technique. 

The choice depends on the technical feasibility of 
these approaches and, for those deemed feasible, the 
relative costs, risks, and required time. 

Acquisition of access control inforlllation 

The protective capability of passwords and privacy 
transformation keys lies in the intruder's uncertainty 
regarding which of the very large number of possible 
passwords or keys is being used. For example, there are 
265~1.2XI07 possible 5-character and 266~3.1XI08 
possible 6-character passwords. 

Nevertheless, a trial and error search for the correct 
password is not entirely infeasible: a minicomputer can 
be. programmed to imitate the databank terminal's 
sign-on and password sending sequences. This computer 

i can then be used to try different passwords at the rate 
, permitted by the communication channel and the 

databank computer. The intruder's effort is greatly 
reduced if the passwords used by the databank are 
selected for their mnemonic capability (i.e., are similar 
to English words). For example, studies of 5-character 
alphabetic code words that were required to differ in at 
least two characters and contain at least two vowels 
show19 that only 150,480 5-character words can be 
selected out of the total space of 1.2 X 107. To test all 
of these at the rate of 10 per second would require 
slightly more than 4 hours. 

\I" However, passwords could be obtained with less 

I
II effort by wiretapping the communication links and 
J recording the sign-on sequences.20 Acquisition by 

I wiretapping of passwords that are used once-only 
I requires more sophisticated techniques, e.g., "piggy 

backing":1 insertion of a minicomputer in the line to 
I intercept user-computer communications, to return an 

error code to the user, and to enter the file with the 
I password obtained. If passwords are generated by a 

1,'

" pseudorandom process for once-only use, and several 
passwords are intercepted, certain number-theoretic 
techniques may be applied to discover the password 

I, 

generation process and its parameters. 
The intruder's cost of acquiring passwords through 

wiretapping ranges from the cost of recording equip­
I ment-a few hundred dollars, to the cost of a mini­

I computer and associated programming-a few thousand 
dollars. The risks include the possible legal prosecution. 

Privacy and Security in Databank Systems 441 

Cryptanalysis of privacy transforlllations 

The intruder's work factor in attempting to solve for 
the key of a privacy transformation from intercepted, 
enciphered data is normally much larger than required 
for passwords. The key spaces are much greater, and 
exhaustive trial-and-error solution is infeasible. How­
ever, analysis of intercepted transformed data from the 
point of view of language statistics can be applied. 
Relevant are 

• Single character frequency distribution; 
• Digram (pairs of characters) and polygram fre­

quency distributions; 
• Word usage patterns; 
• Syntactical rules of the language. 

The two main classes of privacy transformations are 
substitutions of characters in the data with other 
characters (or groups of characters) and transportation 
of the order of the characters.21.22.23 

The easiest to apply in a computer system are the 
substitution transformations: 

• M onoalphabetic substitution, or the "Caesar cipher," 
where each character, Xi, of the data (the "plain­
text") is transformed into a character, Yi, of the 
"ciphertext" by modulo N addition of a constant c 

(modN) 

where N is the size of the alphabet. The constant 
c has only N -1 possible values and, thus, can be 
easily discovered. 

• Polyalphabetic substitution of period u (the Vigenere 
cipher) consists of cyclic application of u mono­
alphabetic substitutions by adding modulo N the 
constants co, CI, .•• , C'U-I so that 

YO=XO+eo 

YI=XI+CI 

(modN) 

The key space here contains Nu possible selections 
of the constants co, •.. , C'U-l. 

• A k-loop polyalphabetic substitution uses k sets 
of alphabets, applied cyclically with periods 
Ul, ••• , Uk: 

Yi=Xi+Cl,J(mod 'U1)+··· +Ck,i(mod 'Uk) (mod N) 
where the Ui are relatively prime (mod N) 

• A Vernam cipher is a polyalphabetic substitution 
(Vigenere) where the key period is at least as long 
as the amount of data to be transformed. 



442 Fall Joint Computer Conference, 1972 

Computer-aided solution of substitution- transforma­
tions has been studied by Tuckerman.24 Such solutions 
can always be found, provided that sufficient contiguous 
lengths of transformed data (ciphertext) can be 
acquired). If the ciphertext contains fragments of 
known data, even if their precise location is not known, 
the cryptanalysis task is greatly simplified. In the case 
of highly formatted artificial languages (programs), 
where the fixed vocabulary is very small and used with 
rigid observance of syntax and punctuation rules, 
fragments of known plaintext are very likely. If the 
polyalphabetic cipher keys are relatively short and 
coherent (phrases of a natural language), the task is 
even further simplified. 

The techniques for solving substitution-type trans­
formations proceed as follows :24 

• A Caesar cipher, where the key consists of a single 
constant, is easily solved by language statistics or 
trial and error. Shannon21 has shown that for 
natural language plaintext in English, the sufficient 
length of a fragment of intercepted ciphertext 
(the unicity distance) is about 30 characters. 

• A I-loop polyalphabetic (Vigenere) cipher of period 
u is reduced to u Caesar cases by statistical analyses 
and trial-and-error determination of the key period, 
u. At least 20 u characteris of intercepted text are 
required. 

• A 2-loop polyalphabetic cipher of periods u is reduced 
to one loop case by certain "differencing" methods.24 
Then, the I-loop analysis can reduce the problem 
to Caesar cipher level. At least 100 (u+v) char­
acters of ciphertext are required. The effort is 
considerably greater than for the 1 ~loop case. 

• The Vernam cipher (where the key is as long as the 
data, used only once, and generated by a natural 
random process) cannot be solved. However, if .the 
key is generated by a pseudo-random process, such 
as a shift-register sequence generator, and plain­
text fragments are known, then computer-aided 
trial-and-error methods may lead to a solution. 

The intruder's work factor in the above cryptanalytic 
activities requires a sufficiently powerful computer and 
appropriate cryptanalytic programs. Given these, 
solutions are sometimes found in minutes.24 To success­
fully attack privacy transformed data requires an 
investment measured in thousands of dollars for the 
more complex systems. The work factor is in terms of 
hundreds of dollars if simple substitutions are used. 

Circu:niventing or disabling of access controls 

Circumvention of access controls enforced by data­
bank personnel can be attempted by using the well-

developed techniques of diversion, confusion, or in~ 

timidation. Costs are low and risks involve being 
"kicked out," which in turn might be good diversion for 
permitting an accomplice to enter. Personnel other than 
professional security guards are well-known for their 
reluctance to challenge others not known to them. 

Hardware access control devices (e.g., locks operated 
by keys or controlled by programs) are usually effective, 
especially if connected to alarm systems. 25 However, 
some types could be easily disabled, thus reducing the 
enforcement to facility personnel. Assistance of un­
suspecting facility employees could be recruited with 
the "forgot my key" gambit. Costs and risks are low. 

Circumvention of software enforced access controls 
(i.e., the protective features of operating systems) 
requires that the intruder gain not only access to the 
computer through regular or illicit terminals, but also 
the ability to enter programs into the system. Diversion 
and "flooding" techniques may be able to overwhelm 
the threat monitoring system long enough to perpetrate 
the intrusion.6 The resources required by the intruder 
include a computer to develop and test the intrusion 
plan and programs. The risk is low. However, the 
operating systems designed for high security3,4 may 
escalate the intrusion costs into the thousands or even 
ten thousands of dollars. 

Protection costs 

The costs involved in implementing a data security 
system include the initial planning and design, initial 
investment in hardware devices and software, the 
recurring operating costs, and the decreases in functional 
capability. The available cost data is very limited and 
does not suffice for formulating analytic expressions for 
the protector-intruder interaction mo-el described 
above. 

Hardware access devices, such as card-key locks for 
doors or computer terminals, are priced in the $150-300 : 
range per unit. Complete systems start from $5000. I 

Hardware implemented data privacy systems for com- I 

munication links cost in the $2000 range per unit. 
Data on software implementation of access controls 

in operating systems is equally scarce. The following 
represents almost the entire cost data base:3 ,5 

Main memory requirements: 
Programming time: 
Operating system code: 
Recurrent CPU time: 

10-20% 
5% 

10% 
5-10% 

Some cost data points are also available for the 
implementation of privacy transfor~ations in software. 



I 
III 

In substitution type privacy transformations, each 
character of plaintext is transformed into a character 
of the ciphertext by addition of one or more constants, 
Cj. Also required are similar decoding and the necessary 
key-retrieval operations. In terms of the percent of the 
databank operating system overhead, the following 
computing time requirements have been established for 
applying privacy transformations to IO-bit characters 
in a CDC 6600 computer:7 

One-time Vernam ciphering: 
Vigenere ciphering (table 

look-up) 
Vigenere (modulo arithmetic) 

0.66% 

3.5% 
6.3% 

The above cost figures are quite sensitive to the type 
of information retrieval system used and represent only 
isolated cost data points. Estimates of decreased func­
tional capability of the databank system caused by 
security requirements are even less available. A sys­
tematic effort to compile a comprehensive data base of 
security system costs and decreases in functional 
capability is clearly needed. 

CONCLUDING REMARKS 

The design of cost-effective data security safeguards for 
personal information databank systems requires a care­
ful balancing of the value of protected information 
against the protection costs. In particular, it is impor­
tant to consider not only the value of personal in­
formation to the subjects, but also to the potential 
intruders, i.e., the protection investments should be 
made on a rational basis. 

The simple protector-intruder interaction model dis­
cussed in this paper illuminates the nature of the 
protector's investment problems when faced with an 
equally rational intruder. However, before this or any 
other interaction model can be fully utilized, it is 
necessary to formulate appropriate analytical or em­
pirical relationships among the value of information to 
the parties involved, the costs of protection and 
intrusion, and the effectiveness of data security and 
intrusion techniques. Deriving such relationships and 
gathering empirical data will be a major objective of the 
authors' further work in this area. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge valuable 
suggestions and comments by their colleagues at The 
Rand Corporation, Mario L. Juncosa, Irving S. Reed, 
and Selmer M. Johnson, and by Robert H. Courtney 
of the IBM Corporation. 

Privacy and Security in Databank Systems 443 

REFERENCES 

1 H E PETERSEN R TURN 
System implications of information privacy 
AFIPS Conference Proceedings 1967 SJcq Vol 30 
pp 291-300 

2 W F BROWN 
AM R' s guide to computer and 80ftware 8ecurity 
AMR International Inc New York 1971 

3 C WEISSMAN 
Security controls in the ADEPT-50 time-8haring 8y8tem 
AFIPS Conference Proceedings 1969 FJCC Vol 35 
pp 119-133 

4 G S GRAHAM P J DENNING 
Protection-principle8 and practice 
AFIPS Conference Proceedings 1972 SJCC Vol 40 
pp 417-429 

5 C WEISSMAN 
Trade-off considerations in 8ecurity 8y8tem design 
Data Management April 1972 pp 14-19 

6 D VAN TASSEL 
Computer 8ecurity management 
Prentice-Hall Inc Englewood Cliffs New Jersey 1972 

7 W A GARRISON C V RAMAMOORTHY 
Privacy and security in databank8 
Technical Memorandum No 24 Electronics Research 
Center University of Texas Austin Texas November 21970 

8 A F WESTIN 
Civil liberties and computerized data 8y8tems 
in M Greenberger (Ed) Computers, Communications 
and Public Interest Johns Hopkins Press 1971 

9 A F WESTIN 
Privacy and freedom 
Atheneum New York 1967 

10 A R MILLER 
AS8ault on privacy: computer databanks and d08sier8 
University of Michigan Press Ann Arbor Michigan 1971 

11 P NEJELSKY L M LERMAN 
A research-subject te8timonial privilege: what to do before 
the subpoena arrives 
Wisconsin Law Review Vol 1971 No 4 pp 1085-1148 

12 R TURN H E PETERSEN 
Security of computerized information system8 
Proceedings Carnahan Conference on Electronic Crime 
Countermeasures University of Kentucky Lexington 
Kentucky 1970 pp 82-88 

13 R DONOVAN 
Trade 8ecrets 
Security World April 1967 pp 12-18 

14 P HICKSOM 
Industrial espionage 
Spectators Publications Ltd London 1968 

15 Firms sue in mailing list theft 
Computerworld 8 July 1970 

16 Security breach leads to police data theft 
Computerworld 10 February 1971 

17 A national 8urvey of the public' 8 attitudes toward 
computer8 
AFIPS-Time Inc New York & Montvale New Jersey 
November 1971 

18 P BARAN 
On distributed communication8: IX, Security, 8ecrecy and 
tamper-free con8iderations 
The Rand Corporation RM-3765-PR August 1964 



444 Fall Joint Computer Conference 1972 

19 W F FRIEDMAN C J MENDELSOHN 
Notes on code words 
American Mathematical Monthly August 1932 pp 394-409 

20 J M CARROLL 
The third listener 
Dutton 1969 

21 C E SHANNON 
Communication theory of secrecy systems 
Bell System Technical Journal 1949 pp 656-715 

22 D KAHN 
The codebre,a,kers 
The Macmillan Co New York 1967 

23 M B GRIDANSKY 
Cryptology, the computer and data privacy 
Computers and Automation April 1972 pp 12-19 

24 B TUCKERMAN 
A study of the V igenere-Vernam single and multiple 
loop enciphering systems 
IBM Corporation Report RC 2879 14 May 1970 

25 R J HEALY 
Design for security 
John Wiley & Sons Inc New York 1968 

26 U.S. Senate Bill S.969 
US Senate 25 February 1971 



Snapshot 1971-How Canada organizes 
information about people 

by JOHN M. CARROLL 

University of Western Ontario 
London, Canada 

INTRODUCTION 

In 1971 the Government of Canada initiated a study to 
determine whether the computerization of personally 
identifiable records concerning or describing Canadian 
residents would diminish their quality of life or ad­
versely affect their life chances, and to propose remedial 
action in the event this premise proved to be true. 

The study was carried out by a joint Task Force 
appointed by the Departments of Communications and 
Justice. The empirical studies group of the Task Force 
was charged with determining the magnitude and com­
position of personal data banks in the public and pri­
vate sectors and the means by which such data are 
gathered, processed, stored, and disseminated. This 
paper summarizes the results obtained by this group. 

The investigative procedures used consisted of solic­
iting briefs from organizations thought to be interested 
in the subject, making formal site visits to selected 

, firms and agencies, conducting field studies to gather 
background information on the organizations to be 
visited, sending letters of inquiry to multinational or­
ganizations, and mailing a detailed questionnaire to 

" all Canadian organizations believed to possess signifi­
I' cantly large files of personal data that were or might 
II become computerized. 

I 
Although the site-visit technique provided the prin­

'11'1

, 

cipal input regarding large government data banks 
such as those of the Royal Canadian Mounted Police, 

III Statistics Canada, the Department of National Rev­
II 

\ enue/Taxation, and the Department of National Health 

II, and Welfare, it was the questionnaire which provided 
the most comprehensive information of a quantitative 
nature. 

Over 2,500 questionnaires were mailed and the re­
sponse exceeded 50 percent. What emerges from this 
portion of the study is a finely detailed snapshot of how 

445 

one developed nation makes use of information han­
dling technology in the management of personalized 
information. 

In the largest sense, the most significant thing about 
this study is that in Canada concern regarding poten­
tial invasions of individual privacy of information abet­
ted by computers arose initially within the federal 
government. This fact is borne out by a tabulation of 
responding organizations who indicated that they had 
received complaints from the public regarding their 
data handling practices. Only 16 percent reported re­
ceiving any. 

Number of 
Nature of Complaint Respondents 

Inadequate provisions to review one's own record 200 

Methods of collecting personal information 180 

Practices of disseminating personal information 160 

CHARACTERISTICS OF THE RESPONSE 
BASE 

Organizations which replied to the questionnaire em­
ployed about one-sixth of the labor force. Thus the 
questionnaire returns, with due allowance for potential 
distortions, represent a comprehensive overview of 
Canadian data banks-or, more specifically, of data 
banks containing identifiable personal data about in­
dividuals. The largest number of respondents employed 
less than 100 persons each: 23 percent of the respond­
ents had 80 percent of all employees. 

Employees 
Customers 
Subjects 
Data Reaipients 

Average 

980 
61,000 
70,000 
4,900 

Total 

1,200,000 
65,000,000 
24,000,000 
2,000,000 



446 Fall Joint Computer Conference, 1972 

"Customers" were defined as including present clients, 
customers, patients, students, policy-holders, and mem­
bers (of associations). Many Canadians are customers 
of several organizations. The most numerous group had 
between 2,000 and 25,000 customers each; 14 percent 
of the respondents had 83 percent of all customers. 

Only 40 percent of the respondents said they had 
files on individuals regarded by them as "subjects", 
defined to include prospective customers, persons upon 
whom credit or criminal records are held, auto regis­
trants, and subjects of research studies. Federal agen­
cies dealing with veterans affairs, family allowances, 
and manpower and immigration responded under this 
denomination as did some provincial public health 
agencies. The most numerous group had less than 1,000 
subjects each; 7 percent of the respondents had 51 
percent of all subjects. 

With regard to information recipients, only 37 per­
cent of respondents admitted to having any; 16 percent 
of the respondents served 95 percent of information 
recipients. 

Thus, there comes into focus the picture of an infor­
mation elite that uses vast files of personalized informa­
tion as its base of power. 

CHARACTERISTICS OF FILES 

The files reported upon contained over 83 million 
records. Respondents in the most numerous classifica­
tion had fewer than 5,000 records each; 19 percent of 
the organizations held 90 percent of the records. It was 
our practice to request information on what we per­
ceived to be the largest file held by a particular ques­
tionnaire recipient. 

Average Characteristics of Files 

Size of file 
Size of record 
Number of requests for information 
Period of retention (inactive records) 

72,000 records 
520 characters 

1 , 300 per year 
67 months 

With regard to size of record, the largest response cate­
gory had record sizes under 300 characters. This was 
offset by 90 organizations whose record sizes exceeded 
2,000 characters. 

Over a million requests for information were reported 
on a yearly basis; 791 respondents said they had fewer 
than 100 requests a year, while 46 organizations said 
they answered more than 10,000 requests a year. 

Organizations which reported that they responded to 
more than 10,000 requests for information annually 

regarding persons in the "subject" category included 
credit bureaus, police forces, motor vehicle bureaus, and 
mailing-list suppliers. 

With regard to the time a record is held after an in­
dividual has severed his connection with the organiza­
tion, 534 respondents said they keep such records seven 
years or more. 

COLLECTION OF DATA 

The subject himself is the prime source of informa­
tion. Health services are in second place. One would 
expect references to be checked, but it is interesting 
that they turn out to be more important sources than 
former employers, present employer, or educational 
institutions. We find it significant that published rec­
ords are rarely consulted and that law enforcement 
agencies are sources at all. Figure 1 shows the relative 
utilization of the more common sources of information; 
Figure 2 shows the relative use of less common sources. 

We found that the data gatherers most likely to tap 
medical sources included health services, insurance 
companies, social welfare agencies, charitable institu­
tions, and regulatory agencies. Data gatherers most 
likely to approach present or former employers included 
merchandising houses, employment agencies, insurance 

Subject I 

Medical I 

Reference s I 

Ex-Employer s I 

Employer I 

Schools I 

publication stJ 
I I I _I 

Number of Respondents 1,000 

ORDINARY SOURCES OF DATA 

Figure 1-Commonly used sources of information concerning 
or describing individuals 



companies, police forces; and prospective:-:-employers; 
Agencies most likely to interview a subject's family 
included health services, social welfare agencies, chari­
table institutions, and police forces. Organizations most 
likely to interview a subject's neighbors included 
health services, educational institutions, insurance 
companies (through credit bureau representatives), 
police, and social welfare agencies. Police forces reported 
that they principally consulted other police, regula­
tory agencies, private investigators, insurance com­
panies, and employers. Private investigators reported 
that they obtained information from police, insurance 
companies, other private investigators, social welfare 
agencies, and regulatory agencies. 

Among the techniques employed by data gatherers, 
protection of informants outranked confirmation of 
facts from independent sources in importance to the 
data gatherer. 

In response to the questions as to whether the indi­
viduals upon whom records were kept or groups repre­
senting their interests ever complain against the method 
of collecting any item of information, five organizations 
said they get frequent complaints, 910 said they get 
none at all. 

Most likely to receive complaints regarding methods 
of collecting personal data are law-enforcement agen­
cies, motor vehicle bureaus, credit bureaus, travel-

Farr,ily 

Infcrrr.ation 
Suppliers 

Privat.E' 
Investigators 

Police 

Other 
Hecipients 

Neighbours 

Nunber of Respondents 1,000 

EXTRA-ORDINARY SOURCES OF DATA 

Figure 2-Less commonly used sources of information 
regarding individuals 

How Canada Organizes Information About People 447 

and-entertainment card companies, and insurance com.;. 
panies. 

CUSTODY OF INFORMATION 

As to management policies regarding disclosure of 
personal data, 55 percent of respondents said they have 
an unwritten policy, 33 percent have a written policy, 
and the rest have none at all. Non-profit institutions 
were twice as likely to have a written policy than were 
profit-making organizations. 

We inquired whether an explicit statement of the 
organization's policy was communicated. Responses 
revealed that it is highly likely that, where such a policy 
exists, it will be communicated to employees charged 
with records management but unlikely that it will be 
communicated to either the subjects of the records 
or to the general public. 

As to policing the actions of staff with regard to mis­
use of personal information: 23 percent of respondents 
do not police the actions of their own staff; 67 percent 
do police the actions of staff but claim they don't catch 
any offenders; 10 percent police the actions of staff, 
catch some offenders, and prosecute or discipline the 
ones they catch. 

With respect to the likelihood that an organization 
will take effective action against its own employees for 
misuse of personalized information in its files, non­
profit institutions were nearly twice as likely to take 
effective action than were profit-making organizations. 

The organization,s most likely to take effective ac­
tion were motor-vehicle bureaus, police, public utili­
ties, credit bureaus, and health services. 

Response to the question as to whether individuals on 
whom records are kept or groups representing their 
interest ever complain about disclosure of personal 
information revealed that four organizations get fre­
quent complaints; 873 get none at all. 

Most likely to receive complaints regarding disclosure 
of personal data were motor vehicle bureaus, credit 
bureaus, educational institutions, law-enforcement 
agencies, social welfare agencies, and employment agen­
cies. 

DISSEMINATION OF INFORMATION 

Regarding exchange of information with other or­
ganizations 38 percent of respondents, said they did 
exchange information; 62 percent said they did not. 

Most likely to disclose personal data outside their 
own organizations are motor vehicle bureaus, regula-



448 Fall Joint Computer Conference, 1972 

a 
0 on 
+J 
rU 
Q 
0 

Ii-! 
a 
I-! 

"-til 
+J 
c:: 
OJ 
'lj 
a 
0 
0. 
til 

& 
Ii-! 
0 

+J 
c:: 
Q) 
0 
I-l 
OJ 
A.c. 

NU~TURING ORG~IZATIONS 

40 

~ Size of Category 

i 
Obtain 
Information 

Supply 
Information 

D Amount of Information 

Figure 3-Information interchange patterns of nurturing or 
subject-serving organizations show them as sources 

tory agencies, educational institutions, credit bureaus, 
health services, insurance companies, oil companies, 
and law-enforcement agencies. 

Information is most commonly furnished in response 
to specific requests. Publication of periodic reports for 
widespread distribution is a rarity. 

EXCHANGE OF INFORMATION 

We utilized information developed by analysis of 
responses to the Task Force questionnaire to construct 
a matrix illustrating the degree of exchange of personal­
ized information among organizations. 

We found it convenient to classify these organiza­
tions as nurturing, that is concerned principally with 
the well-being of the individual; business, that is deal­
ing with the individual on. a quid-pro-quo· basis; and 
authoritarian, or interested primarily in ensuring that 

their subjects conform to the norms of society. Nur­
turing organizations tend to supply information to 
groups in the other two categories. Business-type or­
ganizations tend to exchange information freely, prin­
cipally with org~nizations of the same general type. 
Authoritarian organizations appeared to gather per­
sonal information in a volume disproportionate to their 
relative number in the response base and to communi­
cate little information to other organizations. These 
patterns of information interchange are depicted in 
Figures 3, 4, and 5. 

With regard to international traffic in personal in­
formation, 61 organizations said they frequently supply 
information to U.S. organizations; 107 organizations 
said they frequently obtain information from U.S. 
organizations. 

We found only five organizations had their files 
entirely in the U.S.A. Organizations most likely to have 

BUSINESS-TYPE ORGANIZATION 

Employers 

~ Size of Category 

i 
Obtain 
Information 

J 
Supply 
Information 

o Amount of Information 

Figure 4-Information interchange patterns of business-type 
or self-serving organizations show them as 

dynamic storage elements 



some files containing personal data located in the U.S.A. 
were oil companies, associations (especially labor 
unions), insurance companies, health services, manu .. 
facturers, and lending institutions. About 10 percent 
of all organizations employing 500 or more persons had 
some of their files in the U. S. A. 

Ten organizations had their customers entirely in 
the U.S.A. and 10 organizations had their information 
recipients entirely in the U.S.A. 

40 

AUTHORITARIAN ORGANIZATIONS 

Private 
Investigators 

Information 
Suppliers 

i 
Obtain 
Information 

Police 

Supply 
Information 

~ Size of Category o Amount of Information 

Figure 5-Information interchange patterns of authoritarian 
or society-serving organizations show them as sinks 

With regard to future intentions to locate files in the 
U.S.A., more than three quarters of responding organi­
zations said they would not. do so; 57 organizations 
said they already had files in the U.S.A. The remainder 
said they would do so to save money or if they would 
be placed at a severe disadvantage by not doing so. 
Figure 6 summarizes information developed regarding 
exchange of data between Canadian and U.S. organi­
zations. 

How Canada Organizes Information About People 449 

Sources in 
U.S.A. 

Recipients in 
U.S.Jl". 

Customers 

Files 

Would Locate 
F'iles in U.S.A. 

Would P:rocess 
Data in U.S.A. 

:=J 

I 

J 

J 

I 

J 

I I I 

Number of Respondents 

TRP~FIC WITH U.S.A. 

Figure 6-International information interchange: 
Canada-U.S. traffic 

800 

55 60 64 69 a;fter 69 

YEAR ACQUIRED COMPUTER 

I 

800 

o First Acquisition ~ Last Acquisition 

Figure 7-Trends in acquisition of central processors in Canada 



450 Fall Joint Computer Conference, 1972 

EXTENT OF COMPUTERIZATION 

Roughly half of our respondents (about 500) utilize 
electronic data processing equipment. Of these, about 
300 have their own computers and 200 employ the 
facilities of computer service bureaus. Of the respon­
dents having computers, about 1/3 have facilities for 
remote access from terminals. 

The average computer user among our respondents 
first began computer processing of records in 1964-65 
He procured his present machine in 1967; so we are 
looking at a group of computer users who were initiated 
on second generation computers and later upgraded to 
third generation machines, in other words, a popula­
lation of sophisticated users. Figure 7 illustrates the 
trend in acquisition of computing equipment. 

CHARACTERISTICS OF MACHINES 

The average computer reported upon may be re­
garded as a large machine; 123 organizations have com­
puters whose memory size exceeds 256,000 words of 
core storage. 

Average on-line disk storage capability appears to 
be adequate for remotely accessed time-sharing should 
the user so desire. 

Average Characteristics of Computers 

Core Memory 
On-line disk memory 

133,000 WORDS 
130,000,000 BYTES 

One hundred twenty-four respondents said they had 
high-speed remote terminals. Of these, 102 had less 
than six terminals; 22 had six or more. 

Use of keyboarded remote terminals was reported 
by 134 respondents; 101 had less than 12 such terminals; 
26 had from 12 to 200 terminals; seven had more than 
200. 

Seventy-three percent of respondents have imple­
mented physical access controls over electronic data 
processing equipment; 39 percent have implemented 
hardware or software security measures such as pass­
words, terminal identification codes, or cryptographic 
coding; 42 percent routinely seek to establish the 
personal integrity of processing personnel; 58 percent 
report utilizing audit logs or other access-monitoring 
methods; 69 percent employ secure disposal methods 
for unwanted tapes or printouts; and 31 respondents 
report· implementing security measures beyond access 
control, integrity checks on processing personnel, 
audit logs, and secure disposal methods. 

UTILIZATION OF COMPUTERS 

Despite the widespread use of computers by organi­
zations, the penetration of computers within organiza­
tions is not all that great. 

Relatively few computer users report that they hold 
computerized records on all or most persons in any 
given category; Still fewer users report that they have 
computerized all or most information held o~ such 
persons. 

The following table summarizes Task Force findings 
with respect to the classification of files reported upon, 
the percentage of respondents who hold computerized 
records on all or most persons in each category, and the 
percentage of respondents who say they have comput­
erized all or most of the information they hold on each 
of these persons. 

Extent of Computerization 
(Percent of respondents) 

Subject 
matter 

Category of file 

Employees 31 
Customers 55 
Subjects 14 

Hold com- Have com-
pu ter records puterized all 
on all or most or most in-

persons formation 

58 30 
72 40 
30 22 

Most computer users said they supplement their 
machine sensible files with manual files. 

Characteristics of Manual Files 
(Percent of respondents) 

Supplement computer files with manual files 90 
Manual files contain more subjective information 83 
Manual files contain more sensitive or confidential data 75 
Manual files contain more narrative or graphical data 70 

ASSESSMENT OF COMPUTERIZATION 

The following table summarizes the assessment of 
computerization by organizations providing responsive 
answers to questions in this category (i.e., organizations 
using computers) : 

Comments Regarding Computers 
(Percent of Respondents) 

Detected errors in records during computerization 74 
Computer improves routine data handling 51 
Computer provides more complete and timely reports 45 
Computer is essential to operations 41 
Computer permits collation of data regarding 

individuals 32 
Improved management planning is principal benefit of 

computerization 4 



In addition, the importance of accuracy problems 
experienced with the computer was reported to be in­
significant. Only 16 percent of respondents say that, as 
a result of increased retrieval capability after comput­
erization, they are called upon to furnish more indi­
vidually identifiable information to government agen­
cies; and only 34 percent say that, as a result of compu­
terization, they are called upon to furnish more statis­
tical (aggregated) information regarding individuals. 

The amount of data collected per given individual 
after computerization was reported to have increased. 
However, only 39 percent of respondents attributed 
this increase to the fact of computerization; on the 
other hand, 60 percent attributed the increased data 
collection to changes in organizational objectives or 
programs, or to increasing government requirements 
for collecting or reporting information. 

RIGHTS OF SUBJECTS 

The right of an individual to examine his own record 
or a copy of his record from the file is the cornerstone 
of many suggested reforms in the area of privacy of 
individual information. 

Following is a complete tabulation of answers to the 
question of whether or not this right exists: 

No response 
The individual does not know the 

record exists 
He has no understanding of the con-

tents of his record 
He can examine all data in his record 
He can examine some data in his record 
He can examine no data in his record 

Number 

64 

62 

135 
502 
291 
172 

Percent 

5.27 

5.19 

11.03 
41.87 
23.21 
14.24 

Right to Examine One's Personal Record by Type of File 

Employees Customers Subjects 

Does not know record exists 9 43 10 
Has no understanding of 

contents 31 85 19 
All 169 257 76 
Some 133 121 37 
None 22 131 19 

In cases where an individual is permitted to examine 
data in his record, we asked whether translation or in­
terpretation was provided in an official language that 
the individual understands; 68 percent said it was. 

Organizations least likely to permit an individual to 

How Canada Organizes Information About People 451 

examine all data in his record include travel-and-enter­
tainment card companies, market research firms, in­
surance companies, social welfare agencies, police 
forces, health services, employment agencies, and oil 
companies. 

Response to the question of whether individuals on 
whom records are kept or groups representing their 
interests have ever sought to examine their own records 
or complained about the adequacy of an organization's 
practices regarding an individual's right to examine 
his own record revealed that eight organizations get 
frequent complaints; 867 get none at all. 

IVlost likely to receive complaints about the inability 
of a subject to examine his record are law-enforcement 
agencies, credit bureaus, and health services. 

CONCLUSIONS 

The acquisition of computing equipment has declined 
in recent years, which could indicate that the majority 
of those organizations who feel they could benefit from 
a computer have already acquired at least the main 
frame. However, utilization of computers for handling 
personal records is relatively low both in number of 
persons whose records are computerized (breadth) and 
the amount of information regarding each person who 
is computerized (depth). The fact that customer records 
tend to be most completely computerized both in 
breadth and depth demonstrates that the controlling 
factor behind decisions to establish or augment com­
puter-based personal data banks may be based upon the 
expected economic return from this exercise. Thus 
economics rather than either technical infeasibility or 
unavailability of data has thus far inhibited the whole­
sale creation of personal data banks. 

Much greater capability for remote-access computing 
exists than is currently being utilized. However, there 
is a growth trend in this area. This may have unfor­
tunate consequences with regard to data security. With 
a few notable exceptions, computer users have not yet 
proved fully capable to safeguard the confidentiality of 
computer-based files that are processed in the batch 
mode at a central location ; and remote-access comput­
ing presents a whole new dimension of hazard in re­
spect of unauthorized interception and intrusion. 

A great de.al more exchange of personal information 
takes place than is generally appreciated. There appears 
to be a flow of information that proceeds through stages 
from nurturing organizations such as schools and health 
services to authoritarian organizations. Therefore, it is 
quite likely that personal information volunteered by 
an individual seeking some social benefit in one context 



452 Fall Joint Computer Conference, 1972 

may be used in another context to impose sanctions 
upon him for failure to conform to some societal norm. 

International traffic in personal data by large multi­
national organizations is already significant in volume 
and may easily double in the near future. Such traffic 
may adversely affect the quality of life and life chances 
of citizens in ways which are beyond the power of 
national governments to ameliorate. 

The official report of the Task Force is available from 
Information Canada under the title: "Privacy and 
Computers Task Force Report." 

Details of empirical studies (Studies 2, 3, and 4) are 
available from the Department of Communications 
under the title: "Personal Records: Procedures, Prac­
tices, and Problems". This document contains a copy 
of the Task Force questionnaire and a tabulation of 
responses. 

The reader is urged to consult also the report of 
Professor Alan Westin's study of the records problem in 
the U.S. This study was sponsored by the National 
Academy of Sciences. The report of a British study 
group was published in July 1972. 



II 

, 
I , 

Hardware/ software trade-offs­
Reasons and directions 

by RICHARD L. MANDELL 

Compata, Incorporated 
Tarzana, California 

A hardware/software trade-off is the establishment of 
the division of responsibility for performing system 
functions between the software, firmware and hard­
ware. This is part and parcel of the fundamental pro­
cess of defining computer architecture. It begins the 
day a computer is conceived and may be carried on by 
an ever widening group of individuals until the last 
computer of a given model is retired. There are areas of 
the trade-off which are the sole preserve of the manu­
facturer and his hardware/software team. Other areas 
of the trade-off are the responsibility of the user, or in­
dependent equipment manufacturers. 

TYPES OF TRADE-OFFS 

Since hardware/software trade-offs occur in all areas 
of computer design and application, it is difficult to 
write about them without discussing most of the factors 
that enter into both hardware and software design. In 
this paper, an attempt will be made to define several 
classes of trade-offs and discuss the reason for each. 

Some computers are microprogrammed. In these sys­
tems the microprogram resides in a fast control store 
and controls the flow of data through storage, trans­
formation units and data paths. For the purposes of 
this paper, the microprogram will be referred to as firm­
ware, and the control store and other functional units 
will be called hardware. In the discussion that follows, 
a conventionally organized wired logic control will be 
viewed as a part of the hardware. 

Trade from 80ftware to hardware 

The first class of trade-off is the trade from hardware 
to software or vice versa. Such a trade-off may involve 
transferring whole functions, such as memory protec­
tion from one system to the other. On the other hand, a 

453 

trade may mean merely shifting the boundary between 
system hardware and system software by providing dif­
ferent instructions or architectural features. 

Trade from 80ftware to firmware 

Many modern computers are microprogrammed. This 
introduces anbther trade-off possibility. Rather than 
introduce new hardware in place of software, the trade 
is often made between software and firmware. This trade 
may sometimes have no effect other than to speed upa 
system by eliminating main· memory fetch cycles. On 
the· other hand since the microprogrammer has avail­
able to him data paths and parallelisms that are not 
available at the traditional software level, it is possible 
to perform functions that would not be feasible or ef­
ficient in software. 

Trade from firmware to hardware 

In designing a microprogrammed machine, a designer 
must decide which functions are to be performed strictly 
under hardware control and which functions are to be 
performed by sequences of microinstructions. He must 
also decide what fundamental data paths and functional 
unitswilI exist within the machine. Both of these types 
of trade-offs constitute trade-offs between hardwar~and 
firmware. The hardware/firmware trade may be made 
without influencing the external architecture of the sys­
tem. 

Direction of the trade 

Frequently, computer designers and users think only 
in terms of making machines bigger and faster. How-



454 Fall Joint Computer Conference, 1972 

ever, there is always a market for smaller and simpler 
machines as the manufacturers of minicomputers, smart 
terminals and desk calculators have discovered. Thus, 
frequently the design objective is to simplify the com­
puter. Accordingly, we will arbitrarily consider the three 
elements hardware, firmware and software to form a 
hierarchy, with hardware at the bottom, with firmware 
next and with software at the top. An upward trade will 
then be defined as a trade in which responsibility for a 
function is moved through the hierarchy from hardware 
toward software. A downward trade moves in the other 
direction. 

An inward/outward trade 

In the list of trades considered so far, the hardware 
has been considered to be a single system. In many sys­
tems the hardware is really viewed as an interconnection 
of subsystems which may themselves be hierarchically 
organized (i.e., memory systems and I/O systems). 
The organization and function resident within or attach­
able to these subsystems is frequently a part of the hard­
ware/software trade. For example, as more autonomous 
control is given to the I/O system, the requirement for 
software control of the I/O system may be simplified. 
Trade-offs which move function from the CPU to 
autonomous control units will be termed outward trades 
and trades in the other direction will be termed inward 
trades. It should be noted that the outward trade may 
go so far as to remove a function from the computing 
system completely and place it in another communicat­
ing system. This is the case when printing is removed 
from the main I/O system and transferred to an autono­
mous off-line printer. Another example of this is an 
architecture which allows peripherals to communicate 
with one another without requiring service from the 
software. 1 

The outward trade is an impressive tool for system 
enhancement after the system architecture has been 
frozen. This is possible because the I/O system usually 
presents a clear stable interface to the outside world. 
Thus, autonomous processors such as sorters,2 communi­
cations handlers,3 array processors,4 and support pro­
cessors have been attached to CPUs in order to perform 
functions that would otherwise be done by central pro­
cessor software. Some architectures have made the I/O 
systems sufficiently powerful to take on the role of much 
of the supervisor.5 Though the outward trade-off can 
be a powerful tool, it often introduces expensive special 
purpose elements into the system. These elements can 
only be justified if the function that they perform is re­
quired frequently enough to make them economical. 

REASONS FOR PERFORMING TRADE-OFFS 

There are several reasons for performing hardware/ 
software trade-offs: 

• to achieve an otherwise unattainable performance 
goal 

• to minimize overall system costs 
• to reduce software complexity 
• to achieve overall system reliability 
• to extend system life 
• to improve debugging aids 
• to achieve compatibility 
• to achieve market position 

Achieving otherwise unattainable performance 

One of the most common reasons for trading software 
for hardware is to achieve a performance that could not 
otherwise be obtained. This process ranges from the in­
clusion of internal features such as floating point arith­
metic and index registers through the addition of spe­
cialized processors such as sorters and fast fourier trans­
form processors.28 These processors may be added to 
either the I/O system, the memory interface or the 
CPU. Many of the advanced features of present and 
proposed computers represent hardware/software or 
hardware/firmware trades that were made by the manu­
facturer. Prager6 gives a good example of a set of trade­
offs for improving the performance of the inner loop of 
scientific computers. 

Minimize overall system cost 

A frequent goal of designers today is to minimize over­
all system cost. Thus, it is usually the case that the 
boundary between software and hardware is drawn in 
such a way as to minimize hardware costs or even the 
costs of the entire system, including software. Thus, 
upward trades are frequently made. They may even be 
left as an option to the purchaser. Many systems offer 
optional features such as floating point arithmetic which 
may be performed either by hardware or by software. 7 

Two trends are visible in the marketplace today. One 
trend is to provide systems in which a large amount of 
function is being assigned to the firmware in preference 
to software. The other trend is to develop small fast 
computers with minimal instruction sets. 

Reduce software complexity 

A goal which is becoming apparent is to reduce the 
complexity of both system software and user software 



by the addition of hardware features which reduce the 
amount of overall code, provide enhanced run time sup­
port, or free the programmer from concerns about limi­
tations of memory space.8 

To achieve overall system reliability 

Software often is subject to failures due to inadvertent 
over-writing and frequent changes. Thus, there is a 
tendency of some experimenters to move critical func­
tions to more secure locations. The most secure location 
is in the firmware or har~ware. 

Another trend associated with reliability is to move 
I/O error recovery functions from the software to 
peripheral controllers or channels. 9 

To extend system life 

In the field of computing, the life time of a system is 
sometimes measured by its ability to change. This 
adaptability to change is achieved by assigning hard­
ware functions to software or firmware. This phenome­
non is particularly observable in communications con­
trollers. However, it is probably an important property 
of microprogrammed computers with writable control 
stores. 

Improved debugging aids 

Monitoring for software errors (such as exceeding the 
bounds of an array) is very expensive to achieve by 
means of software alone. However, if the monitoring is 
built into the hardware it becomes a practical debug­
ging aid.8 Other hardware aids include firmware moni­
tors, which perform flow tracing, and interrupt schemes, 
which monitor for violations of system conventions.10 

The protection hardware, which is a part of many 
modern computers, is an example of a hardwarell •12 aid 
to debugging as well as an aid to system reliability. 

Compatibility 

The design of emulators represents an interesting 
exercise in hardware, software, firmware trade-offs. An 
emulator combines hardware, software and firmware for 
the purpose of executing instructions for a machine 
other than the machine· on which the emulator is run. 
The selection of the boundary between the three com­
ponents can significantly affect the performance of the 
emulator. 

Another reason for examining the possibility of hard­
ware/ software trade-offs is to achieve intra-line com-

Hardware/Software Trade-Offs 455 

patibility. When a whole series of computers must be 
compatible, there are serious constraints that must be 
placed on the performance of some members of the 
family. These constraints sometimes limit the perfor­
mance of downward trades at the large end of the line. 
The compatibility may be achieved by means of up­
ward trades in the lower performance end of a computer 
family. 

To achieve market position 

It is frequently very difficult to demonstrate the cost 
effectiveness of unique hardware or software features. 
However, one is led to speculate that a motivation for 
performing hardware/software trade-offs is to achieve 
product differentiation and create captive customers 
who depend on the existence of a unique feature. These 
customers cannot easily transfer to a different computer. 

Marketing considerations have driven many of the 
minicomputer manufacturers to provide system soft­
ware that was not required when the first minicomputers 
were introduced. It is reasonable to speculate that this 
requirement will stimulate new and creative hardware/ 
software trade-offs for these small machines. 

Recurring nature of hardware/software trades 

One characteristic of hardware/software trade-offs is 
that they must be repeated each time a new computer 
is developed. In fact, hardware/software trade-offs ap­
pear at the heart of the design process. They must al­
ways be reevaluated in terms of design goals and con­
straints, as well as within the limits of contemporary 
technology. 

It has been characteristic that hardware/software 
trades have been performed to achieve high performance 
in the largest, fastest computers of an epoch or genera­
tion. At the same time or slightly later, smaller, more 
spartan machines without the high performance features 
are introduced. These machines are optimized for low 
hard ware cost. 

During the next epoch the technology evolves so that 
"advanced" features can be included in new machines 
at the same price as the smallest machines of the pre­
vious epoch. Concurrently, new, even cheaper machines 
appear without many of the "exotic features." This 
cycle repeats itself as time goes on. 

Inhibiting forces involved with hardware/software trades 

While designers would like to make whatever hard­
ware/software trade-offs their imagination and tech-



456 Fall Joint Computer Conference, 1972 

nological constraints allow, they are not always free to 
do so. Marketing considerations and the cost of develop­
ing system software often inhibit this kind of freedom. 
While there are no formal standards for computer archi­
tecture in the United States, manufacturers often im­
pose a standard architecture derived from earlier ma­
chines. This permits salvaging of system software and 
allows users to move from older to newer machines. 

The effect of this overriding requirement is that many 
of the trade-offs that exist in machines today occur as 
trades between firmware and hardware and not be­
tween software and hardware or firmware. 

While compatibility with previous systems is an im­
portant inhibiting force, it is often relaxed to the extent 
that the features of an older system form a subset of 
the features of the newer system. Thus, the older soft­
ware can usually be used on the new system. However, 
this implies an inability to use the new features. Thus, 
even though a machine may include new instructions, 
there may be considerable expense and delay in making 
these features available to the user through system soft­
ware. This expense and delay severely inhibits the abil­
ity of designers to freely trade software for hardware 
and vice versa. 

EXAMPLES OF HARDWARE/SOFTWARE 
TRADES 

I/O system 

The I/O system in computers has traditionally been 
an area in which hardware/software trades have been 
made. Examples of both inward/oqtward trades and 
upward/ downward trades can easily be found. Some of 
the reasons for the fertility in this area are: 

• A high degree of parallelism is possible. 
• The I/O system mu.st deal with a large spectrum 

of data rates requiring different processing tech­
niques. 

• The I/O system is frequently controlled by system 
software, instead of user software, so that com­
patibility constraints can be maintained by soft­
ware rather than hardware interfaces. 

• I/O devices seem to undergo a more rapid change 
than CPU techniques. 

The trade-offs that are usually considered lie in the fol­
lowing areas: 

• method of transferring data to main memory 
• method of monitoring for the completion of an I/O 

event 

• the complexity of an I/O event that can occur be­
tween CPU system interventions 

• the handling of error conditions 

Method of transferring data to lDain lDelDory 

The method of transferring data to main memory 
depends upon the data rate that must be handled. In 
the simplest systems, bytes or words of data are depos­
ited in a CPU register. Software is responsible for 
collecting the data together into main memory size 
words, transferring the collected words into memory, 
recognizing the termination of the transmission and 
analyzing the status of the I/O device. In systems re­
quiring higher data rates, the data is block transferred 
into main memory by a hardware controller and the 
software is only responsible for initiating each block 
transfer and determining the status of the device. The 
saving in CPU time required can be at least one order 
of magnitude. In still more complex systems, the soft­
ware is only responsible for starting a chain of I/O 
events. These. run independently until they are com­
pleted. 

Method of 1D0nitoring for cOlDpletion of an 
I/O event 

Just as there is a spectrum of techniques for trans­
ferring data between the I/O system and memory, there 
is a spectrum of techniques for monitoring for the com­
pletion of an I/O event. At one end of the spectrum 
the software is required to repeatedly test for comple­
tion of an I/O operation. At the other end of the spec­
trum an interrupt system is used for seizing contro~ of 
the CPU when an event is complete. The interrupt sys­
tem may itself offer a range of services which include 
saving of the machine status, identifying the I/O device 
which caused the interrupt and providing summary in­
formation about the nature of the event that caused 
the interrupt. All of these interrupt services are subject 
to hardware/software trades. 

COInplexity of an I/O event 

One of the most important features in determining 
the amount of software overhead and the amount of 
sof(ware required is the complexity of an I/O event. 
In the simplest case, the transfer of a single character 
constitutes an event. In more complex systems, an event 
may consist ofa large chain of block transfers. Devices 
have been constructed in which extremely complex 
events can occur as the result of a single command. 
Examples of such devices are graphics terminals and 



file processors.13 Thus, the event may be a lengthy 
search of a structured· file or the sorting of a file. In 
these cases, the software overhead consists of building 
an adequately complex command to control the event 
rather than of monitoring for the completion of the 
event. 

Firmware/hardware trades associated with 
I/O systems 

The trades discussed in the previous paragraphs have 
all been hardware/software trades. In implementing 
these trades the designer is also faced with a firmware/ 
hardware trade at all control levels within the I/O 
hierarchy. In general, the trades are between the same 
services as discussed above. For example, if an I/O 
channel is to be implemented using shared CPU facil­
ities,14 the designer has the choice of requiring the firm­
ware to repetitively check for the completion of an I/O 
event or to provide for trapping the microcode when an 
I/O event occurs. 

The handling of error conditions 

Since errors occur frequently, the handling of I/O 
errors has usually been the· responsibility of software. 
However, error handling can be the subject of an in­
ward/outward trade-off. Errors are usually detected by 
some type of a coding scheme which involves examining 
both the meaningful data and a string of code bits that 
are transmitted along with the data. This examination 
can be done by either controller hardware, controller 
firmware, controller software or CPU software. 

The usual strategy in correcting errors that can be 
detected but not corrected by coding techniques is to re-
Peat the transmission. The initiation and control of this 

r retransmission is also a subject for hardware software 
I, trades.' 

Trades in the CP U 

Within the CPU itself there are many. design trades 
that can be made in the hardware/software spectrum. 
The first group to consider are the downware trades 

II

I which move function from software to either firmware 
or hardware. Some examples of these functions are: 

• context switching15 •16 

• task dispatching15 

• register optimization17 

• memory hierarchy management18 

• storage protection12 

• emulation 

Hardware/Software Trade-Offs 457 

A second class of trades within the CPU is augmenta­
tion of the instruction set for the purpose of simplifying 
the work of the problem programmer. These trades 
involve augmenting the architecture to remove con­
straints or adding of hardware macro functions such as . . 
sme or cosme. 

The class of trades which remove constraints is fre­
quently associated with address space. These· con­
straints include: 

• the size of randomly addressable memory 
• the size of the address field in the instruction 
• the requirement for instruction and data alignment 

on word boundaries 

Specialized systems 

A class of hardware/software trades which is of 
particular interest is the specialized system. Two types 
of specialization can be seen in the industry. One class 
of specialization isolates a function such as sorting, 
matrix multiplication or fast fourier transform. This 
may be implemented as a special purpose computer 
which either operates stand-alone or as a part of a host 
machine. Some systems have been built or proposed in 
which a restructurable portion of the system is tem­
porarily configured to obtain high performance for a 
special function.19 ,2o The configuration of these recon­
figurable machines is continually changing. 

Another class of specialized machine is the machine 
which is optimized to execute programs written in a 
higher level language. These machines offer hardware 
or firmware compilers or translators plus an architec­
ture which is tailored to provide specialized run time 
support for the functions provided by the language. 
One characteristic of this architecture is that the com­
mand structure is very similar to the constructs of the 
higher level language for which the machine was de­
signed. 

This structure may be markedly different than that 
of the traditional computer and may be a variant on 
polish notation or it may be a list or tree structure. 
Since the internal machine architecture is closely related 
to the requirements of the source language, the com­
piler or translator is required to perform much simpler 
transformations than would be necessary for a more 
traditional machine architecture. Thus, the compiler 
or translator is inherently fast. In addition, if the com­
piler is implemented in firmware, it has the advantage 
of not requiring main store fetches for instructions and 
can possibly rely on some parallelism within the CPU. 

The execution time. support associated with these 
language specific machines includes specialized instruc-



458 Fall Joint Computer Conference, 1972 

tions, data structures and storage management tech­
niques that are tailored specifically to the language. 
In the process of providing this support, many func­
tions normally performed by the operating system are 
moved to the hardware. 

Language specific machines have been developed for 
ALGOL,S FORTRAN, 21 EULER,22 SYMBOL,23 and 
APL.24,25 

Emulators 

Emulators are an excellent example of trade-off be­
tween hardware, firmware and software. An interesting 
example illustrating the range of possibilities is the series 
of 1401 emulators available on several models of System 
360 and System 370. 

The 1401 emulators on the smaller 360 models are 
implemented almost entirely by firmware and hard­
ware. Almost all of the 1401 instructions are fetched and 
executed directly by the emulator microcode. The 1401 
emulators on System 370 have a different organization. 
The emulator firmware implements several instructions 
which are not 1401 instructions, but which can be used 
in conjunction with the System 370 instruction set to 
construct short emulation routines (software) which 
interpret the 1401 programs. The next 1401 instruction 
is fetched and decoded by a special emulator instruction 
at the end of each emulator routine. This instruction 
forces a branch to the emulator routine that will simu­
late the next 1401 instruction. Thus, the 1401 emulator 
on the System 370 has a large software component. The 
software portion of the emulator also interfaces with 
OS/360 in such a way that emulator jobs use the normal 
data management and supervisor services provided by 
the operating system. Emulator jobs and non-emulator 
jobs can be mixed indiscriminately. 

Figure 1 shows the number of bits of control storage 
used by 1401 emulators in several System 360 and 370 
models. 

The System 370 emulators use less control store, but 
more main storage. The main store is only used, how­
ever, when the emulator is in use. 

System 

360/30 
360/40 
370/135 
370/145 
370/155 

Amount of Control Store Used for 
1401 Emulation firmware (bits) 

240K 
224K 

109.8K 
38.4K 

38K 

Figure I-Number of bits of control store in 1401 
emulators on IBM computers 

The 1401 emulator on the 360/40 is illustrative of 
firmware to software trade. The emulator includes a 
hardware translator which is used to convert 1401 ad­
dresses to physical System 360 addresses. The transla­
tion function could have been performed by firmware, 
but would have required considerably more time. 

CONCLUDING REMARKS 

This paper has examined some of the reasons for making 
hardware/software trade-offs and has shown some of 
the types of trade-offs that have been made in existing 
machines. Techniques for evaluating trade-offs are dis­
cussed in References 2,26 and 27. 

Though hardware/software trade-offs have been car­
ried on throughout the history of computing, the recent 
introduction of machines that can be microprogrammed 
by the user should bring about new interest in the topic. 
Advances in system performance, measurement and 
modeling are providing better tools for evaluating 
hardware/software trade-offs and should lead to a more 
complete understanding of trades. 

Language specific machines, intelligent terminals, 
emulation, machines with firmware operating systems, 
minicomputers . with enhanced capability and imple­
mentation of virtual memory will be intensely studied 
with reference to hardware/software trades during the 
next few years. 

BIBLIOGRAPHY 

1 Processor handbook, PDPll 
Digital Equipment Corporation 
Maynard Massachusetts 

2 H BARSAMIAN A DECEGAMA 
Evaluation of hardware-firmware-software trade-offs with 
mathematical modeling 
Proceedings of the 1971 SJCC pp 151-159 

3 Introduction to the IBM 3705 communications controller 
IBM Corporation White Plains New York Form No 
GA 2720511972 

4 J F RUGGIERO D A CORYELL 
An auxiliary processing system for array calculations 
IBM Systems Journal Vol 8 No 2 1969 

5 Control Data 6400/6600 computer systems reference manual 
Control Data Corporation Minneapolis Minnesota 

6 D PRAGER 
Some notes on speeding up certain loops by software, firmware 
and hardware means 
IEEE Transactions on Computers Jan 1972 pp 97-100 

7 System/360 model 40 functional characteristics 
IBM Corporation White Plains N ew York Form No 22-6881 

8 E A HAVEK D A DENT 
Burroughs' B6500/B7500 stack mechanism 
AFIPS Conference Proceedings Vol 32 1968 pp 245-251 

9 J F KEELEY 
System/370-reliability from a system viewpoint 



Proceedings of the 1971 IEEE International Computer 
Society Conference Boston Massachusetts pp 33-34 

10 L ROBERTS 
Can microcode be used to measure system performance 
Proceedings of the 4th Annual Microprogramming 
Workshop Santa Cruz California September 13-14 1971 

11 IBM system/360 principles of operation 
IBM Corporation White Plains N ew York Form No 
GA 22-6821 

12 M D SCHROEDER J H SALTZER 
A hardware architecture for implementing protection rings 
Communications of the ACM March 1972 pp 177-184 

13 2314/2844 multiplex storage control feature-airlines buffer 
IBM Corporation White Plains New York Form No 
GA 26-5714 

14 S S HUSSON 
Microprogramming, principles and practice 
Chapters 7 and 8 Prentice-Hall Inc Englewood Cliffs N J 
1970 

15 MAC computer reference manual 
Lockheed Electronics Los Angeles California 
Chapter 4 

16 Sigma 7 reference manual 
Xerox Data Systems EI Segundo California 

17 R M TOMASULO 
Efficient algorithms for expoliting multiple arithmetic units 
IBM Journal of Research and Development Jan 1967 
pp 25-33 

18 A guide to the IBM/system/370 model 165 
IBM Corporation White Plains New York Form No 
GA-20-1730 pp 14-24 . 

19 G ESTRIN 
Organization of computer systems-The fixed plus variable 

Hardware jSoftware Trade-Offs 459 

structure computer 
Proc WJCC 1960 pp 33-40 

20 W CLARK 
M acromodular computer systems 
Proc SJCC 1967 pp 335-336 

21 T R BASHKOW A SASSON A KRONFIELD 
A system design for a FORTRAN machine 
IEEE Transactions on Electronic Computers August 1967 
pp 485-499 

22 H WEBER 
Implementation of Euler on the system/360 model 30 
Communications of the ACM September 1967 pp 547-558 

23 W R SMITH et al 
SYMBOL-A large experimental system exploring major 
hardware replacement of software 
Proc of the 1971 SJCC pp 601-617 

24 R ZACKS D STEINGART J MOORE 
A firmware AP L time-sharing system 
Proc of the 1971 SJCC pp 179-191 

25 A HASSITT J W LAGESCHULTE L E LYON 
Implementation of a high level language machine 
Proc of the 4th Annual Microprogramming Workshop 
Santa Cruz California September 1971 

26 J D FOLEY 
An approach to the optimum design of computer graphics 
systems 
Communications of the ACM June 1971 pp 380-390 

27 N R NIELSON 
The simulation of time sharing systems 
Communications of the ACM July 1967 pp 397-412 

28 M J CORINTHIOS 
A fast fourier transform for high speed signaal processing 
IEEE Transactions August 1971 pp 843-846 





A design for an auxiliary associative parallel processpr 

by M. A. WESLEY, S.-K. CHANG and J. H. MOMMENS 

IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 

INTRODUCTION 

The use Qf highly parallel processing units for. comput­
ing problems that are highly . parallel in structure has 
been widely studied. The range of systems varies frQm 
the duplication of complete prQoessing elements,! 
through the provision of a set of specially tailored 
small prQcessors attached to. a main processor,2 to the 
use of cellular arrays;3 Qther writers have exploited the 
inherent parallelism Qf associative· memQries as com­
ponents of parallel prQcessing systems.4-7 

Associative memQries have been prQPosed either as 
true CQntent addressable memQries,5 or as processing 
units.4- 6 In general, for use as a processing unit, each 
wQrd in the memQry, Qr PQssibly pairs or grQUps of 
wQrds, is regarded as a serial by bit prQcessing unit, all 
operating in parallel and cQntrQlled by a single pro­
gram. These proposals have includoo rather compli­
cated control systems to perfQrm bit indexing and Qther 
functiQns necessary to. sequence the memory through a 
program. 

An impQrtant extension to the co.ncept of associative 
memories as processing elements was proposed by 
lV[cKeever,8 who. described the use Qf three state storage 
elements with increased logic functiQn at eachstQrage 
cell; a memory with this feature is referred to here as 
an associative functional memory. The use of three 
state cells as a general system technolQgy for conven­
tiQnal sequential processors has been described ;9,10 it is 
the purpose Qf this paper to. demonstrate that: 

1. An assQciative functional memory with suitable 
peripheral features could be used to implement 
many of its own control functions as well as 
perfQrming processing operations, and could 
readily be assembled into a complete auxiliary 
parallel processor, 

2. Such a processor would be an attractive means 
Qf enhancing the performance of small. conven­
tiQnal prQcessors in a wide range of problems. 

461 

SYSTEM DESCRIPTION 

The associative processQr to be described here is in­
tended for use as a prQgrammable auxiliary proceSSQr 
to assist a conventiQnal main proceSSQr in special prob­
lems. Programs are lQaded from the main proceSSQr 
and are used to lQad data, to process it, and to. return 
results to the main prQcessor. The main processor has 
at all times the ability to. force the auxiliary processor 
to accept a new program Qr to. branch to' ·a specified 
locatiQn in its program. For applicatiQns invQlving the 
processing and reduction Qf very large amQunts of raw 
data, fQr example, radar signal processing, it would be 
wasteful to transfer data to the associative processor 
by way of the memory and channels of the main prQ­
cessor. In these circumstances, the assQciative prQ­
cessor could be modified to. accept data directly from 
its SQurce, that is, to. act·as a pre-processor, but would 
not be expected to exercise control over the data source. 

The overatl design gQals have been simplicity of 
implementation and generality of applicatiQn. Simplic­
ity of implementation has been achieved by construc­
tion frQm units which CQuid be standard modules9 

with a minimum of additional special logic, and has led 
to. a potentially fast cycle time. Generality of applica­
tion has been achieved by implementing many contrQI 
functions in memory and by the inclusion Qf some extra 
associative memQry features which are not necessarily 
required· in all applicatiQns. The prQPosed proceSSQr 
cQnsists of two main components (Figure 1): a 1024 
word X 64 cell assQciative functional memory and a 
512 word X 50 bit read/write contrQI stQre. The as~ 

sociative memQry is used tQstQre both data being pro­
cessedand control informatiQn. An alternative would 
have been to. have used separate memQries; however, 
the use of a single unit permits the ratio Qf data to con­
trol information to be tailQred to any given prQblem 
and enables a very simple cQntrol system to be used. 
On the other hand, the single array approach reduces 
the speed of data processing since many associative 



462 Fall Joint Computer Conference, 1972 

~ 
~ I/O Control 
~ 

"' 
, 

--
Bit control I/O Data 

'Program load .J' -
j~ 

, 

"''' , ~ 
Conditions Associative Memory Word 

Array Control 
Control store 

~ 
Controls 

Figure 1-Block diagram of the proposed associative processor 

memory cycles have to be used for control operations. 
It tends to be wasteful in the use of associative cells 
for control tables, and requires the introduction of extra 
features to reduce the interference between data and 
control. 

Control sequences for the execution of a program are 
contained in ,a read/write control store normally 
operating in a read-only mode. Conditional branches 
in the program may be made by testing the condition 
of various signals in the processor and its I/O inter­
faces. Program loading, ie., writing into the control 
store, is performed under the control of a short, perma­
nent, initial load program. 

Input and output data transfers are made by way of 
the associative array bitconttol unit. Basic interface 
control is carried out by the control store which can 
generate outgoing and test incoming control signals; 
more complex I/O control, such as an IBM Standard 
Interface, requires the addition of an interface control 
unit. Attachment closer to the main processor (e.g., 
interfacing the main, memory) would give higher per­
formance but would imply modifications to the main 
processor. 

Associative processing array 

The associative processing array is a two-dimensional 
array of three state (0, 1, X= "don't care") associative 
storage cells with arbitrarily chosen dimensions of 1024 
words X 64 cells. The array is connected in the word 
direction to the word control unit and in the bit direc­
tion to the bit control unit. In an LSI implementation, 
the basic module could be a self-contained associative 
functional memory unit of, say, 128 words, complete 
with bit and word controls. lVlodules could readily be 
extended in the word direction by suitable intercon­
nection of data and control lines; extension in the bit 
direction may be simulated by software. 

Three basic operations may be performed on the 
array: search, read, and write. 

Search 

A ternary search argument is generated in the bit 
control unit between the specified data register (Rl, 
R2) and the specified mask (M, alII's, all O's) on a bit 



by bit basis: 

Mask 

Data 

~
1 

o X X 

1 0 1 

X = don't care 

Generation of search arguments. 

All cells, in parallel, compare their contents with the 
search argument for that bit column and generate a 
mis-match signal in accordance with the truth table: 

Search 
Argument 

Cell Content 

0 1 X 

0 0 1 0 

1 1 0 0 

X 0 0 0 

Generation of mismatch signals 

Mismatch signals for a cell are ORed to give a mis­
match signal for the word; word mismatch signals, in 
true or complement form, are sent to the word control 
unit where they may be ANDed or ORed with, or re­
place the contents of one of two sets of selector latches 
(P and S). 

Read 

The contents of a specified set of selector latches (P, 
S, all O's) in true or complement form are used to select 
words to be read. The contents of cells from selected 
words are ORed in the bit direction onto a read bus (an 
X state reads as zero) and sent to the bit control unit 
where they are used to load a specified register (Rl, 
R2, M) based on the value of mask specified (M, all 0, 
all 1): 

Mask 

0 1 

0 No change 0 
Read Bus 

1 No change 1 

Effect of Read operation on specified register. 

Design for Auxiliary Associative Parallel Processor 463 

Write 

Two write commands are provided: Write Normal, 
and Write Special. In either case a ternary argument is 
generated in the same manner as a Search argument and 
acts on the contents of cells in selected words, as de­
fined by the specified selector register in true or comple­
ment form (P, S, all 0). The effects on a cell are shown 
in the two truth tables below: 

Write Argument Write Argument 

o 1 X 0 1 X 

Cell Content 0 1 No' change X X No change 

Write Normal Write Special 

The word control unit may also perform a one bit 
shift of a selector register up or down with end around 
carry, or fill with 0 or 1; a shift takes the same time as 
an array operation or may be overlapped with an ad­
jacent preceding array operation using the same selector 
register. This provides the only parallel means of com­
municating vertically between words. Other writers 
(e.g., McKeever, Reference 8) have usually specified 
other operations in the word control unit, such as iso­
late first match. Although provided by our simulator 
we have found little use for such operations, which 
tend to be serial in nature, and for the most part found 
that they can be economically simulated by software, 
e.g., by use of a code field. The exception was sorting 
with an arbitrary number of identical items, when a 
means of separately identifying multiple matches is 
necessary. 

The bit control unit contains three registers: two 
data registers (Rl, R2) defining a data source or sink 
for an array operation; and one mask register(M) de­
fining a field for an array operation. Any array opera­
tion may use either data register and the mask register, 
or may replace the mask by a source of all O's or alII's. 
In addition, the control store may specify directly the 
leftmost four bits each for the mask and data registers. 
These bits (the immediate field) are ORed into the 
register outputs without affecting the contents of the 
register. A non-array operation, a single bit shift 
operation on any register may be specified; this feature 
is assumed to take the same time as an array operation 
unless it is overlapped with an adjacent array operation 
in which the register being shifted is a data source or 
sink; again, fill with 0 or 1 may be specified. 



464 Fall Joint Computer Conference, 1972 

Input-output operations 

Input-output operations for the associative processor 
take place through the bit control data register RL 
The register is divided into fields each of the same 
width as the I/O interface data busses. Data may be 
gated to or from the register under program control 
and is interlocked with the main processor by interface 
synchronizing signals. Outgoing interface control sig­
nals are generated by the control store and by the run 
control logic. Incoming interface control signals are 
either tested as machine conditions by the program, or 
act directly on the run control logic. 

Operation as a pre-processor, taking data from but 
not controlling another source, would require the ability 
to transfer into the processo:r from another interface 
and generate and test another set of I/O synchroniza­
tion signals. This modification requires at least two extra 
bits in the control word and some extra logic, but is not 
p.xpected to be very difficult to implement. 

Control store 

The control store (Figure 2) is a conventional (as op­
posed to associative) read/write store used to hold a 
program defining the sequence of operations to be per­
formed by the associative memory.u During the execu­
tion of a program, the control store normally operates 
in a read-only manner. Each word read out specifies the 
operations to be performed in the array and also the 
address of the next program word. The next address 
may be modified by a condition in the machine, speci­
fied by the program word, enabling conditional branches 
to be made in the program. 

The control store contains 512 words of 50 bits, 
though these numbers may vary, depending on the 
features included. When formed into groups of mutually 
exclusive options, the operation options to be speci­
fied for the array processing unit fall into rather small 
groups, so that coding within a group is not very ad­
vantageous, and bit significant operation has been 
chosen. This has other advantages as it increases flexi­
bility and eliminates timing delays through decoders. 

It is expected that a semiconductor memory will be 
necessary to be able to operate at the same speed as the 
array. Such. a memory will. have nondestructive read 
out so that writing into the control store will require 
special control features. Subroutining capability is pro­
vided by a data path to the bit control register R1, 
enabling subroutine return addresses to be stored in 
the associative array. 

Program loading 

Program loading is performed under the control of a 
small fixed routine held in the first few words of the con­
trol store. The program load routine assembles data from 
the I/O interface into the bit control register RL This 
data is interpreted as a control word and the address 
of the location in the control store into which it is to 
be stored. The program load routine then gives a special 
signal "write next cycle" which causes the run control 
logic to break its normal cycle of read-only operation, 
and to spend one cycle writing into the control store 
from RL Note that the control store data register is not 
altered and is available for normal operation on the 
cycle after the write operation is performed. The 
"write next cycle" control also permits the transfer of 
programs from the associative array to the control 
store. 

Programming techniques 

The guiding principle behind the design of the control 
system has been to make the hardware simple whilst 
keeping the system flexible. This principle led to the 
use of a single associative memory, controlled by a single 
conventional control store, with both data and control 
information stored and processed in the associative 
memory. 

Three classes of control information are held in the 
associative memory: 

(1) mask and data register contents for operating on 
data. In the case of relatively simple operations, 
such as addition, these register contents are 
stored in consecutive locations in the sequence in 
which they will be needed, and are accessed by 
shifting a selector register reserved for the pur­
pose. In more complicated operations, such as 
multiplication, where the total number of masks 
is proportional to P2 (where P is the field width) 
and may be large, it may be advantageous to 
process the masks as data in the manner de­
scribed in References 9 and 10, and to generate 
the required sequence of masks; the number of 
control words now becomes essentially propor­
tional to p. 

(2) program flow. logic, including counts and logical 
decisions. These may be programmed directly 
or, in simple cases, may be implemented by in­
serting blank words in mask sequences and test-



Design for Auxiliary Associative Parallel Processor 465 

Program load and subroutining 
from Bit control Rl 

Program load from Bit Control Rl 
~ 

Address 
(9) 

(9) 

(8) (1) 

-
(8) I-- Next Address 

~ 

~ _______ ---tCond .1, ... _____ _ 

(4 ) Condi tion Se 1. r Condi tions 
~ from bit and word 

controls, and 
I/O sync In. 

Control store (50) (8)~Immediate field 
to bit control 

Run 
Control 

to I/O interference 
Busy 

(3)~Array operations 

(50) ~ 

(9)~Bit control 

(l2)~ Word control 

~ 

(4)~I/0, including I/O sync. out 

(2)~Misc. 

~ ______________________________ ~Timing for controls 

from I/O interface: 
Stop 
Reset and Branch 
Start 

Figure 2-Control store connections 



466 Fall Joint Computer Conference, 1972 

lnunediate Field A Field B 
Field 

.------...( " \( 
,.... 

Rl 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

R2 
1
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 

i i 
:: 1 

o I , 

~O-Olrlllllljoo-o-ooo 
1000 1 000000,111111 

1 0 0 0 1 01 

1000 1 11 

1000' 01 

1000
1 

11 

1000: 0 I 

o 

1 

1 

o 

1 

Data 

o 

Control (blank 0) 

1000 1 1 I o 

10001 0 I 
10001 1 I 
10001 0 I 
1000 1 1 I 
1 0 0 0: 0 1 1 

1 

o 
1 

o 

100°
1

1 10 

100010 10 

Immediate field codes: 0 data word 

1 0 0 1 start of control sequence 

1 0 0 0 control word 

Immediate field allocation for data words: 

bit 1 0 data word 

bit 2 0/1 not active/active marker 

bit 3 0/1 carry a/I 

Figure 3a-Memory organization of addition: A' = A + B 



Design for Auxiliary Associative Parallel Processor 467 

Inunediate Data Source Next 
Location Operation Field Selector or Sink Mask Address Conunents 

14 Search 1001 P a 15 load Rl, R2, M. keep mask table 
pointer in ·P. 

15 Read 0000 P, shift down R2 1 16 

IS Read 0000 P, shift down Rl 1 17 

17 Read 0000 P, shift down M 1 13 

18 Search 0--- S a 19 reset carry and active markers 
in data words 

19 Write -lO- S a 20 

20 Search 010- S R2 M 22 identify no change combinations 
and mark as inactive 

22 Search 011- OR into S Rl M 23 

23 Write 00-- S 0 24 

24 Read 0000 P, shift down M 1 25 read new mask 

25 Search 01-- S R2 M 26 identify a field bit changing 
to 0; update 

26 Write 001- S Rl M 27 

27 Search 01-- S Rl M 28 identify a field bit changing 
to 1, update 

28 Write 000- S R2 M 29 

29 Search 0--- S 0 30 set active markers 

30 Read 0000 P, shift down M 1 31 read new mask 

31 Write -1-- S 0 20/21 test for mask = 0 
(M=O) 

21 

Figure 3b-Program for addition: A' = A + B 

ing for an all zero read out. Note that the only 
internal condition tests available to the pro­
grammer are zero tests on the bit and word 
registers; an alternative would have been a test 
on a single bit. 

(3) partitioning. The immediate field provides a 
fast software technique for partitioning the 
single array into groups of words. The four bits 
of the field permit 16 interleaved partitions of 
arbitrary size. This feature is particularly valu­
able for distinguishing and separating data and 
control information; for example, a 0 in the left­
most bit position may signify data while a 1 
signifies control. 

A further consequence of the use of a single array is 
the need to load and store the mask register from and to 
the array. The three array operations have been gen­
eralized for this purpose. 

Programming example: Serial-by-bit addition 

This example is given to show: 

(1) the use of the immediate field 
(2) the use of the associative array for both data and 

control information 
(3) the ability to define fields independently of the 

program by means of control tables. 

Suppose we wish to perform the addition of two 
fields, A and B, the result to overwrite field A, i.e., 
A' = A + B. The minimum possible number of array 
operations per bit is 6 (4 Search and 2 Write); however, 
this assumes no performance loss handling control 
operations. The addition algorithm given below takes 
11 operations (9 if the inner loop is expanded to handle 
two bits consecutively). The algorithm uses 2p+3 mem­
ory words to store masks and data register contents (p 
is the field width) ; we have found that, in general, it is 
possible to trade less speed for less control storage. 



468 Fall Joint Computer Conference, 1972 

The algorithm is illustrated in Figure 3. The first six 
instructions locate the start of an addition control 
table, load the two data registers R1 and R2 with 
constants which remain unchanged throughout the al­
gorithm, load an initial pattern into the mask register, 
and initialize the immediate field. Three bits of the im­
mediate field are used: bit 1 indicates data or control 
words, bit 2 is an activity marker used to indicate 
whether a word has been completely processed in the 
current bit position, and bit 3 is a carry and is initially 
zero. 

Instructions 20-31 make up the main loop of the al­
gorithm which proceeds in a·serial by bit manner start­
ing with the least significant bit. At each bit position 
the no change condition in the A and carry bits is de­
tected, and these words are marked as inactive. The 
remaining words are tested for changes in the A field 
and are updated. Indexing across the fields is achieved 
by the mask register contents, which are read sequen­
tially from the control table. Execution of the loop 
ceases when an all zero mask is read out. 

APPLICATIONS 

The principal mode of parallel processing employed 
in this associative processor is serial by bit, parallel by 
word, over some selected subset of words in the mem­
ory. Thus a memory of 1024 words has a potential 
processing parallelism of up to 1024. Operating in a 
serial-by-bit manner across fields inherently requires 
more cycles than a conventional machine with bit 
parallel processing. This is particularly significant in 
arithmetic operations; for example, 16 bit addition re­
quires about four times as many control cycles as a 
System/360 Model 30, 32 bit addition requires about 
eight times as many, and this must be more than can­
celled by the parallelism used. At present we are limited 
to fixed or block floating point operation; normalization 
in general floating point is prohibitively time consum­
ing. In bit manipulation operations, the programmable 
field feature (i.e., the ability to define fields by mask 
control tables stored in the associative memory) may 
enable the associative processor to take fewer opera­
tions than a sequential machine. 

The overall performance of the associative processor 
is affected by a number of overheads. It is assumed that 
the processor would be used for repetitive execution of 
a program, so that program and control table loading 
times need not be included in the problem-solving time. 
Input and output of data is sequential by word and can 
be very significant. In general, the processor as described 
with a single I/O data path is only suited to problems 
with a high processing to I/O ratio; however, multiple 

I/O data paths could be provided to each of a number 
of partitions. After each stage of parallel computation 
(e.g., after a vector addition) it is generally necessary to 
reorganize the data for a subsequent stage of processing; 
this too can use significant amounts of time and must 
be minimized by careful algorithm selection and mem­
ory organization. 

The performance of the processor has been studied 
with the assistance of a very flexible simulator program 
which allowed function truth tables to be defined at 
object time. Execution times, including processing, 
input/ output, and data reorganization, have been com­
puted assuming a cycle time of 100 nsec, which is be­
lieved to be within the capability of an LSI technology. 

A wide range of examples have been studied for the 
associative processor and are discussed here without de­
tails of programming techniques. The aim in choosing 
examples has been to investigate the versatility of the 
associative processor and to demonstrate its perform­
ance on problems for which special purpose processors 
are being built. The examples are summarized in Table 
I; performance figures for the associative processor are 
based on a cycle time of 100 nsecs and an I/O data rate 
of 1.5 p. secs per byte. 

Picture processing 

The functional memory may be regarded as a two­
dimensional array of storage cells. Given a memory with 
suitable dimensions, two-dimensional pictures may be 
stored in two-dimensional form and, since neighboring 
point relationships are preserved, local processing 
operations may be performed directly and with a high 
degree of parallelism. Analog picture element values 
may be coded into a number of adjacent bits in either 
the bit or word direction; pictures too large for the 
memory may be partitioned and processed in separate 
pages, but this requires care in piecing the edge results 
together. 

As an example, consider the application of a two­
dimensional binary mask operator (nxXny) to a binary 
picture (NxXNy) stored in the functional memory. The 
algorithm proceeds by searching sequentially for each 
line of the operator, centered on one column of the 
picture. The result of the first search operation is loaded 
into a selector register and shifted one position; the re­
sults of subsequent searches are ANDed into the pre­
vious selector register contents before shifting. After 
ny search operations, the selector register contains the 
full result of applying the operator to the column and 
may be either stored back into the memory or output; 
further columns may be processed sequentially. With 
Nx=Ny= 144, application of 25 operators with nx=ny= 



7 takes 120 milliseconds and is estimated to be 610 times 
faster than a 360/30. Note that this problem gains 
performance through both the parallelism of the associ­
ative processor and its ability to tailor data fields to 
the needs of the current algorithm. 

An alternative approach, suitable for on-line charac­
ter recognition, would be to exploit the symmetry of 
the picture-operator system and hold the mask opera­
tors in the memory and search them with the picture as 
received from a scanner. This operation is the "feature 
extraction" process of character recognition; the result­
ant feature vector may subsequently be matched against 
a stored library of standard reference feature vectors; 
in both operations the three call states may be used to 
represent ternary data. Distance measures between the 
feature vector and all the reference vectors may then 
be computed in a serial-by-bit manner; the recognition 
process may be completed by testing for the minimum 
distance using parallel search techniques. 

Lewin sorting algorithm 

The Lewin sorting algorithm 12 was originally pro­
posed for an associative memory with a special hard­
ware feature to indicate whether a column contained all 
O's or all l's. This feature may readily be simulated by 
software on this processor; for example, searching for 1 

I on a data column and a subsequent read of a marker 
column containing all l's will indicate whether or not 
the data column contains all O's. An all l's condition 
may be similarly detected. 

The algorithm finds, for example, the largest of a set 

TABLE I-Summary of the Performance of the 
Associative Processor 

Distribution of total processing time 
Data Total Speed Up 

Process- Reorgan- Process- Over 
ing ization I/O ing Time 360/30 

Picture 97% 3% 122 610X 

I 

Processing millisec. 
Sorting 70% 30% 20 1l0X 

II, 

millisec. 

I Matrix Mult. 31% 7% 62% 1 78X 
millisec. 

I 
Fourier 17% 44% 39% 31 75X 

Transform millisec. 
Hadamard 4% 46% 50% 12 79X 

Transform millisec. 
1-D Filter 40% 60% 10 280 X 

millisec. 
2-D Filter 50% 50% 20 sec. 510X 

Design for Auxiliary Associative Parallel Processor 469 

of numbers by searching for columns containing a mix­
ture of O's and l's. If no such columns exist, all the 
numbers are identical and are equal to the largest one. 
Otherwise, the leftmost mixed column is searched for 
numbers with 1 in this position, and the operation is 
repeated on this new subset. 

The number of operations taken by the associative 
processor to execute the algorithm is very data de­
pendent; worst-case figures are given in Table I for an 
internal sort of 1000 items using 16 bit keys and show a 
speed up of a factor of 1100ver a 360/30. 

As mentioned previously, a sort of identical items 
requires a means of isolating the components of mul­
tiple matches; in this example, where an arbitrary num­
ber of identical items may be present software tech­
niques require a wide code field and are therefore ex­
pensive. We have assumed the existence of an isolate 
first hit feature. 

Tree searching 

One of the major problems in artificial intelligence is 
to perform efficient tree searching. Since the number of 
nodes of a tree grows exponentially with respect to the 
depth of the tree, the tree searching time also increases 
exponentially, rendering deeper search impractical. It is 
clear that in tree searching the same sequence of com­
putation and condition testing is performed on every 
node. Thus the basic requirement of "Single Program 
Multiple Data" processing is satisfied and we can per­
form computations upon all nodes in parallel. The tree 
may still have to be grown step by step, but this is 
probably unavoidable. 

It is difficult to define a typical tree searching prob­
lem and, since performance of both the associative pro­
cessor and a conventional processor are highly problem 
dependent, no performance comparisons are given. 
However, we note that the performance improvements 
in the region of 2-3 orders of magnitude have been 
found in simple game-playing problems. 

Matrix operations 

Many matrix operations are inherently parallel in 
nature and may readily be programmed for the associ­
ative processor. Vector addition, subtraction, and 
multiplication operations, and summation of elements 
of a vector, may be executed very efficiently; division 
may be performed only with difficul~y. Thus, matrix 
multiplication is very attractive, but operations involv­
ing a high proportion of divisions is not likely to show 
any great, .advantage on the associative processor. 
When only a small number of divisions are required. 



470 Fall Joint Computer Conference, 1972 

they may be performed by the main processor (e.g., 
pivotal element normalization in matrix inversion2). 

Fixed point multiplication of 10X10 matrices at 16 
bit precision gives a performance improvement of 78 
times. Larger matrix sizes may be partitioned to fit the 
processor and show approximately the same processing 
performance improvement because I/O time dominates. 

Fast Fourier and Hadamard transforms 

The fast Fourier13 and Hadamard14 transforms are 
closely related operations used particularly in signal 
and image processing. The radix-2 fast Fourier trans­
form computes the Fourier transform of a set of points 
Alo ••• An 0 by means of a sequence of transformations 
AO~AL_~ •• ·Am-l, where n=2m. Each of these trans­
formations is made up on n/2 pairs of elementary opera­
tions of the form 

where W pi is a complex 2iHth root of unity in the fast 
Fourier transform, and 1 in the Hadamard transform. 

, Each of the pairs of elementary operations in a trans­
form may be performed in parallel and consists of a 
complex multiplication followed by a complex addition 
and subtraction; the result of a transformation may 
overwrite the input to the transformation. 

Many algorithms have been proposed for the selec­
tion of the pairs of indices p and q. The procedure chosen 
for use here selects the indices in a regular manner and 
allows efficient use to be made of the select latches as a 
means of parallel communication between words. For 
the first transformation A o~A 1, Ap and Aq are n/2 
words apart; forA 1-tA2, n/4 words apart, etc. How­
ever, this procedure has the disadvantage that if the 
input data are in order, the results will be permuted 
with their addresses in bit reversed form, though this 
may be corrected when the results are transferred back 
to the main processor. The basic steps of the algorithm 
have already been described15 for an associative pro­
cessor with external storage and separated data and 
control functions. 

The implementation of a useful size of Fourier trans­
form within this associative processor requires the use 
of a larger memory array. The principal reasons are 
the need to store the complex roots of unity and the 
inclusion of an address field to enable blocks of operands 
to be identified rapidly. A 1024 point complex trans­
form with 14 bit precision may be fitted into an as­
sociative memory of 1273 words of 89 bits with a per­
formaIlce approximately 75 times faster than a 360/30. 

The Hadamard transform may be regarded as a 

square wave analog of the sine and cosine wave Fourier I 

transform and has many advantages from a computa- I 

tional point of view. In particular, the use of square I 

waves of amplitude± 1 makes multiplication unneces­
sary, and an ability to generate square wave transition 
lengths for a transform of length 2N from a transform 
of length N removes the need for a stored table of 
coefficients. The Hadamard transform also has a fast 
Hadamard transform algorithm. Performance on the 
associative processor for a 1024 point real transform is 
shown in Table 1. Note that in both these transforms 
data reorganization becomes very significant. 

Digital filtering 

Digital convolutional filters of the form: 

where 

n 

yet) = L x(t-r)g(t) 
1'=1 

get) is a filter of length n 

x(t) is the filter input 

yet) is the filter output 

may be implemented on the associative processor in a 
number of ways, the choice depending principally on 
the dimensions of the problems, e.g., filter length, data 
record length, and number of filters. The most efficient 
method, in the sense that I/O operations are minimized, 
is to store the filter vector g permanently in the mem­
ory and to regard the data points as scalar inputs 
operating on all elements of the filter vector. This 
method is applicable when N ~ number of words in the 
memory, where N represents either a single long filter 
or a number of shorter filters of equal length. Note that, 
in the Single Program Multiple Data form of parallel 
processing, a scalar operation on a vector differs from 
element operations between a pair of vectors in that it 
is now possible to perform look-ahead operations when 
processing the scalar quantity, thereby approximately 
halving the execution time. . 

The algorithm assumes that the memory is parti- i 

tioned into two fields of equal size, one for the filter i 

vector g and the other for partial results. Processing I 

proceeds in a pipeline manner-a new data point is re­
ceived and used as a scalar multiplier on the filter vec- i 

tor, the products being added into the adjacent partial 
result field. The partial results are shifted one word 
position and the process repeated with the next data 
point. After the first n data points have been processed, 
one output result will be available for each filter held 
in the memory; thereafter, output results are available 
after each new data point has been processed. 



An alternative method to be used when the filter is 
short is to load the memory to capacity with data points 
and to apply the filter coefficients as external scalars. 
When the whole filter has been applied, all the results 
may be read out. The processing time for this method 
is the same as that for the stored filter, but the I/O 
time is significantly greater. 

Two examples have been considered, both using the 
stored data method. The first is a typical seismic signal 
processing problem and has a 1000-point data record, a 
25-point filter, and operates at 16 bit precision. The 
second is a picture processing problem similar to that 
posed by Mariner pictures· with a picture of 600 X 684 
elements, a two-dimensional filter of 15 X 15 points, and 
operates at 8 bit precision. 

The results are shown in Table I. In spite of the I/O 
overheads, the performance improvements are large; 
in particular, the space picture processing performance 
reflects the ability of the associative processor to tailor 
its field lengths to the problem. 

Convolutional decoding 

In this example, the associative processor is used to 
perform error-correcting decoding operations. The 
Viterbi decoding algorithm16 is given as an example; 
however, in order to understand the decoding algorithm 
it is necessary to first describe the coding process. 

The encoder has the canonical form of a shift register 
of length S. Each time an information digit is encoded, 
the contents of the shift register are shifted right, the 
rightmost bit being discarded, and the information digit 
is stored in the leftmost bit of the register. The encoded 
message bits are the modulo 2 sums of some bits in the 
shift register; the ratio of information bits to encoded 
message bits is known as the code rate. 

The present contents of the shift register may bere­
garded as the state of the encoder, and a state transition 
diagram may be constructed for every input of an in­
formation bit. The Viterbi decoding algorithm is based 
on storing, for each possible state of the encoder, a 
history of the most probable, in some sense, sequence 
of information digits to reach that state. Each state and 
its history has a distance measure associated with it. 
When a new set of encoded message bits are received, 
the histories are updated by computing the error dis­
tam~e between the received bits and the true bits cor­
responding to each state transition, and adding this to 
the distance measure for the corresponding history. The 
histories are arbitrarily restricted to a length 3(S -1) 
and, after each updating, the bit 3(S -1) bits away in 
the history with the lowest distance measure is output 
as a decoded bit. 

Design for Auxiliary Associative Parallel Processor 471 

A number of examples have been studied with various 
values of S and code rate. Comparisons have not been 
made with a conventional machine because special 
purpose processors are being built for these decoding 
problems. For S = 6, rate = 72, the associative processor 
takes 100 JLseconds per bit, i.e., 10K bits/sec. For S = 9, 
rate = %, the processor takes 370 JLsecs. per bit, i.e., 
2.7K bits/sec. This variation in performance with shift 
register length S is almost entirely caused by an in­
crease in data reorganization overheads caused by a 
larger number of encoder states. 

CONCLUSIONS 

The auxiliary associative processor described in this 
paper has been shown to have a high performance on a 
wide range of problems which are inherently parallel in 
structure. The major drawbacks have been found to be 
in the processor's ability to handle only fixed point or 
block floating point arithmetic, and the difficulty of 
performing division. The principal system problems 
have been in the operating overheads of I/O and data 
reorganization. The I/O overhead could be reduced by 
integrating the associative processor into the main 
processor, which would also permit more complex inter­
action betwee~ the processors or by providing multiple 
I/O paths. The data reorganization overhead is caused 
mainly by long shift operations in the selector latches; 
these could be reduced by hardware ·and/or software 
partitioning of the memory, enabling inactive blocks of 
words to be by-passed. In Reference 17 the data re­
organization problem is studied in detail. 

The consequences of using a single array to hold both 
data and control information are hard to isolate. In 
operation time the overhead for control operations is 
always less than 50 percent (arithmetic operations) and 
is generally much less. In memory space, the price is at 
least one bit of each word (the immediate field) and up 
to 25 percent increase in size (Fourier transform). In 
contrast, the flexible partition between data and con­
tr61, and the ability to tailor fields to the problem have 
proved very powerful. 

The decision to use the three-state cells of McKeever8 

was based on the aim for generality of application. In 
parallel binary arithmetic operations only two of the 
three states have been used; however, the third state 
has been used for data representation in picture pro­
cessing and tree searching, and for implementation of 
control functions in all examples. In practice the three­
state cell may be implemented by 2 two-state cells; 
the possibility then exists of having two-state cells in­
dividually for 2 state operations, and in conjunction 
for larger numbers of states. In this paper we have not 
pursued such an approach. 



472 Fall Joint Computer Conference, 1972 

Economic realization of the processor requires the 
availability of high performance, low-cost integrated 
circuit technologies. However, the system design has 
aimed at the use of only a small number of different com­
ponents, most of which are memory rather than random 
logic. The components used could be a standard tech­
nology suitable for both conventional and parallel sys­
tems. 

The performance figures quoted in this paper have 
been obtained with the aid of a software simulator at 
the microprogram level. Little work has been done on 
the development of a higher level language or assembler 
for the processor. 

ACKNOWLEDGMENT 

We are indebted to Dr. R. Lyons for drawing the Lewin 
sorting algorithm to our attention and pointing out its 
suitability for execution on an associative functional 
processor. 

REFERENCES 

1 D L SLOTNIK we BORCK 
R C MCREYNOLDS 
The Solomon Computer 
Proc FJCC pp 97-107 1962 

2 B A CRANE J A GITHENS 
Bulk processing in a distributed logic memory 
IEEE Trans on Elect Computers Vol EC 14 pp 186-196 
April 1965 

3 J H HOLLAND 
A universal computer capable of executing an arbitrary 
number of sub-programs simultaneously 
Proc FJCC pp 108-113 1959 

4 G ESTRIN R FULLER 
, Algorithms for content-addressable memories 

Proc IEEE pp 118-130 Pacific Computer Conf 1963 
5 R G EWING P M DAVIES 

A n associative processor 
Proc FJCC pp 147-158 1964 

6 R H FULLER R M BIRD 
An associative parallel processor with applications to picture 
processing 
Proc FJCC pp 105-115 1965 

7 J A GITHENS 
An associative, highly parallel computer for radar data 
processing 
Parallel Processor Systems Technologies and Applications 
editor L C Hobbs pp 71-86 Spartan Books 1970 

8 B T McKEEVER 
The associative memory structure 
Proc FJCC pp 371-388 1965 

9 M FLINDERS P L GARDNER J G MINSHULL 
R J LLEWELYN 
Functional memory as a general purpose systems technology 
1970 IEEE Computer Group Conference June 1970 

10 P L GARDNER 
Functional memory and its microprogramming implications 
IEEE Trans on Computers Vol C20 No 7 pp 764-755 
July 1971 

11 D A SAVITT H H LOVE 
Association storing processor study 
Hughes Aircraft Technical Report No TR-66-174 
(AD 488538) June 1966 

12 M H LE\VIN 
Retrieval of ordered lists from a content addressed memory 
RCA Review June 1962 pp 215-229 

13 G-AE SUBCOMMITTEE ON MEASUREMENT 
CONCEPTS 
What is the fast Fourier transform 
IEEE Trans A udio and Electroacoustics Vol A V -15 pp I 

44-55 June 1967 
14 \V K PRATT J KANE H C ANDREWS 

Hadamard transform image coding 
Proc IEEE Vol 57 No 1 Jan 1969 pp 58-68 

15 M A WESLEY 
Associative parallel processing for the fast Fourier transform 
IEEE Trans on Audio and Electroacoustics Vol Au-17 No 2 
pp 162-165 June 1969 

16 A .T VITERBI 
Error bounds for convolutional codes and an asymptotically 
optimum decoding algorithm 
IEEE Trans on Inf Theory April 1967 Vol IT-13 No 2 
pp 260-269 

17 S K CHANG 
Parallel computation of local operations 
Proc Third ACM Symposium on Theory of Computing 
May 1971 pp 101-115 



\ An eclectic information processing system * 
'!II" 

C TTS J HAYNES, H. HUSKEY, J. KAUBISCH, L. LAITINEN, G. TOLLKUHN, and by R. U ,. 
E. YARWOOD 

University of California 
Santa Cruz, California 

INTRODUCTION 

This paper is a progress report on a computer system 
Which is now being designed and constructed. As the 
title indicates, ideas that seem good have been taken 
from many different sources. Many features of con­
temporary large systems that were earlier incorporated 
into a plan for a large machine! are now being applied 
to this smaller system. 

'I The new design is grounded in hardware string pro-~IIII 

I cessing, affording a greater generality of application 
I than is typical in existing small systems. The structure 

employs multiple, specialized sub-processors operating 
concurrently. Interrupts are not needed; rather the 
natural breakpoints in evaluating expressions cause 

I p~ocessors to move from one task to anothe~ under the 
control of hardware queues. Main storage IS allocated 

I in variable-length segments. Parsing hardware facili­
tates the use of input languages of familiar style. Disk 
storage is provided only for currently-active users; 
long-term storage of user data is on personal magnetic 
tape cassettes. 

The system structure readily admits the addition of 
evaluating processors designed to improve performance 
in specific areas. Vector arithmetic and graphical di~­
play of functions are two examples in the prototype sys­
tem. Aside from its computational capabilities, the sys-

I' tem can serve as a communications "front end" for a 
I 

, large computer system. . 
The goal is a relatively inexpensive system that wIll 

I serve the needs of a diverse community of users, such as 
the faculty and students of a small college. These poten­

I, tial users cannot foresee their information processing 
needs any better than they can foresee the results of 
their yet-undone research. This means that the only 

I completely satisfactory system is one that is universal, 
I, i.e., one that can compute anything that is computable. 

I 
I 

* This work was supported by the National Science Foundation, 
Grant GJ-30436X. 

473 

A Turing machine, although universal in the required 
sense is far too cumbersome. Thus, it becomes neces­
sary to choose for implementation a set of ~rimitive 
processes that is a compromise among ge~eraht~, com­
plexity, and speed. Any particular ~p~r~tIOn mIg~t be 
built-in or composed from more prImItIve operatIOns. 
Except for speed the user does not know the difference; 
and since the primitives are universal he can always use 
them to build other high-level operations to suit his 
needs. In other words, an extensible system is wanted. 
Of course there are other desiderata for a computer 
system b~sides extensibility and universality, such as 
conciseness, naturalness, ease of learning, self-docu­
mentation of programs, ease of generating efficient run­
time representations, etc. Instead of concentrating on 
just the programming language, this project aims to 
build an integrated language and logical structure for 
computing. 

Recursive string processing is the basis of this system. 
This is a general technique; most computer applica­
tions can be characterized as operating upon an input 
string to produce an output string as specified in a pro­
cedure string. Properly outside this scope are computer 
graphics applications, since these apply to two-dimen­
sional objects rather than to strings. However, as 
usually instrumented, even graphical processing begins 
by transforming a picture into a string of point values, 
and ends by stringing point values together for the out-
put device. .. . 

It is fair to question the wisdom of desIgnmg a time­
sharing system in the light of the one-user free-standing 
computer-on-a-chip promised by MOS technology. 
There are really two questions: (1) Are there resources 
which can usefully be shared among users? (2) Can 
resource-sharing be implemented economically? The 
authors offer an affirmative answer to both of these 
questions. The first resource worth sharing is high-speed 
storage. Users have varying storage requirements, so 
that·with individual machines of any storage size there 



474 Fall Joint Computer Conference, 1972 

would always be storage going to waste in some ma­
chines while other users could not run for lack of stor­
age. The economy-of-scale argument to justify resource­
sharing, while no longer convincing as far as hardware 
cost is concerned, remains valid in considering the incre­
mental cost of adding users to the system. For indi­
vidual machines the cost of serving N users is N times 
the cost of one machine. For N users of a shared system, 
the cost per user may exceed the cost of individual 
machines for small N, but for large N the cost per user 
tends to decrease. This comes about for two reasons: 
(1) Adding one user without increasing system re­
sources does not seriously degrade service to the other 
users. (2) The peaks in moment-by-moment demand for 
resources tend to average out, so that only the total 
average demand must be satisfied rather than the sum 
of the peak demands. String processing is characterized 
by an unusually dynamic pattern of storage require­
ments, since the objects of computation frequently vary 
in length. 

It is less clear that processor time is worth sharing 
since the price of processor logic has dropped by several 
orders of magnitude; while the cost of software to keep 
the processor busy has increased considerably. In this 
system the problem is largely avoided by employing a 
number of dissimilar, cheap sub-processors operating 
simultaneously; and by taking advantage of natural 
breakpoints in execution to switch a processor from 
one user to the next. The several processors are driven 
by hardware queues. Interrupt control of them is not 
needed, because any process requiring service simply 
makes an entry in the appropriate queue. 

The economics of hardware still make it worthwhile 
to employ more than one level of storage in a system. 
Currently, rotating memory remains the choice for 
secondary storage. The difference between the speed of 
fast storage and the average access time of rotating 
storage is a severe problem. If requests for disk trans­
fers are handled on a first-come, first-served basis, one 
average access time is required for each transfer. Aside 
from slowing down user processing this is a gross waste 
of memory residence time. A ·block of data in memory 
sits around for several milliseconds awaiting disk access 
and is then read or written very quickly. Utilization of 
fast storage can be improved considerably by employ­
ing a "smarter" disk controller. For a disk-to-main 
transfer the controller can delay seizing memory until 
just before transfer starts; and for a main-to-disk trans­
fer the controller might write the data into the first 
available location rather than waiting for some loca­
tion specified by the processor. It is now well-known 
that a disk controller should schedule its oWn tasks ac­
cording to a shortest-seek-time-first policy. 

USER LANGUAGE 

To construct a computer system like the one contem­
plated, one typically selects an existing general purpose 
computer, then selects, or designs, a user language, pro­
viding appropriate extensions to the language to give 
the user access to all functions of the system. Next an 
interpreter is implemented for the user language in the 
machine language of the selected computer. In this 
project, however, a general and extensible user language 
is being designed first, after which the set of small 
processors to interpret the language will be designed 
and constructed. 

In recursive string processing the primitive element 
dealt with is the variable-length character string. 
Numbers, identifiers and subroutines, as wel~ as arbi­
trary strings of text, are all examples of this type. The 
result of evaluating a function may immediately be used 
as input for further evaluation. Examples of earlier re­
cursive string processing systems are Calvin Mooers' 
TRAC®2 and Christopher Strachey's General Purpose 
Macrogenerator.3 

The simplicity of the scanning algorithm for the 
TRAC language follows from the fact that the source 
code is already in a form of prefix-Polish notation. The 
Polish string is the proper starting point for the design I 

of ~ machine language (see Barton4). This notation 
makes TRAC somewhat awkward as a user language. 
The system described here provides a more conven­
tional user language called ZIP, using infix operators 
with operator precedence, function notation, and other 
such attributes, but giving the user access to a set of 
string manipulation primitives like those of TRAC. 
Such a notation is clearly desirable, especially for 
arithmetic computation, allowing one to write 

A=B+C*2- (5+C); 

or S=CONCAT(S, [THE HOUSE.]); 

instead of (the equivalent TRAC expressions) : 

# (DS, A, # (SUB, # (ADD, # (CL, B), # (MUL, 

# (CL, C), 2)), # (ADD, 5, # (CL, C)))) 

or .# (DS, S, # # (CL, S) THE HOUSE.) 

Note that in ZIP one may refer to the value of an identi­
fier without marking that identifier with the CL (call) 
function, as is necessary in TRAC. On the other hand, 
quoted strings must be marked by square brackets in I 

ZIP, where no such quoting is necessary in TRAC. 
To implement such a language, there is a hardware I 

processor, called the parser, to take text from the I 

source string and place operands on an evaluation stack 



in the correct sequence for evaluation by the evaluator­
processor. The interpretation of source text is ac­
complished by alternating actions of the parser and 
evaluator. The parser places operands on the stack 
until an operation is called for, then signals the evaluator 
to perform that operation, after which control is re­
turned to the parser. In addition to the source string 
and the evaluation stack, each user will have a parse 
stack, to be used exclusively by the parser in rearrang­
ing operators from the source string. The basic al­
gorithm for infix-to-postfix-Polish translation using a 

I~ stack is discussed thoroughly in References 6, 7, and 
elsewhere. In our interpretive scheme, operations are 
performed at appropriate steps in the parsing of source 
code, rather than operators being placed in a postfix­
Polish code string for later execution. In either case the 
algorithm for translation from infix notation is the same. 
By keeping these two parts of the system, the parser 
and the evaluator, conceptually and physically sepa­
rate, either the language or the evaluator primitives 
may be redesigned without extensive global design 
changes. . 

Implementation of this parser in hardware may seem 
a formidable task, but the translation process will be 
simpler than in conventional compilers because of the 
direct correspondence between the source-language 
operators and the primitive operations of the evaluation 

I processor. An example of this is the if-then-else con­
struct, which could be of the form: 

IF (logical expression) THEN [(statements)] 

ELSE [(statements)];. 

Instead of emitting test and branch instructions into 
object code, as would a typical compiler, our interpre­
tation scheme need only present the evaluator with the 
following top-of -stack configuration: 

/logical value / string of text / string of text / 

top of evaluation stack---.J 

and call for the if-then-else operation. This causes the 
I evaluator to select the first or second string of text, de­
. pending on the value of the logical expression. The se­
lected string is then copied into the source string and 

I interpreted. . 

'THE PROCESSOR SYSTEM 

In order to simplify this presentation, a five-processor 
I system will be described. Whereas economics forces one 
'Ito use several levels of memory (e.g., high speed, disk, 
: and magnetic tape), this presentation will be in terms 
',of a single level. 

lll' 

An Eclectic Information Processing System 475 

The processors are independent hardware devices all 
referring to the same memory. They are: 

1. Input processor 
2. Output processor 
3. Parser 
4. Evaluator 
5. Allocator 

Each processor has a request table with an entry cor­
responding to each user. Each processor scans its table 
in round-robin fashion and performs tasks for any user 
for which a request exists. 

The input processor 

The processor scans for input characters from each 
user (actually from each input terminal on the system). 
It has two tables; one indicates for each user whether 
input is expected, and the second specifies whether in­
put is to be echoed on the user's output device. If an 
arriving character is expected then it is placed on the 
user's evaluation stack. If it is a terminator symbol 
(found by checking the character against the list of 
terminator symbols for that user), then input expected 
is set to zero for that user, and his entry in the parser 
request table is set. If echo is "on" the character is dis­
played. 

If input is not expected, the character is compared 
with a list of special symbols such as "log-on", "sus­
pend" (pause) , " continue" ( start up after pause), 
"kill" (stop doing everything), etc. If it is none of these 
it will be ignored. 

Log-on causes initialization of pointers and the as­
signment of initial segments for stacks. Suspend disables 
a user and no processor will take 'any action for him. 
Continue re-enables the user and processing continues. 
Kill clears requests in all tables and initializes that user. 

The parser 

The parser scans its table for requests. If a request 
exists for a particular user the parser starts obtaining 
characters from that user's source string. An item from 
the source string is compared with the top of the parse 
stack, and depending upon a precedence table, the item 
may be (1) discarded, (2) placed on the parse stack, or 
(3) placed on the evaluation stack. Marks are auto­
matically placed in the evaluation stack to delimit 
multicharacter items. If an operation is to be performed 
then the evaluator request table is marked and the 
parser request table entry for that user is cleared. 



476 Fall Joint Computer Conference, 1972 

The evaluator 

The evaluator scans its table and for a given user's 
request performs the operation specified on the top of 
the evaluation stack. When the operation is complete 
the parser request table is again marked for that user. 
Thus, for each user the parser and the evaluator are 
alternately processing text and performing operations. 

The evaluator does the conventional arithmetic 
operations, string operations, etc. Named operands are 
kept in a linked list of segments called the form store. 
A form segment contains both the name of an operand 
and its value. To fetch an operand the evaluator searches 
the user's form store, and upon finding the form name 
copies the corresponding value. 

To store an operand, form store is searched to find 
any previous instance of the name. The allocator is 
called to delete this segment (the memory space is re­
turned to the free list). Then the allocator is requested 
to provide space for the new form. The name and value 
are copied from the evaluator stack into the new space. 

The allocator 

The allocator answers requests to release memory 
and to obtain memory. The release process involves 
connecting the released segment into a list of free seg­
ments. If either of its neighbors is free merging takes 
place to produce the largest possible contiguous free 
segment. Obtaining memory for a user involves (1) 
scanning the free list to find a segment long enough, (2) 
disconnecting it from the free list, and (3) returning the 
address of the segment to the user. 

STORAGE ALLOCATION 

Main storage is addressable by byte, and is allocated 
to processors in variable-length segments. While seg­
mentation is more difficult to implement than some 
other storage allocation schemes, and while it tends. to 
tie up some storage for bookkeeping, it is desirable in a 
system in which all data are variable-length strings. 
The smallest possible segment is nine bytes, as a not-in­
use segment contains this much linkage information. 
An in-use segment typically has four or five bytes de­
voted to linkage. The largest segment can, in principle, 
be as large as all of storage; but, in practice, the seg­
ments that can be assigned to processors are restricted 
In SIze. 

When the system is initialized, storage is partitioned 
into two segments. The segment beginning at address 
zero is called the base segment, and contains system 
global information. The remainder of storage is formed 
into a single free segment. As the $ystem runs, processors 

request and release space, causing the free storage to 
become fragmented. The free segments are doubly­
linked together into a chain. In-use segments are chained 
to various lists belonging to individual processors. These 
lists include the stacks and form store. The formats of 
segments vary, but all contain the extent of the segment 
in the first two bytes. 

The allocator is a processor which has the task of 
managing the free storage chain while servicing pro­
cessor's requests to obtain or release storage. All such 
requests are made to the allocator. A reserved location 
in the base segment contains a pointer to the beginning 
of the free chain. Another reserved location contains 
the total amount of free space currently available, ig­
noring fragmentation. When a processor requests addi­
tional space the allocator checks whether this much 
space is available at all. If so, it begins a search of the 
free chain for a free segment at least as large as re­
quested. 

The free list is not ordered in any particular way. In 
searching for space the allocator chooses the first seg­
ment that is big enough rather than looking for a par­
ticularly close fit. This policy is one of Knuth's5 recom­
mendations; a best-fit takes more time than a first-fit 
policy and tends to proliferate small free segments that 
are rarely useful. When the allocator finds a sufficiently 
large segment there are two possibilities: the segment 
may be large enough to satisfy the request with a usable 
amount of space left over, or the segment may be an 
exact or close fit. In the former case, space is excised 
from the tail of the free segment and formed into a new 
segment. In case of a close fit there is not enough space 
left over to form a free segment, so the entire segment is 
taken from the free list; the extra bytes, if any, are 
marked null. If the request can be satisfied the address 
of the segment is returned to the calling processor; 
otherwise it moves on to another task with the request 
unsatisfied. When a processor.is ready to release a seg­
ment that has been in use it calls the allocator with a 
pointer to the segment. The allocator adds the extent 
of the segment to the count of free storage and proceeds 
to connect it with the free chain. First, its neighbors 
are checked; they might also be free. If so, the segment 
being released can be merged into its free neighbor(s). 
Otherwise, the segment is simply added to the end of 
the free chain. lVlerging whenever possible reduces 
fragmentation. Knuth's experiments suggest that frag­
mentation will not become a serious problem so long 
as segments are restricted in size to less than perhaps 
1/10 of total storage capacity. 

The allocator may satisfy requests for storage only 
from the free chain. The system will keep a tally of the 
total storage assigned to each user so that the perform­
ance can be monitored. The amount of storage allo-



cated to an inactive user is only a couple of bytes in the 
base segment. When a user becomes active he is assigned 

I segments for stack space, but no space for form storage. 
A pointer to the base of the evaluation stack is placed 
in the base segment. 

When a stack is created a segment of minimum size is 
allocated to hold it. This segment contains the stack 
pointer. If the stack outgrows this segment another seg­
ment is requested and chained to the first. The pointer 
is understood to point relative to the origin of the seg­
ment which currently contains the top of the stack. 

tl When the pointer comes back down out of a stack seg­
ment, that segment is released, and the pointer is set 
to the top of the previous segment. The segments of a 
stack form a doubly-linked chain. 

Forms are stored one per segment; large pieces of text 
must be segmented to stay within the maximum seg­
ment size restriction placed on processor space requests. 
The form store is a singly-linked chain of form seg­
ments. In addition to the segment extent and chain 
pointer, a form segment contains the length of the 

':11 name string, the name string itself, and the value string. 
New forms are added at the beginning of the form store 

i, chain. When space must be released the form at the 
~ end of the chain is selected for writing out to disk. Each 

time a value is assigned to a name a new form is created; 
I 

the previous instance of that name will usually be de-
, leted. This is done even if the new value would fit into 
the old form segment. With forms varying in length so 

I dynamically, it does not appear worthwhile to try to 
,I re-use an old form segment. Further, the policy of creat­

ing a new form at each assignment means that the most 
recently assigned form is at the head of the list. To locate 

II a particular form by name a linear search is performed 
on the list. This should perform better than the aver­
age for randomly-distributed forms, since the pattern 

,. of accesses to operands during program execution is not 
: at all random. The name search process is related to the 
I, memory management process. It is just those items 
which should be at the head of the list that should have 
priority for remaining in fast storage. If a frequently­

'referenced item does happen to get written out to disk 
lit will be brought back to the head of the list at the next 
reference, where it will enjoy quick access for a time. 

'SECONDARY STORAGE 

I The secondary storage subsystem consists of a control 
processor and a rotating memory. Commands to the 
(processor specify the main storage address of a segment 

, to be written out, or the disk address of a segment to be 
ead in. Writing takes precedence over reading, since 

!i· t tends to free space in main storage. A write operation 

An Eclectic Information Processing System 477 

returns the disk address at which the segment has been 
stored to the user-evaluator stack; a read command re­
turns the main storage address at which the requested 
segment has been loaded. 

The minimum addressable amount of disk space is 
called a sector. Short segments will be written on disk 
one per sector, while longer ones will occupy several suc­
cessive sectors. In a write operation the control proces­
sor must locate the first available space on the disk 
having the requisite number of free sectors. For this 
purpose a free-sector map containing one bit per sector 
is maintained. The bits of the map are organized into 
shift registers, one per disk track, which are shifted 
synchronously with disk rotation. The bits in the regis­
ter corresponding to sectors which are approaching the 
disk write heads are shifted through discrete flip-flops. 
Simple gating of their outputs indicates the number of 
contiguous free sectors which can be written next. 
Knowing how many contiguous sectors are needed, the 
control processor scans over the shift registers until it 
has found sufficient space. It then sets the flip-flops to 
mark the chosen sectors in-use, performs the write, re­
turns the disk address to the evaluator stack, and re­
quests the allocator to release the main storage segment 
that has been written. Should the control processor fail 
to find enough space on any track it must wait until 
another sector time has gone by, at which time space 
might be sufficient. Meanwhile it can attempt to process 
other write requests. 

Read requests are stored by the disk control processor 
in a list that is kept sorted by disk address. The disk 
sector counter is compared with the list to determine 
whether a read can be executed at the next sector time. 
If so, the processor first requests enough main storage to 
receive the data to be read. If this succeeds it performs 
the read, marks the disk sectors free in the map, and 
returns the main storage address to the user-evaluator 
stack. If the allocator fails to make the requested main 
storage available soon enough the read request IS re­
turned to the sorted list for a later attempt. 

ACKNOWLEDGMENTS 

The ideas used in this design have come from many 
sources. Some of the most helpful sources were Alan 
Kay,8 and Rex Rice.9 

REFERENCES' 

1 J HAYNES 
Designing a computer: The eclectic information processing 
system 
National Technical Information Service Springfield Virginia 
No N71-19923 



478 Fall Joint Computer Conference, 1972 

2 C N MOOERS 
TRAC-A procedure describing language for the reactive 
typewriter 
Communications ACM Vol 9 No 3 pp 215-219 March 1966 

3 C STRACHEY 
A general purpose macrogenerator 
Computer Journal Vol 8 No 3 pp 225-241 October 1965 

4 R S BARTON 
Ideas for computer systems organization: A personal survey 
Software Engineering CO INS III Proceedings of the Third 
Symposium on Computer and Information Sciences Miami 
Beach Florida pp 7-13 December 1969 

5 D E KNUTH 
The art of computer programming 
Vol 1 Addison-Wesley Palo Alto 1968 pp 435-451 

6 W M MCKEEMAN J T HORNING 
DB WORTMAN 
A compiler generator 
Prentice-Hall New Jersey 1970 

7 P WEGNER 
An introduction to stack compilation techniques 
Introduction to System Programming Academic Press 1964 

8 A KAY 
The reactive engine 
PhD Dissertation University of Utah 1969 

9 R RICE et al 
Papers on the SYMBOL system 
AFIPS Conference Proceedings 1971 Spring Joint Computer 
Conference Vol 38 AFIPS Press Montvale New Jersey 1971 I 

pp 563-616 I 



Microtext-The design of a microprogrammed finite state 
search machine for full-text retrieval 

by R. H. BULLEN, JR. and J. K. MILLEN 

The MITRE Corporation 
Bedford, Massachusetts 

INTRODUCTION 

The Microtext system represents a new approach to the 
design and implementation of a full-text retrieval sys­
tem. The approach is unusual in that it integrates hard­
ware, firmware, and software components in an attempt 
to provide a solution to the problems involved in pro-

\ cessing large files of unformatted textual data. The sys­
ii tem is based on a minicomputer specialized for high­
, speed full-text retrieval, through the use of a finite state 
~ search algorithm implemented in firmware. 

" 

I 

i Full-text retrieval 

Full-text retrieval, as distinguished from other types 
I of text and data processing, involves the location of 

patterns of characters, words, and phrases in text. In 
, addition, bibliographic structures, such as title or 

author, as well as linguistic structures, such as sentence 
and paragraph, can be identified in text when the data 

W base has been suitably constructed. 
:, A variety of systems have been built to perform full­

I text retrieval,1·2 If generalizations are possible, these 
,I systems can be divided into two categories : 

(1) Those systems which use an index, or concord­
ance, of text words during retrieval, but which 
have access to the full text for display. In some 
cases, such systems can also perform a sequential 
search of the full text for query items not also in 
the index. Generally speaking, search perform­
ance with indexed systems is adequate, but index 
generation and update is time-consuming and, 
as a result, editing or augmenting the full text 
must usually be done off-line, if at all. 

(2) Those systems which always make a direct 
search of the full text. Such systems lend them-

479 

selves well to dynamically changing file collec­
tions, because no indexing need be done; but file 
size is usually restricted because search time is 
proportional to the amount of text searched. 
However, because searching can be done on a 
character-by-character basis, direct searching 
can permit considerably more detailed query 
patterns than are possible with most indexing 
schemes. In addition, editing and augmentation 
of the full text can be performed on-line, although 
sometimes with side-effects which can adversely 
affect later search performance (e.g., file frag­
mentation). 

Regardless of which of the above categories a full-text 
system may fall into, it is at an immediate disadvantage 
with respect to retrieval performance when compared, 
for example, with structured data retrieval systems (i.e., 
data management or management information sys­
tems). In the latter case, requests for qualifying data 
base entries can be satisfied by inspection of a selected 
subset of fields in each data base entry, whereas a fulJ­
text system must concern itself with all of the text in 
each entry. This problem is particularly acute for direct 
search full-text systems, since all of the text must be 
scanned each time a search is performed rather than only 
once, at index generation time, in the case of indexed 
systems. 

Full-text systems, and specifically direct search sys­
tems, are plagued with a second problem, which is at 
the heart of the motivation for the Microtext system. 
In addition to having to process a very large amount of 
data in response to retrieval requests, direct search sys­
tems have a performance disadvantage because of the 
inability to. express full-text handling functions in the 
primitives and data structures available on most gen­
eral-purpose computers. Software must be used to map 
these application-level functions, often with great 



480 Fall Joint Computer Conference, 1972 

difficulty, into the facilities of fundamentally word- and 
arithmetic-oriented central processors; it is this mis­
match of problem and tool, and the additional level of 
mapping required, which adversely affects full-text 
handling systems, and it is to this mismatch that the 
Microtext work is addressed. 

An application architecture 

One approach to the solution to these problems, and 
the approach which was taken in the development of 
Microtext, is to work toward the design of a computer 
system specialized for full-text processing and retrieval 
functions. The system envisioned would be built up 
from hardware, firmware, and software components in 
the following way: 

(1) hardware: state-of-the-art, commercially avail­
able hardware would be used to provide a low­
cost, easily reproduced base for the system. The 
hardware would be chosen with a view toward its 
eventual use by judging its inherent suitability 
for character string handling, its raw perform­
ance, and its ease of microprogramming. 

(2) firmware: microcode would define the data 
structures, primitives, and basic architecture 
(execution environment) for text handling prob­
lems at a level which facilitates their expression. 
In addition, because Microtext is viewed as an 
application-oriented machine, many functions 
typically thought of as the province of an operat­
ing system would be implemented directly in 
microcode. * 

(3) software: software would be used for most data­
and user-oriented functions so that they could 
be easily changed to suit specific application re­
quirements. 

The question is: how to get there from here? 

The Microtext develo,oment plan 

Aside from the fact that a task of this magnitude 
would take considerable time and money, with few 
intermediate products along the way, there is also a 
fundamental technical problem involved here. If a de­
signer were to take the theoretical approach and begin 

* A recent project at MITRE has demonstrated ways in which 
operating system functions can be distributed between firmware 
and software.3 

his task by specifying the system architecture, he might 
risk bounding the problem before it was identified in a 
practical sense. If, as in the case of Microtext, this in­
volved a higher-level application machine specification, 
later changes to the system due to practical. require­
ments could affect the basic architecture of the system, 
and changes at that late date might not be tolerabl.e. A 
more conservative, practical approach was chosen for 
Microtext. 

The development plan for Microtext r.lakes use of a 
phased, or boot-strap, technique, wherein the output of 
each phase is an operational prototype, the application 
of which can proceed in parallel with the design of the 
following phase. The approach has the advantage that 
each phase can bind to the basic architecture of the 
system only that subset of the application environment 
which has been proven through practical experience I 

and user feedback, leaving still experimental com­
ponents untouched in software where they can be 
changed easily if the need arises. 

Phase I 

To test the design philosophy described above, it was 
decided that the first phase in the development activity 
should be a prototype software implementation of a full­
text retrieval system, with an important, but manage­
able, subcomponent of the system implemented in firm­
ware. The idea was to take a cautious, initial step, to 
prove the feasibility of the approach as well as to en­
courage, through the production of software support, i 

the development and use of data structures and primi- , 
tive operations fundamental to full-text handling prob- I 

lems, so that these facilities might be well enough under- ' 
stood to be applied in subsequent phases of the Micro- ' 
text activity. I 

In line with this goal, a fundamental primitive of full­
text retrieval-character string searching-was selected I 

for implementation as the function of a micropro­
grammed, black-box peripheral device attached to a 
larger host computer system, specifically an IBM 
System 370/155. A search algorithm was designed, using 
techniques of finite state automata theory, and was I 

implemented in firmware on a Digital Scientific Cor- I 

poration Meta-4 computer. Higher-level language soft-I 
ware was used to implement the control logic for the I 

device, as well as the application logic necessary to, 
demonstrate the operation of the system. I 

The sections which follow describe the overall struc­
ture of the system, the special finite state search al-! 
gorithm designed for the application, and the implemen­
tation of the algorithm in firmware. A final section dis-



cusses some of the refinements planned for the Phase I 
system and suggests possible directions for Phase II 
activity. 

SYSTEM STRUCTURE 

'I A pplication environment 

I The goal in the specification of an application en­

'i"I,,"., vironment for the initial version of the Microtext sys­
tem was to model the operational characteristics of a 
full-text retrieval system, without actually implement-

l ing all the bells and whistles which a demanding user 
/ might desire. For this first pass, we were most interested 
II, h' f II in basic structure, not so muc In orm. 
I, From the user's point of view, Microtext provides an 

on-line full-text retrieval capability, available through a 
time-sharing system* on IBM 2260 displays, 2741 
terminals, and teletypes. The heart of the terminal en-

I vironment is provided by three commands, described 

[ below. 

DQUERY -Display query questionnaire 

This command causes display at the user's terminal 
of a questionnaire which is used to specify basic param­
eter data for the search, as well as the query itself. Also 
specified in the questionnaire is information about the 

" structure and format of the file to be searched. 
The query language used to specify retrieval requests 

I
: allows searches for words, phrases, or expressions involv­

,II' ing words and phrases, optionally restricted in scope 
1

1,' 

, to the level of sentence or paragraph. This language is 
I described in more detail in the following section. 

SEARCH-Search file 

This command causes the query to be processed and 
the search to be initiated. The query is redisplayed at 
the terminal for verification, and as the search pro­
gresses the search monitor displays continuous hit data 
to reassure the user that the system is actually working. 

, The user controls the frequency of this output by the 
parameters specified in the query questionnaire. At the 
end of the search, the system displays the total number 
of documents searched as well as the number of hits. 

*The system under which the Microtext software runs is OS/MVT 
, with the Time Sharing Option (TSO). 

Microtext 481 

Figure I-Flow diagram of a hypothetical full-text 
retrieval system 

DANSWER-Display answers 

This command creates a file of retrieved text and al­
lows the user to browse through this file. 

System operation 

In order to understand the role of the micropro­
grammed processor in the Microtext system, consider 
first the operation of a hypothetical full-text retrieval 
system, as it might be driven by the set of commands de­
scribed above. For this purpose, the system can be 
thought of as three primary modules: (1) a query trans­
lator, (2) a search monitor, and (3) a display processor. 
From the user's point of view, the first two of these 
modules are not really thought of as separate compo­
nents and in the online terminal environment de-, 
scribed above, they are lumped together under the 
single "SEARCH" command. Figure 1 gives a flow dia­
gram of such a system. 

User input is first validated by the query translator 
and is then translated into an internal form, which 
facilitates easy evaluation of subparts of the query. 
This internal representation and the text file are then 
input to the search monitor which produces, not docu­
ments, but pointers to text items matched during the 
search. This list of pointers, and the text file, are then 
input to the display processor which gives the user ac­
cess to the retrieved items. 

It is in support of the operation of the search monitor 
that it was decided to apply firmware components first. 
To see how this was done, let us break the search moni­
tor down further into the following processing functions: 

(1) a data base interface, which is concerned with 
data access requirements and with the specifics 



482 Fall Joint Computer Conference, 1972 

CORE 

data base 
~---+~ interface 1------+---::.;o:::.=..--tI CPU 

matches 

Microtext 

Search Machine 

(Meta-4) 

Host Machine 

(370/155) 

Figure 2-Retrieval operation with Microtext search machine 

of file structure, and which has the function of 
preparing text blocks for searching; 

(2) an evaluator, which drives the matching pro­
cess, evaluates the query, and records hit infor­
mation; 

(3) and a character string searching algorithm, which 
performs the scanning and recognition involved 
in the retrieval process. 

Figure 2 shows this same system, no longer hypo­
thetical, redrawn to indicate how the Microtext search 
machine replaces the character string searching func­
tion of the search monitor. Here the three major com­
ponents perform exactly the same functions as before, 
but the data flow is slightly altered. The internal form 
of the query, described in more detail in a later section, 
is in a tabular form, highly compacted to fit within 
the available core memory on the Microtext search 
machine. After the table is generated, it is sent over a 
high-speed interface to the Microtext machine. Control 
is then passed to the search monitor which accesses the 
text as before, but appeals to special functions which 
communicate directly with the search machine, through 
operating system I/O facilities. The results of indi­
vidual matches are returned to the host machine and 
hit information is recorded for later use by the display 
processor. 

The reader will note from Figure 2 that there are 
several other ways in which -the operation of a full-text 
retrieval system might be shared between a host ma­
chine and a specialized, microprogrammed processor. 
One such way might be the inclusion in the Microtext 
machine of the data base interface function and the 
incorporation in the design of a direct connection be­
tween this machine and the data base. This would have 
had the obvious advantage of avoiding the extra I/O 

transfer of text first to the host machine and then to the 
search machine, but would have been inconsistent with 
the development goals described in the Introduction to 
this paper. In this initial version of the Microtext sys­
tem, we wanted to separate as much as possible the 
well-defined problem of character string searching from 
such functions as the data base interface, which are 
more likely to be sensitive to particular application re­
quirements. The final section of this paper presents this 
mode of operation, as well as other alternatives, as pos­
sible directions for future work. 

THE SEARCH MACHINE 

Brief description 

In this section we will examine the Microtext search 
machine more closely. It is, of course, implemented in 
firmware, but before we can fully appreciate this aspect 
of the machine, we have to understand the driving al­
gorithm, and the manner in which the input to that al­
gorithm is generated. 

A finite state approach to character string searching 
satisfies the two requirements of (1) improving the 
performance of the sequential search, and (2) not sacri- : 
ficing in any way the user's ability to state search re­
quests that reap the benefit of having the full text avail­
able. This is accomplished by first transforming the 
search request into a table using a software routine. 
The actual search is then performed on each section of I 

text by a very simple microprogrammed algorithm I 

which operates on the text, the table, and a register I 

holding the "state" of the search. A section of text is by 
definition that portion of text submitted to an individual I 

execution of the search algorithm. Its length is con­
trolled by application software, and it could range from 
a sentence to a complete document. The search passes 
through the text section from beginning to end, using 
each successive character to transform the state by 
consulting the table. At the end of the section, the 
output of the resulting state indicates whether or not I 

the section satisfies the search request. (In cases where 
the search request succeeds or fails before reaching the 
end of the section, the search stops immediately and 
restarts with the next section.) I 

By choosing a query language abstractly equivalent 
to the regular expression language of Kleene, we can I 

employ existing algorithms to construct a finite state I 

recognizer for strings of characters satisfying the 
query.* At the same time, the regular expression I 

* We use "query" interchangeably with "search request." 



language is powerful enough to support a query lan­
guage at least as flexible as those designed for existing 
full-text systems.1 ,2 

Various ways are then available for designing a table 
to direct the emulation, as it were, of the finite state 
maooine. We have chosen the straightforward tactic of 
constructing a deterministic transition table. A non­
deterministic version of a finite state machine is gen­
erally smaller and more easily found from the regular 
expression; a scheme for using it for string searches 
was suggested by Thompson.4 A nondeterministic search 

I~I method, however, was thought less suitable for micro­
programmed implementation because of the greater 
number of core references required per character. 

It should be kept in mind that, while the table format 
(or choice of formats) is fixed by firmware, a new finite 
state machine to fill in the table must be constructed for 
each search request, preferably quickly enough not to 
discourage a user waiting at an interactive terminal. 

The query language 

Our present query language is regular expression nota­
,I tion modified for the convenience of the user. The 

precedence of operators has been changed to reduce the 
I number of parentheses required in natural formula­

tions of common search requests, and a number of 
standard abbreviations have been set up. 

The following samples illustrate both the flavor of 
" the present query language and the power of search 

requests based on regular expressions. 

Query 1: / MICROPROGR/ & -,1 EMUL/ 
Query 2: /U# # #( U S) TROOP/ & / 

( WITHDR I PULL- OUT)/ & 
'SENTENCE')/ 

\ Query 1 specifies a section of text about micropro­
I gramming but not emulation. The slashes indicate the 

embedding of the adjacent expressions in arbitrary 
text, and the blanks in contact with letters denote re­

I quired punctuation or blanks. Thus, more literally, a 
section satisfies Query 1 if it contains a word beginning 

I
, with "MICROPROG" but no word beginning with 
" "EMUL." 

Query 2 specifies a section mentioning the with­
I drawal of at least 100 U.S. troops. The number sign 
, # stands for an arbitrary digit; the vertical bar is the 
, "or" operator; the hyphen permits an arbitrary string 
I of letters; and the angle brackets ( ) enclose an op-

'I tional expression. In order to ensure that the "TROOP'" 

~'I 

Microtext 483 

mention is logically related to the "WITHDR" men­
tion, they are required to be in the same sentence. 

The queries are recognizable as regular expressions 
after the abbreviations have been expanded. For ex­
ample, the slash / is translated to .¢.* The 'SEN­
TENCE' in quotes is an abbreviation for a moderately 
complicated regular expression characterizing the set of 
strings which can be sentences in the given data base. 
The option brackets are expanded so that (expression) 
becomes an "or" between the null string and "expres­
sion" (the right bracket just becomes a right parenthe­
sis). Incidentally, the digit sign # is not expanded into 
(0 I ... I 9), but is retained by the software as a single 
character-range symbol until the final construction of 
the table. 

Query translation 

Construction of the table from the query can be sum­
marized in four steps: 

(1) Expansion of abbreviations 
(2) Infix-to-prefix translation 
(3) Production of the state graph 
(4) Table generation. 

The Microtext implementation of this process is un­
usual in two ways: string manipulation techniques were 
used throughout (to simplify working space manage­
ment and to anticipate the development of Phase II 
primitives), and several well-known algorithms were 
used in straightforward ways. 

Expansion of abbreviations 

While selecting the abbreviations requires some in­
genuity, their expansion in the query is a simple table 
lookup. This is fortunate, because new abbreviations 
generally have to be designed for different data bases. 
For example, the fact that a data base mayor may not 
have lower case letters affects the abbreviation for 
"arbitrary letter". Eventually Microtext software will 
have an associated data base descriptor file which will 
be used for, among other things, selecting the correct 
expansions. This will allow the user to express his queries 
in the same language, regardless of the structure of the 
data base he is searching. 

* Regular expressions are built up from the character set using 
operators and two special symbols: phi (e/» and lambda or nil (X). 
The symbol e/> represents the empty set and -,e/>, therefore, repre­
sents the set of all strings. The symbol X represents the null 
string. 



484 Fall Joint Computer Conference, 1972 

Infix-to-prefix translation 

The regular expression resulting from expanding the 
abbreviations is translated from its infix-operator form 
to a prefix form which is both more compact and easier to 
manipulate symbolically. Unions, intersections, and 
concatenations have any number of arguments and are 
thus parenthesized; complements and Kleene closures 
(stars) have one argument and have no bounding 
parentheses. Zero and one are used for ¢ and A, respec­
tively. A sample prefix regular expression is 

(&*(1 AB)(., OB)) 

The infix-to-prefix translation is an instance of the 
classical use of a pushdown stack for this purpose. A 
transduction grammar of sixteen productions (exclusive 
of the replacement of the character set by a single non­
terminal) was found and used in a simple syntax­
directed translation using Lewis and Stearns' three 
stack algorithm. 5 

Production of the state graph 

Brzozowski's derivative method was implemented to 
produce the state graph.6 There is essentially only one 
other kind of method, based on Kleene's original proof 
that regular expressions can be recognized by finite 
state machines. It has two steps: generating a nonde­
terministic machine, and then converting it to a deter­
ministic one. While this two-step method is fine in a 
batch system, such as the RWORD system for produc­
ing lexical processors, where it is followed by a state 
reduction phase, our early experiments in this direction 
were discouraging in speed of operation. 7 

A number of far-reaching design choices were made 
here for reasons of efficiency.* For example, the deriva­
tive algorithm generates a regular expression for each 
state, and these must be compared with previously 
generated ones and stored if they are new. Since even 
reasonable queries can give rise to large numbers of 
states, most state expressions are stored on disk, while 
a few are kept in a buffer according to a usage-age rule. 
Details of this and other strategies of the state graph 
production procedure constitute a paper in preparation. 

The state graph is produced in the form of a list of 
transitions from each state. A transition comprises (1) 
an input character, (2) the next state after reading that 

* Queries like those discussed in this section have been routinely 
processed and generate machines of about 50 states and 300 
transitions. State graph production occurs at a rate of about 20 
transitions per second of CPU time. 

input character, and (3) the next state output. The 
next state output is an indication of whether the text 
starting from the beginning of the section and ending 
with the current input character is recognized as satisfy­
ing the query. Before production of the state graph, 
the query is augmented slightly so that only complete 
sections satisfying the query are accepted by the finite 
state machine. 

To cut down on the length of the list of transitions, 
certain characters are distinguished as significant for 
each state; the others share a default transition. In 
most states, only a few characters will be significant. 

Table generation 

The idea of distinguishing significant from default 
characters carries over into the design of the table used 
by the microprogrammed search algorithm. To explain 
the design of the table, let us shift our time frame from 
the preprocessing of the query to the execution of the 
search algorithm. During the search, the transition for I 

the current character must be located among the set of 
transitions from the current state. This is done, in the 
table format described below, with a binary search 
among the significant characters with respect to the 
eight-bit unsigned value of the current character. 
Failure of this search causes the default transition to be 
taken. 

For example, suppose state 1 has a transition to itself 
when the input is any letter, to state 2 on a blank, and 
to state 3 on any other input character. This portion of a 
hypothetical state graph is shown in Figure 3(a). The 
list of transitions from state 1 is shown in Figure 3(b). 
The table generator identifies the intervals of characters 
(considered as eight-bit unsigned binary ·numbers) 
causing each transition. It produces a list like the one in 
Figure 3(c). The isolated characters in the list in Figure I 

3(c) are the ones against which the input character is 
compared in the binary search for the proper transition. 
The search tree is shown in Figure 3(d). The order in 
which the comparisons are made is chosen by applying 
an easy modification of Huffman's algorithm to mini­
mize the average search time (under the simplifying as­
sumption that the successive characters in the text were 
chosen randomly and independently with given proba­
bilities).8 The probabilities can be assigned propor­
tionally to the relative frequencies of the individual 
characters in a representative sample of the data base, 
or the usual single-letter English probabilities can be 
used. This procedure, while not guaranteed optimal, 
should result in generally better performance than, say, 
choosing an arbitrary balanced tree on the same char- i 

acters. 



letter 

Figure 3(a). The locality of state 

1 in a hypothesized state graph. 

------------------

FROM ON TO 
STATE INPUT STATE 

1 [x' 00' ,blank) 3 

1 blank 2 

1 (blank,A) 3 

1 A 1 

1 (A,Z) 1 

1 Z 1 

1 (Z,x'FF' ] 3 

Figure 3(c). The transitions by 

EBCDIC character value. Intervals 

exclude the endpoints except at 

x'OO' and x'FF' • 

DISPLACEMENTS 
SMALLER GREATER 

CHARACTER LINK LINK 

A 1 2 

blank 2 2 

Z 0 1 

0 0 

Microtext 

FROM ON TO WITH 
STATE INPUT STATE OUTPUT 

1 letter 1 0 

1 blank 2 1 

1 other 3 0 

Figure 3 (b) . The transitions 

from state 1. 

------------------

Figure 3(d). The search tree 

for state 1. 

ADDRESS OF NEXT 
TABLE SECTION STATE 
FOR NEXT STATE OUTPUT 

addr(l) 0 

addr(2) 1 

addr(l) 0 

addr(3) 0 

Figure 3( a)-The locality of state 1 in a hypothesized state graph 
Figure 3(b)-The transitions from state 1 

Figure 3(c)-The transitions by EBCDIC character value Intervals exclude the endpoints except at X'OO' and X'FF' 
Figure 3(d)-The search tree for state 1 

Figure 3( e)-The layout of the table section for state 1 

485 



486 Fall Joint Computer Conference, 1972 

The table section for a given state can be written 
directly from the binary search tree. Figure 3(e) shows 
the layout of the section of the table for the sample 
state discussed above. A binary search using computed 
addresses, although simple in concept, is a complicated 
algorithm by microprogramming standards; instead, to 
simplify next-address calculation, the displacements 
from each table entry to entries for greater- and smaller­
valued characters are found in the table for each transi­
tion. The table is laid out so that all of the displacements 
are positive. A zero displacement forces the present 
transition. Thus, the default transition is signalled by 
zeros in both link fields. Also shown in Figure 3(e) is a 
special feature of this choice of table format: the zero 
in the smaller link field for the character "Z" indicates 
that not only is state 1 to be the next state for the letter 
"Z", but also for all letters smaller than "Z". After 
generating all the table sections for the states in the 
state graph, and therefore knowing the relative ad­
dresses of the table sections for each state, the table 
generator makes a final pass over the entire table re­
placing state numbers with addresses of the corre­
sponding table sections. Finally, the table contains, for 
each transition, the output associated with the next 
state; the use of this field is described with the search 
algorithm below. 

The internal format of a table entry, with bit ad­
dresses for each field, is shown below. 

address of 
next state 

14 15 

next state 
output 

Note that a table entry requires two 16-bit words, and 
that therefore the address of a table entry is always 
even. Thus, the last bit of the next state address is 
always zero, permitting the last bit position to store the 
output for the next state. 

The search algorithm 

Figure 4 shows a flowchart of the firmware search 
algorithm which accesses the above table format. The 
algorithm has three inputs, as previously mentioned: 
the text section, the table, and the 16-bit current state 
value, which is maintained in a microregister during the 
search. The operation of the algorithm is quite straight­
forward. Note that the algorithm can terminate in either 
of two ways: (1) if the input is exhausted before a state 

is encountered with an output of one, or (2) if a state 
with an output of one is encountered first. Although, in 
the state graph, the output is one only at the end of a 
complete section, the list of transitions is inspected 
before table generation for states which, once entered, 
cannot be left until the end of the section. Their outputs 
are set to one so that the search will stop there and the 
remainder of the section can be skipped. 

Machine architecture 

The architecture of the Microtext search machine is 
shown in Figure 5. Some basic statistics about the size 
of the machine are indicated in that figure; the micro­
program occupies 243 microinstructions, of which ap­
proximately 20 percent are for the search algorithm it­
self, the rest being required for system and interface 
transfer control. 

The device is initialized by writing the table and the 
initial state into the machine's core memory. The search 
command is then sent to the Meta-4. The search logic 
loads the initial state into a local store register where it 
remains for the duration of the search, and the search 
begins. As each character is accepted from the 370/155, 

get current Istatel 

(equal to address 

of first entry in 

table section) 

no more 

use displacement 

to address next 

table entry to 

be tested 

Figure 4-The Microtext search algorithm 

done 



.~. 

the count is incremented and a transition is taken by 
lookup in the table in core memory. As each new state 
replaces the current state in local store, it is inspected 
to see if its output is one. If so, the search terminates 
immediately by presentation of ending status to the 
370/155 channel. Otherwise, the search proceeds until 
the channel stops sending data. When termination oc­
curs', the search logic stores the updated state and count 
in core memory and the control logic takes over. On the 
370/155, the channel then reads back the state and 
count from the machine's core memory, software re­
cords hit information if a match occurred, and the search 
is continued with the next block of text. 

Performance data 

I t is instructive to compare the performance of a 
highly specialized, microcoded algorithm of this kind 
to a similar approach implemented in software. In this 
case the most appropriate comparison for the Microtext 
search algorithm would be to a machine language im­
plementation of the algorithm for representative Sys­
tem/360 and System/370 machines, where the search 
would be performed on text in a buffer in the machine's 
main memory. The table below compares, for each 
method, the minimum time in microseconds to process 
a single character (that is, the case where the character 
matches the first table entry inspected by the al­
gorithm), and the additional time in microseconds re­
quired for each subsequent probe in the table, if pre­
vious probes do not result in a match or default condi­
tion. 

minimum probe 
time time 

Microcode: 
Meta-4 . 4.5 .9 

Software: 
370/155 8.9 8.9 
370/145 19.6 19.3 
360/50 46.8 47.5 

From the figures, it can be seen that the microcoded 
implementation averages several times faster than the 
software implementation on the 370/155. It should be 
noted that the large difference between minimum and 
probe times for the Meta-4 is due to the overhead for 
I/O interface transfer; the software implementations 
need only perform an Insert Character instruction. 

At its best, the Meta-4 microprogrammed imple­
II mentation can scan text at roughly 220,000 characters 
'I per second, with the rate degrading to roughly 140,000 

characters per second when three additional table probes 

Microtext 487 

interface 

370/155c====I=,.transfer ... - - - --
dedicated 

logic 

1 
locations 

and 

table 

search _---+---~ space 
algorithm 

Processor: Core memory: 

1K words ROM 16K words 

90 nanosecond cycle 900 nanosecond cycle 

12 general-purpose registers 

Key: - - - --initialization/termination transfer 

---search transfer 

===370/155 - Meta-4 interface 

Figure 5-Architecture of the Microtext search machine 

are required to locate the character being processed. 
The lower rate is still five times faster than software on 
the 370/155 and 25 times faster than the 360/50 for 
the same case. 

FUTURE PLANS 

Future plans for the Microtext activity include com­
pletion of and refinements to the Phase I system, as 
well as analysis of the operation and application of the 
Phase I system as part of the design work for the next 
Phase. 

Completion of Phase I 

The goal of this activity is to bring the system to full 
operational standing, where its development can be 
frozen, and emphasis can be placed on its use and ap­
plication. Extensions to the current software support 
are planned to make the system easier to use, and to im­
prove the performance and capacity of the system in 
the translation of very complex queries. The micro­
coded search algorithm has remained stable since its 
implementation and no further changes to it are 
planned. 

Planning for Phase II 

We feel very strongly that the development of ap­
plication-oriented systems should proceed in parallel 
with the application of initial, or prototype, versions of 
such systems. It is only through experience in the solu­
tion of real problems, and through user feedback, that 
truly useful. automated systems can be developed. Of 
necessity, then, we can at best suggest possible future 
directions for Microtext, with specific plans waiting 



488 Fall Joint Computer Conference, 1972 

until we have had the benefit of this application ex­
perience. 

One possible future direction is toward a version of 
the system which would take over query translation as 
well as searching responsibilities from application soft­
ware. The user query would be sent directly to the 
Microtext processor, where it would be translated into 
the tabular finite state machine description. The host 
machine would then be notified that the processor is 
ready and the search would begin. This version of the 
Microtext processor would be able to take full ad­
vantage of the experiences of developing the query 
translation software for the Phase I machine. We 
would expect that many of the basic modules in this 
software would become microcoded instructions in the 
query translation machine, with the top level of this 
software becoming the Phase II machine language. 

A second possibility under consideration is to imple­
ment the Microtext searching capability as an adjunct 
to the basic control mechanism of a disk file subsystem 
on a general-purpose computer. This approach, which 
has promise for heavily I/O-bound installations, would 
augment "the primitive sequential and keyed lookup 
capabilities of such devices with a facility for, say, read­
ing only those records which match specific patterns. 
Rather than transfer the retrieved records directly, this 
extended control mechanism could perform the entire 
search automatically, accumulating hit data in a sepa­
rate file on disk. When the search completes, the ap­
plication software could then access this file as an index 
into the original text file searched. 

CONCLUSION 

This paper has described the design and implementation 
of a specialized microprogrammed processor which per­
forms character string searching for full-text retrieval 
applications. The activity has been successful in proving 
the feasibility of the approach, in identifying the basic 
requirements of such a system, and has pointed out 
areas for future work. Conclusions about the utility of 
the system we have developed must wait until we have 
had the opportunity to apply the system in solution of 
real problems and until we have had the benefit of user 
feedback. 

Although the Microtext project did not set out with 
this particular goal in mind, we feel that the success of 
our work to date demonstrates the utility of firmware 
as a tool for application system design. In recent years, 
microprogramming has largely been undertaken only 
by computer manufacturers, universities, and some re­
search organizations, such as MITRE. Part of the 

reason for this is that inexpensive microprogrammable 
computers have not been available for experimenta­
tion, and few guidelines have been developed for the 
methodology of applying microprogramming in systems 
design. We believe that this situation is changing, and 
we hope that reports of practical experience such as 
ours with the development of Microtext will contribute 
to this body of knowledge. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge the financial support 
of the MITRE Independent Research Program and the 
contributions to the design and implementation of the 
Microtext machine made by H. A. Bayard, E. L. 
Burke, G. E. DeAgazio, R. J. Fleischer, and W. L. 
Schiller. Additional acknowledgment for moral support 
and encouragement is due J. A. Clapp, E. L. Lafferty, 
and C. M. Sheehan. 

REFERENCES 

1 R S GLANTZ 
SHOEBOX-A personal file handling system for textual data 
AFIPS Conference Proceedings Fall Joint Computer 
Conference Vol 37 1970 

2 W B KEHL J F HORTY CRT BACON 
D S MITCHELL 
An information retrieval language for legal studies 
Communications of the Association for Computing 
Machinery Vol41961 

3 B H LISKOV 
The design of the VENUS operating system 
Communications of the Association for Computing 
Machinery Vol 15 1972 

4 K THOMPSON 
Regular expression search algorithm 
Communications of the Association for Computing 
Machinery Vol111968 

5 P M LEWIS II P E STEARNS 
Syntax directed transduction 
Journal of the Association for Computing Machinery 
Vol 15 1968 

6 J A BRZOZOWSKI 
Derivatives of regular expressions 
Journal of the Association for Computing Machinery 
Vol111964 

7 W L JOHNSON J H PORTER S I ACKLEY 
D T ROSS 
A utomatic generation of efficient lexical processors using 
finite-state techniques 
Communications of the Assiciation for Computing 
Machinery Vol111968 

8 D A HUFFMAN 
A method for the construction of minimum redundancy codes 
Proceedings IRE Vol 40 1952 



Design of the Burroughs Bl700 

by W. T. WILNER 

Burroughs Corporation 
Goleta, California 

INTRODUCTION 

Procrustes was the ancient Attican malefactor who 
forced wayfarers to lie on an iron bed. He either 
stretched or cut short each person's legs to fit the bed's 
length. Finally, Procrustes was forced onto his own 
bed by Theseus. 

Today the story is being reenacted. Von N eumann­
derived machines are automatous malefactors who 
force programmers to lie on many procrustean beds. 
Memory cells and processor registers are rigid con­
tainers which contort data and instructions into un­
natural fields. As we have painfully learned, con­
temporary representations of numbers introduce 
serious difficulties for numerical processing. Manipula­
tion of variable-length information is excruciating. 
Another procrustean bed is machine instructions, 
which provide only a small number of elementary 
operations, compared to the gamut of algorithmic 
procedures. Although each set is universal,. in that it 
can compute any function, the scope of applications 
for which each is efficient is far smaller than the scope 
of applications for which each is used. Configuration 
limits, too, restrict information processing tasks to 
sizes which are often inadequate. Worst of all, even 
when a program and its data agreeably fit a particular 
machine, they are confined to that machine; few, if 
any, other computers can process them. 

In von Neumann's design for primordial EDVAC,1 
ridigity of structure was more beneficial than detri­
mental. It simplified expensive hardware and bought 

II' precious speed. Since then, declining hardware costs 
II and advanced software techniques have shifted the 

1

'1 optimum blend of rigid versus variable structures 
toward variability. As long ago as 1961, hardware of 

Ii Burroughs B50002 implemented limitless main memory 
III: using variable-length segments. Operands have pro­
I ceeded from single words, to bytes, to strings of four­
'~' bit digits, as on the B3500. The demand for instruction 

489 

variability has increased as well. The semantics of the 
growing number of programming languages are not 
converging to a small set of primitive operations. Each 
new language adds to our supply of fundamental data 
structures and basic operations. 

This shifting milieu has altered the premises from 
which new system designs are derived. To increase 
throughput on an expanding range of applications, 
general-purpose computers need to be adaptable more 
specifically to the tasks they try to perform. For ex­
ample, if COBOL programs make up the daily work­
load, one's computer had better acquire a "Move" 
instruction whose function is similar to the semantics 
of the COBOL verb MOVE. To accommodate future 
applications, the variability of computer structures 
must increase, in yet unknown directions. Such ft.exi­
bility reminds one of Proteus, the mythological god 
who could change his shape to that of any creature. 

DESIGN OBJECTIVE 

Burroughs B1700 is a protean attempt to completely 
vanquish procrustean structures, to give 100 percent 
variability, or the appearance of no inherent structure. 
Without inherent structure, any definable language 
can be efficiently used for computing. There are no 
word sizes or data formats-operands may be any 
shape or size, without loss of efficiency; there are no 
a priori instructions-machine operations may be any 
function, in any form, without loss of efficiency; con­
figuration limits, while not totally removable, can be 
made to exist only as points of "graceful degradation" 
of performance; modularity may be increased, to allow 
miniconfigurations and supercomputers using the same 
components. 

Design rationale 

The B1700's premise is that the effort needed to ac­
commodate definability from instruction to instruction 



490 Fall Joint Computer Conference, 1972 

is less than the effort wasted from instruction to instruction 
when one system design is used for all applications. With 
definable structure, information is able to be represented 
according to its own inherent structure. Manipulations 
are able to be defined according to algorithms' own 
inherent processes. Given such freedom, it is easy to 
construct novel machine designs which are 10 to 50 
times more powerful than contemporary designs, and 
which can be interpreted by the B1700's variable­
micrologic processor using less than 10 to 50 times the 
effort, resulting in faster running times, smaller re­
source demands, and lower computation costs. 

GENERAL DESIGN 

To accomplish definable structure, one may observe 
that during the next decade, something less than in­
finite variability is required. As long as control informa­
tion and data are communicated to machines through 
programming languages, the variability with which 
machines must cope is limited to that which the 
languages exhibit. Therefore, it is sufficient to antici­
pate a unique environment for each programming 
language. In this context, absolute binary decks, 
console switches, assembly languages, etc., are included 
as programming language forms of communication. 
Let us call all such languages "S-languages" ("S" for 
"soft," or also for "system" or "source" or "specialized" 
or "simulated"). Machines which execute S-language 
directly are called "S-machines." The B1700's objec­
tive, consequently, is to emulate existing and future 
S-machines, whether these are 360's, FORTRAN 
machines, or whatever. Rather than pretend to be good 
at all applications, the B1700 strives only to interpret 
arbitrary S-language superbly. The burden of per­
forming well in particular applications is shifted to 
specific S-machines. 

COBOL RPG OPERATING 
~ • SYSTEM 

\ ..... 
\ COMPILING _---
\ . ...-
\ ... -...... 
\ ALGOL _--
\ . ...-

FORTRAN \ __ - - • SIMULATION DATA.BASE .. _----- ~-......... -
~------------------------. 

• EMULATION 
NUMERICAL 
PROCESSING 

Figure 1-Typical machine design (0) positioned by 
gqodness-of-fit to application areas ( • ) 

COBOL 

"'"'0 
RPG 

• 
ALGOL 

COMPILING 

o • 
SIMULATION 

OPERATING 
SYSTEM 

0--" 

• 
NUMERICAL 
PROCESSING 

o • DATA BASE. 

• EMULATION6;~ 

Figure 2-Typical B1700 S-machines (0) positioned by 
goodness-of-fit to application areas ( • ) 

Throughput measurements, reported below, show 
that the tandem system of: 

APPLICATION PROGRAM, 
interpreted by an 

S-MACHINE (which is optimized for the 
application area), 

interpreted by the 
B1700 HARDW ARE (which is optimized for 

interpretation) 

is more efficient than a single system when more than 
one application area is considered. I t is even more 
efficient than conventional design for many individual 
application areas, such as sorting. 

To visualize the architectural advantage of imple­
menting the S-machine concept, imagine a two-di­
mensional continuum of machine designs, as in Figures 
1 and 2. Designs which are optimally suited to specific 
applications are represented by bullets ( • ) beside the 
application's name. The goodness-of-fit of a particular 
machine design, which is represented as a point (0) 
in the continuum, to various applications is given by 
its distance from the optimum for each application; 
the shorter the distance, the better the fit, and the 
more efficient the machine is. Figure 1 dramatizes· the 
disadvantage of using one design for COBOL, FOR­
TRAN, Emulation, and Operating System applications. 
Figure 2 pictures the advantage of emulating/inter­
preting many S-machines, each designed for a specific 
application. Note that emulation inefficiencies must be 
counted once for each S-machine, SInce they are all 
interpreted. 

HARDWARE CAPABILITIES 

To allow the user's problem statement to dictate 
the structure of the machine and the semantics of 
machine operations, new degrees of flexibility and 



speed are required from hardware, firmware, and 
software. 

Defined-field capability 

All information in a B1700 system is represented by 
fields, which are recursively defined to be either bit 
strings or strings of fields. Specifically, bytes and words 
do not exist. 

• All memory is addressable to the bit. 
• All field lengths are expressable to the bit. 
e Memory access hardware must fetch and store 

one or more bits from any location with equal 
facility. That is, there must be no penalty and no 
premium attached to location or length. 

• All structured logic elements in the processor can 
be used iteratively and fractionally under micro­
program control, thus effectively concealing their 
structure from the user. Iterative use is required 
for operands which contain more bits than a 
functional unit can hold; fractional use is required 
for smaller operands. 

Defined-field design gives flexibility because informa­
tion is represented by recursively defined structures of 
bits. It also gives speed because all bits in a field (and 
only those bits in a field) are processed in parallel. 
Additional speed is obtained from the advanced 
technology of the B1700 components. Main memory 
is constructed out of LSI MOS circuits with 1024-bit 
chips having lS0-nsec access time. The B1700 is the 
first small-scale, general-purpose, commercial computer 
to use MOS/LSI circuitry in its main memory. 

Generalized language interpretation 

No machine language is built into the hardware. There 
is no processor structure or set of machine instructions 
for which compilers may generate code. Each language 
to be executed must first configure the B1700 processor 
into whatever structure is efficient for algorithms in 
that language. Defined operations on the defined 

Iii structure are then executed by changeable micro-

I 
program. B1700 processors are specifically designed to 

,I" avoid causing significant differences in efficiency due 
I; to differences in such "soft" machine structures and 

II 
I' 

II 

operations. 

• Microinstructions are executed at 2, 4, and 6MHz 
rates using MSI CTL II logic with typical delay 
of 3 nsec per gate. 

Design of the Burroughs B1700 491 

• Microcode executes out of main memory. It may 
be buffered through 60-nsec access bipolar circuits. 
Such buffering is invisible to the microprogrammer. 

• Microprocedures are reentrant and recursively 
usable; each processor includes a 32-deep stack 
for fast entry and exit; stack operations are auto­
matic, not microprogrammed. 

• Microprograms are not limited in size, nor would 
large microprograms be inefficient because of size. 

• Microcode on the B1700 is compact, economizing 
storage. COBOL, FORTRAN, BASIC, and RPG 
language processors as well as second-generation 
and third-generation emulators have been micro­
programmed each in less than 4000 16-bit micro­
instructions. 

• Hardware assists with the concurrent execution of 
many microprogrammed interpreters. It takes 
from 14 p.sec to 53 usec (at 6MHz) from the com­
pletion of an S-instruction for one interpreter 
until the beginning of an S-instruction for another 
interpreter, depending on how much of the pro­
cessor must be reconfigured. 

]\t{emory protection, fast interrupt response, and 
uniform status of microprograms allow each micro­
programmer to be unconcerned that other interpreters 
may be running simultaneously. 

Control over binding 

While the hardware for defined-field and generalized 
language interpretation allows a varying processor 
image for microinstruction to microinstruction, it 
does not preclude taking advantage of a static pro­
cessor image. For example, the number of bits to be 
read, written, or swapped between processor and 
memory can be different in consecutive microinstruc­
tions, but if an interpreted S-machine's memory ac­
cesses are of uniform length, this length can be factored 
out of the interpreter, simplifying its code. In other 
words, S-memory may be addressed by any convenient 
scheme; bit addresses are available, but not obligatory 
for the S-machine. 

With these hardware advances, language-dependent 
features such as operand length are unbound inside the 
processor and memory buss, except during portions of 
selected microinstructions. Some of these features have, 
until now, been bound before manufacture, by ma­
chine designers. Language designers and users have 
been able to influence their binding only indirectly, and 
only on the next system to be built. On the B1700, the 
delayed binding of these features, delayed down to the 



492 Fall Joint Computer Conference, 1972 

S-MEMORY 

Figure 3-B 1700 Organization-Peripherals include standard 
large-scale devices, data communications networks, and mass 
storage units as well as minicomputer devices such as paper tape 
and 96-column card equipment. Special purpose devices include 

graphics, document sorters, teller machines, etc. 

clock pulse level of the machine, gives language de­
signers and users a new degree of flexibility to exploit. 
Hopefully, this flexibility will lead to the design of 
languages which are levels closer to user problems. 
Because of the B1700's interpretation speed, there 
should be little execution penalty incurred by such 
advanced forms of man-machine communication. 

SYSTEM ORGANIZATION 

Extreme modularity improves the B1700's ability 
to adapt to an installation's requirements. There may 
be one to eight processors' connected to one another 
and to two to 256 65,536-bitsystems memory (S-mem­
ory) modules, interfaced by a field-isolation unit. 
("Field-isolation" refers to converting defined-field 
memory requests [i.e., least- or most-significant bit 

PROCESSOR FI US-MEMORY 
300 CPM 96-COL . MFCU--::::f"-'"7 

300 LPM 132-COL. PRINTER t-----f }----t:=::::I 

DUAL SPINDLE 
20 MS. DISK 

Figure 4-0ne of the smallest B 1700' s 

address, field length, and direction] into whatever form 
actually drives the memory and to converting bit strings 
into whatever form is actually read and written by the 
memory.) Each processor also connects to one to eight 
I/O channels or toone to four microprogram memory 
(M-memory) modules. (See Figure 3.) Later systems 
may have several field-isolation units. With only one 
processor, the port interchange may be eliminated, as 
in Figure 4. 

EMULATION VEHICLE 

Any computer which can handle the B1700's port­
to-port message discipline may employ a B1700 for 
on-line emulation. (See Figure 5.) Programs and data 

M-MEMORY 
PROCESSOR 

COMMUNICATION 
LINE TO HOST 

COMPUTER 

PORT 
INTER-
CHANGE FlU S-MEMORY 

-~ITS 

Figure 5-B1700 as an emulation vehicle 

are sent to the B1700 for execution; I/O requests are 
sent back to the host which uses its own peripherals 
for them. Interpreters are loaded via the B1700's 
console cassette drive. Each Burroughs emulator can 
run standing-alone, or in an emulation vehicle, or in a 
multiprogrammed mix. 

STATE OF THE ART DESIGN 

The B1700's innovative features have been realized 
without diminishing the system's ability to provide 
many proven throughput enhancements. All Bur­
roughs interpreters rely on the B1700's ]\1aster Control 
Program (M CP) for: 

• Virtual memory-user programs are not limited 
in size by the amount of physical storage nor does 
the programmer ever need to know how much 
storage is available; compilers automatically seg­
ment programs, and the MCP automatically 
manages these segments without introducing any 
code into the user program. 

• l\1ultiprogramming-because common system 



I 
I 

I 

I 

I 

functions such as input/output, storage manage­
ment, and peripheral assignment are removed 
from user programs and handled by the M CP, 
every pause in a running program becomes an 
evident opportunity to run other programs. 

• Multiprocessing-with S-machine state kept in 
main memory and with every interpreter in main 
memory, any processor in the system can resume 
execution of an interrupted program. 

The B1700 is the first small-scale computer to offer 
so comprehensive an operating system. 

In addition to the MCP capabilities, there are 
notable system flexibilities, viz: 

• Dynamic system configuration-processors, mem­
ory addresses, I/O channels, and peripherals are 
not uniquely coded into programs, so such entities 
can be brought on-line and used immediately 
without any reprogramming. 

• Descriptor-organized I/O-in effect, I/O has its 
own S-language, interpretation of which causes 
data transfer; it is possible to build this interpreta­
tion in hardware, for maximum speed, or it may 
be soft for maximum flexibility, for example, to 
allow easy interfacing with new devices. 

• System performance monitoring-interpreters 
automatically gather dynamic execution frequen­
cies of program components to establish which 
parts of a program take the most time;3,4 also, 
specific microinstructions can interface directly 
with external monitors, allowing soft event flagging. 

Interpreter switching 

Note that without a native machine language, the 
MCP itself must be written in higher-level language 
and interpreted just like any other program. It, and all 
other active jobs, are represented in memory according 
to Figure 6. There are read-only code segments which 
may be anywhere in memory and a write-protected 
area which contains the program's S-machine state, 
data segments, file buffers, and other work areas. 

One of the l\1CP's data segments contains an inter­
preter dictionary that points to each interpreter which 
is active (i.e., interpreting one of the jobs in the mix). 
To reinstate a user's interpreter, the MCP extracts 
from the user's S.,..machine state the name of the inter­
preter being used, brings it into S-memory, and calls 
the interpreter interface routine which switches run 
structures. Associating S-machines and interpreters 
symbolically allows such things as several COBOL 

Design of the Burroughs B1700 493 

OVERLAYABLE DATA 
SEGMENTS 

S-MACHINE STATE 
( RUN STRUCTURE) 

DATA DEFINITIONS 

FILE DEFINITIONS 

FILE BUFFERS 

OVERLAYABLE PROGRAM 
SEGMENTS 

DODD 
Figure 6-B1700 program S-memory components 

interpreters active in one mix-one designed for speed, 
another for code compaction, etc.-all employing the 
same S-language expressly designed. for COBOL, that 
is, a COBOL-machine definition. The interpreter name 
is looked up in the interpreter dictionary to yield a 
pointer to the interpreter code in S-memory. 

To switch back to the MCP interpreter, a user inter­
preter performs the identical procedure. It calls the 
interpreter interface routine, which maintains a pointer 
to the MCP's interpreter, and switches run structures. 

Interpreter switching is independent of any execu­
tion considerations. It may be performed between any 
two S-instructions, even without· switching S-instruc.­
tion streams. That is, an S-program may direct its 
interpreter to summon another interpreter for itself. 
This facility is useful for changing between tracing and 
non-tracing interpreters during debugging. 

Interpreter switching is also independent of M-mem­
ory. Microcode always actually addresses S-memory. 
In case M is present, special hardware diverts fetches 
to it. Without M, no fetches are diverted. 

Interpreter management 

Entries in the interpreter dictionary are added 
whenever a job is initiated which requests a new 
interpreter. Interpreters usually reside on disk, but may 
be read in from tape, cards, cassettes, data comm, or 
other media. They have the same status in the system 
that object code files, source language files, data. files, 
compiler files, and MCP files all share: symbolically­
named, media-independent bit strings. While active, a 
copy is brought from disk, to be available in main 
memory for direct execution. The location may change 
during interpretation due to virtual S-memory manage­
ment, so microinstructions. are location-independent. 

At each job initiation and termination, the MCP 
rearranges the interpreters in M-memory to try to 
avoid swapping. Interpreter profile statistics show that 
over 99 percent of all microinstructions are executed 



494 Fall Joint Computer Conference, 1972 

out of M-memory, even when the demand for M-mem­
ory space is double the supply. At higher demand rates, 
swapping occurs. 

Ease of microprogramming 

Writing microprograms for the B1700 is as simple, 
and in some ways simpler, than writing FORTRAN 
su brou tines: 

• Microprograms consist of short, imperative 
English-like sentences and narrative comments. 
For example, one microinstruction in the 
FORTRAN interpreter is coded as follows: 

Read 8 bits to T counting FA up and FL down. 
• Knowledge of microinstruction forms is not bene­

ficial. Although micro programmers on other ma­
chines need to know which bits do what, on the 
B1700, there is no way to use that information. 
Once the function is given in English, its represen­
tation is immaterial. The B1700 microprogrammer 
has only one set of formats to worry about: those 
belonging to the S-language which he is inter­
preting. 

• Multiprogramming of microprograms is purely 
an MCP function, carried out without the micro­
programmer's knowledge or assistance. Actually, 
there is nothing one would do differently, de­
pending on whether or not other interpreters are 

,running simultaneously. 
• Use of M -memory is purely an M CP function; 

users cannot move information in and out of M. 
Other than rearranging one's interpreter ac­
cording to usage, there is nothing one should 
microprogram differently depending on whether 
microinstructions are executing out of M-memory 
or S-memory. Maximizing use of system resources 
is beyond the scope of any individual program; 
responsibility lies solely with the MCP and the 
machine designers. 

• Since all references are coded symbolically, pro­
tection is easy to assure. Microprograms can 
reference only what they can name, and they can 

(a)? COMPILE XCOBOL/INTERP WITH 
MIL; DATA CARD 

(b)? COMPILE XCOBOL/INTERP WITH 
MIL; MIL FILE CARD=XCOBOL/ 
SOURCE 

Figure 7-Typical MCP control information for creating 
interpreters 

(a) ? EXECUTE FILE/UPDATE 
(b)? EXECUTE FILE/UPDATE; INTERP 

= XCOBOL/INTERPRETER 

Figure 8-Typical MCP control information for 
.executing programs 

only name quantities belonging to thems'elves and 
their S-machines. Moreover, artificially generated 
names (e.g., negatively subscripted FORTRAN 
arrays) are checked for validity by concurrent 
hardware. 

• Calling out interpreters is simplified by the con­
tinuation of Burroughs' "one-card-of-free-form­
English" philosophy of job control language. 
Figure 7 shows the control information which 
creates a new interpreter (a) from cards, and (b) 
from a disk file named XCOBOL/SOURCE. 

• Association of interpreters and S-language files 
occurs at run-time. Figure 8 shows the control 
information which executes a COBOL program 
named FILE/UPDATE with (a) the usual 
COBOL interpreter, and (b) another interpreter 
named XCOBOL/INTERPRETER. 

• There is no limit to the number of interpreters 
that may be in the system (except that no more 
than 244 bits are capable of being managed by 
the B1700's present virtual memory property, 
so a 28,OOO-bit average interpreter length means 
there is a practical limit of 628,292,362 inter­
preters ... many more than the number of S-lan­
guages in the world). 

Additional information about B1700 microprogram­
ming may be found in Reference 5. 

EVALUATION 

Evaluation of novel architecture is not merely an 
unsolved problem; most rational attempts produce 
worse results than subjective guesses. Consider bench­
marks, which measure more system parameters than 
any other technique. Any benchmark program which 
runs on the B1700 develops not only an observed run .. 
ning time, but also a program profile which indicates 
how to reduce that time (possibly by 50 percent or 
more). What, then, is the true performance of the 
system? The observed time, even though known in­
efficiencies are pin-pointed? Half the observed time? 
Not until the benchmark has been changed. 

The point of benchmarks is to have a standard 
reference which allows the customer to characterize 



his work and obtain a cost/performance measure. 
What customer would be satisfied with an inefficient 
characterization? If the B 1700 can show that a program 
is not using the system well, what good is it as a bench­
mark? If we change the program to remove the in­
efficiencies, it is no longer standard. This is a pernicious 
dilemma. 

Even the simplest measure, add time, still published 
as if it hasn't been a misleading and unreliable indicator 
for the past 15 years, is void. What is the relative per­
formance of two machines, one of which can do an 
almost infinite variety of additions and the other of 
which can do only one or two? The B1700 can add two 
0-24 bit binary or decimal numbers in 187 nsec; how 
fast must a 16-bit binary machine be in order to have an 
equivalent add time? 

Assuming reasonable benchmark figures are ob­
tainable, they would say nothing about the intrinsic 
value of a machine which can execute another ma­
chine's operators, for both existing and imaginary 
computers; which can interpret any current and pres­
ently conceivable programming language; which can 
always accept one more job into the mix; which can 
add on one more peripheral and one more memory 
module, to grow with the user; which can interpret 
one more application-tailored S-machine; which can 
tell a programmer where his program is least efficient; 
which can continue operation in spite of failures in 
processing, memory, and I/O modules. These charac­
teristics of the B1700, shared by few other machines­
no machine shares them all-save time and money, but 
are not yet part of any performance measurement. 

Despite the nullification of measures with which we 
are familiar and the gargantuan challenge of measuring 
the B1700's advancements of the state-of-the-art, 
there are, nevertheless, some quantifiable signs that 
the system gives better performance than comparably­
priced and higher-priced equipment. 

Utilization of memory 

Defined-field design's major benefit is that informa­
tion can be represented in natural containers and 
formats. Applied to language interpretation, defined­
field architecture allows S-language definitions which 
are more efficient in terms of memory utilization than 
machine architectures which have word- or byte­
oriented architecture. For example, short addresses 
may be encoded in short fields, and long addresses in 
long fields (assuming the interpreter for the language 
is programmed to decode the different sizes). Alter­
natively, address field size may be a run-time param-

Language 
of Sample 
FORTRAN 
FORTRAN 
COBOL 
COBOL 
RPGII 

Design of the Burroughs B1700 495 

Aggregate 
Size on 
B1700 
280KB 
280KB 
450KB 
450KB 
l50KB 

Aggregate 
Size on 
Other 
560KB 
450KB 

l200KB 
l490KB 
310KB 

Percent 
Improved 

Other B1700 
System Utilization 

System/360 50 
B3500 40 
B3500 60 
System/360 70 
System/3 50 

Figure 9-Amount of program compaction on B1700 

eter determined during compilation. That is, programs 
with fewer than 256 variables may be encoded into an 
S-language that uses eight-bit data address fields. Even 
the fastest microcode that can be written to interpret 
address fields is able to use a dynamic variable to 
determine the size of the field to be interpreted. 

Just how efficient this makes S-languages is difficult 
to say because no standard exists. What criterion will 
tell us how well a given computer represents programs? 
What "standard" size does any particular program 
have? We would like a measure that takes a program's 
semantics into account, not just a statistical measure 
such as entropy. 

If we simply ask how much memory is devoted to 
representing the object code for a set of programs, we 
find the statistics of Figure 9. 

In short, the B1700 appears to require less than half 
the memory needed by byte-oriented systems to 
represent programs. Comparisons with word-oriented 
systems are even more favorable. 

As to memory utilization, the advantage of the B1700 
is even more apparent. Consider two systems with 
32KB (bytes) of main memory, one a System/3, the 
other a B1700. Suppose a 4KB RPG II program is 
running on each. If we ask how much main memory 
is in use, we find the comparison of Figure 10. 

The utilization at any given moment may be 30 
times better on the B1700 than on the System/3. At 
least, with all program segments in core, it is seven 
times better (4.5KB vs. 32KB). Even if we assume the 
RPG interpreter is in main memory and. is not shared 
by other RPG jobs in the mix, the comparison varies 

System 
System/3 

B1700 

Bytes in Use Percent Comment 
32K 100 28K is idle without multi-

lK 

programming and virtual 
memory. 

3 Assumes 500B run structure 
and 500B of program and 
data segments. 

Figure lO-Hypothetical RPG memory requirements 



496 Fall Joint Computer Conference, 1972 

from 6:1 to 4:1, 5KB to 8KB (vs. 32KB) , 84 to 75 
percent better utilization. As more and more RPG 
jobs become active in the mix, the effect of the inter­
preter diminishes, but then comparison becomes 
meaningless, because other low-cost systems. cannot 
handle so large a mix. (Note that these figures change 
when a different main memory size is considered, so 
the comparison is more an illustration of the advantage 
of the B1700's variable-length segments and virtual 
memory than of its memory utilization.) More detailed 
information on memory utilization may be found in 
Reference 6. 

Running time 

Although program running time is said to involve 
less annual cost at installations than the unquantifiable 
parameter which we may call "ease of use", let us 
mention some current observations. When the B1700 
interprets an RPG II program, the average S-instruc­
tion time is about· 35 microseconds, compared to 
System/3's 6-microsecond average instruction time. 
On a processor-limited application (specifically, calcu­
lating prime numbers), the identical RPG program 
runs in 25 seconds on a B1700 and 208 seconds on a 
System/3 model 10. Both systems had enough main 
memory to contain the complete program; only the 
memory and processor were used. 

The B1700 lease rate was 75 percent greater than 
the System/3's. In terms of cost, the B1700 run con­
sumed 30¢ while the System/3 run took $1.60. In 
terms of instruction executions, the B1700 was 50 
times faster. That is, each individual interpreted RPG 
instruction, on the average, contributed as much to the 
final solution as 50 System/3 machine instructions. The 
fact that the B1700's S-machine for RPG is 50 times 
more efficient than System/3 seems to support the 
B1700 philosophy, that interpretation of S-machines 
which are optimized for each application yields better 
performance than using a general-purpose architecture. 

Using another set of benchmark programs (for 
banking applications), and another B1700 which leases 
for the same as the System/3 with which it was com­
pared, throughput comparisons are again noteworthy. 
Despite defined-field design, soft-interpretation, soft 
I/O, multiprogramming, multiprocessing, and virtual 
memory, all of which supposedly trade speed for 
flexibility, the B1700 executes RPG programs in 50 
to 75 percent of the System/3 time, and compiles them 
in 110 percent of the System/3 time, for the same 
monthly rental. In applications of this type, compila­
tion is expected annually (monthly at worst) while 

execution is expected daily. (Systems used for this 
comparison included a multi-function card unit to 
read, print, and punch 96-column cards, a 132-position 
300 lpm printer, a dual spindle 4400 bpi disk cartridge 
drive, and operator keyboard. The System/3 could 
read cards at 500 cpm, while the B1700 could read at 
300cpm.) 

CONCLUSION 

lVIicroprogramming, firmware, user-defined operators, 
and special-purpose minicomputers are being touted 
as effective ways to increase throughput on specific 
applications while decreasing hardware costs. One 
standard system tailors itself to an installation's needs. 
Effective as these approaches are, they are all held 
back by procrustean machine architecture. Burroughs 
B1700 appears to eliminate inherent· structure by its 
defined-field and soft interpretation implementation, 
advancements of the state-of-the-art. Without a native 
machine language, the B1700 can execute every ma­
chine language well, eliminating nearly all conversion 
costs. Designed for language interpretation rather than 
general-purpose execution, the B1700 can run every 
programming language well, reducing problem-solving 
time and expense. It does not waste time or memory 
overcoming its own physical characteristics; it works 
directly on the problems. Furthermore, these innova­
tions are available in low-cost systems that yield better 
price/performance ratios than conventional machinery. 

ACKNOWLEDGMENT 

Many of the design objectives were first articulated by 
R. S. Barton.7 The author wishes to thank Brian 
Randell, R. R. Johnson, Rod Bunker, Dean Earnest 
and Harvey Bingham for their conscientious criticism 
of various drafts of this article. 

BIBLIOGRAPHY 

1 A W BURKS H H GOLDSTINE 
J VON NEUMANN 
Preliminary discussion oj the logical design oj an electronic 
computing instrument 
A H TAUB (ed) Collected Works oj John von Neumann Vol 5 
The Macmillan Co New York 1963 pp 34-79 
Also in 
C G BELL A NEWELL 
Computer structures: Readings and examples 
McGraw-Hill Book Co 1971 pp 92-119 



f 

1
1,1 

I~ 
(~ 

2 W LONERGAN P KING 
Design of the B5000 system 
Datamation 7 5 May 1961 pp 28-32 

3 S C DARDEN S B HELLER 
Streamline your software development 
Computer Decisions 2 10 October 1970 pp 29-33 

4 D E KNUTH 
An empirical study of FORTRAN programs 
Software-Practice and Experience 1 2 April 1971 
pp 105-134 

5 W T WILNER 

Design of the Burroughs B1700 497 

Microprogramming environment on the Burroughs B 1700 
IEEE CompCon '72 
For reprints write to the author at Burroughs Corporation 
6300 Hollister Avenue Goleta California 93017 

6 W T WILNER 
Burroughs B1700 memory utilization 
Proc F JCC '72 this volume 

7 R S BARTON 
Ideas for computer systems organization: A personal survey 
Software Engineering 1 Academic Press New York 1970 
pp 7-16 





~ 
I 

i 
ft, 

',' 

An on-line two-dimensional computation system* 

by THOMAS G. WILLIAMS 

System Development Corporation 
Santa Monica, California 

INTRODUCTION 

The role of graphics in interactive man-computer sys­
tems is to extend the capability of the computer for 
communication in a visual mode so that men can com­
municate with the computer directly in the figurative 
notations and graphics conventions that they have de­
veloped for communication among themselves. A large 
number of computer-graphics systems have been de­
veloped, most of them directed toward drawing lines, 
curves, or shapes, as in schematic drawing,! solid and 
half-tone drawing, 2 and computer animation. 3 Con­
siderable work has also been done in computer output 
of drawings and graphs. 

This paper presents the results of an exploration into 
a different domain of computer graphics-one in which 
symbols and alphanumeric characters are the primary 
notations, rather than lines or pictures. Such notations 
are used in mathematics, organic chemistry, flowchart­
ing, and other applications. By design and evolution, 
they tend to exhibit the structure, organization, and 
nature of the problems they are designed for in a more 
compact and economical manner than do notation sys­
tems (e.g., programming languages) designed to ex­
press the operational steps of logic-oriented computer 
programs. Moreover, these notations are familiar, 
through education and experience, to a greater number 
of potential computer users than are programming 
languages. 

The experimental system described here, called The 
Assistant Mathematician (TAM), uses computer­
graphics techniques to allow the on-line use of ordinary 
hand-printed mathematical notation for computer pro­
gramming and mathematical problem solving. The 
second section gives a general description of the TAM 
facility, with examples of its use. The third section, the 

* This research was supported by the Advanced Research Projects 
Agency of the Department of Defense under Contract DARC 
15-67-C-0149. 

499 

main body of the paper, describes the TAM software 
modules and some of the details of their operation. The 
fourth section draws some tentative conclusions about 
the usefulness and feasibility of on-line computation 
systems and indicates some areas for future refinement. 

GENERAL DESCRIPTION 

TAM is an interactive programming system for 
numeric computation. The TAM user language is ordi­
nary two-dimensional mathematical notation. TAM 
incorporates an extensive set of arithmetic operators on 
constants, variables, and one- and two-dimensional ar­
rays. It provides many common functions such as trigo­
nometric and logarithmic functions. It also provides 
function definition and looping facilities for repetitive 
calculation. TAM operates under ADEPT, a time-shar­
ing system developed at SDC.4 

The graphics console used with TAM is a single in­
teractive input-output surface. For input, a data tablet 
supplies a continuous stream of X - Y coordinate pairs 
representing the position of the tablet stylus. Informa­
tion generated by the computer program is rear-pro­
jected on the tablet surface by a cathode-ray-tube pro­
jection system. The tablet surface is the only working 
area on the console; no mechanical pushbuttons or key­
boards are used. Printing on the tablet surface is re­
markably similar to writing with a pen on a piece of 
paper. The engineering and interface aspects of this 
device have been documented by Gallenson. 5 

A user begins by printing the expression he wants the 
computer to evaluate. As he prints, the track of the 
stylus is displayed on the surface so that he can see 
what he has printed. (Figure 1 shows the console 
surface with hand-printed input.) When he has com­
pleted his input (signalled by a time-out), each input 
character is processed by a character-recognition pro­
gram that operates under ADEPT. Two kinds of veri­
fication are then made. First, the character recognizer 



500 Fall Joint Computer Conference, 1972 

Figure I-Handprinted input 

displays a computer-generated set of characters cor­
responding to the position and size of the user's hand­
printed input; from this display, the user can verify 
that his input has been correctly recognized, character 
by character. At the same time, the character recog­
nizer's output is passed through two mathematics­
structure modules: one, the analyzer, transforms the 
user's two-dimensional input into a machine-interpret­
able linear infix statement; the other, the builder, trans­
forms the linear statement back into two-dimensional 
form for display 'to the user, thus giving him the op­
portunity to verify that the analyzer is correctly 

Figure 2-Results of character recognition and 
structure analysis 

Figure 3-Result of computation 

analyzing his input. Figure 2 illustrates these opera­
tions. 

At this point, the user can instruct the computer to 
execute the expression by placing the tablet stylus over 
the area labeled 'TAM' (with the result shown in Figure 
3), add to the expression, or make any necessary cor­
rections. To make corrections, the user can call upon a 
number of editing operations. He may change a char­
acter by simply overwriting it with a new character. 
He may erase one or more characters by "scrubbing" 
over them as though he were scratching them out. He 
may also move groups of characters to open up space 

Figure 4-Matrix input 



Figure 5-Matrix inversion 

to insert new characters, close up an expression to delete 
spaces, correct errors, etc. 

Graphics Modules 

two-dimensional 
notation 

, The basic graphics modules are: 

Graphics 
Modules 
2-D-+l-D 

f a. A recognizer for hand-printed characters; 
b. A mathematics-structure analyzer, which con­

verts a two-dimensional mathematical expression 
into an equivalent expression in linear infix 
form; and 

c. A mathematics-structure builder, which con­
verts the linear expression produced by the 
analyzer into the equivalent two-dimensional 
form. 

Character Recognizer 

The character recognizer serves as an input device for 
the rest of the system. It provides the system with the 
processed results of a hand-printed input in a standard 
form-namely, the character code assigned to the in-

On-Line Two-Dimensional Computation System 501 

The system handles a wide range of mathematical 
notation. In all cases, the notation used for displaying 
the results of computation corresponds to that used for 
input. For instance, Figure 4 shows the input of a 3 X3 
matrix; Figure 5 shows the result of inverting this 
matrix. 

SYSTEM DESCRIPTION 

This section discusses the basic software modules of 
the TAM system. TAM handles information in two 
equivalent forms-two-dimensionaland linear-and the 
system modules are distinguished into two classes, de­
pending on the form with which they operate. Graphics 
modules operate with both two-dimensional and linear 
information and are used in the user-interface parts of 
the system. Language-processing modules, which handle 
only linear information, interpret and numerically pro­
cess user requests. The overall information flow in the 
system is shown below: 

one-dimensional 
notation 

two-dimensional 
notation 

Language 
Processing 
Modules 

Graphics 
Modules 
l-D-+2-D 

one-dimensional 
notation 

put, its size, and its position. The TAM recognizer has 
been designed to provide a large alphabet (in excess of 
120 characters) for a given user; unlike most such ef­
forts,6,7,8 it is general in the sense that the user prints 
in his own style and only rarely must change his normal 
habits. This is accomplished by building a unique char­
acter dictionary for each user from samples of his own 
printing. Dictionary building is an interactive process, 
and the user may add characters or resolve ambiguities 
at any time. In our usage, typical character sets consist 
of numerals, the uppercase and lowercase Roman letters, 
those Greek characters that are distinct from the Roman 
characters, and special mathematical symbols. The 
character recognizer is described in Reference 11. 

Mathem.atics-structure analyzer 

The TAM mathematics-structure analyzer accepts as 
input a two-dimensional mathematical expression and 



502 Fall Joint Computer Conference, 1972 

Two-Dimensional 
Form 

Linear Infix 
Form 

(X[~i./'2]+ Y[~i./'2])/(Zl~i./'2]) 

Figure 6-Expression representation 

produces a linear infix equivalent of the expression. The 
form of the input is that supplied by the character 
recognizer: a list of character codes with associated size 
and position information. Only the dimensional informa­
tion is converted; no conversion to Polish or tree-struc­
ture form is performed. Figure 6 shows an example of a 
two-dimensional form and the equivalent linear form 
produced by the analyzer. 

Our reasons for not converting fully to a tree structure 
notation, as Anderson9 does, lie in the nature of opera­
tions on an interactive time-sharing system. In general, 
the user constructs his expression in stages, correcting 
or adding to it at successive stages. We give him the re­
sults of a "trial analysis" (in two-dimensional form) at 
each stage, so that he can correct analyzer errors as 
early as possible. By not converting to a tree structure 
at each stage of analysis, we improve the speed and ef­
ficiency of the analyzer. However, we do sacrifice some 
flexibility and analysis power in comparison to Ander­
son's analyzer. 

The analyzer accepts a wide range of mathematical 
notation, including subscripts and superscripts, dis­
played fractions, overs cores and underscores on single 
characters and groups of characters, the ~ and II 
notations for summation and multiplication, the inte­
gral sign with limits, matrix and vector notation, and 
combinatorial notation. Many other notations, such as 
those used for ordinary and partial differential equa­
tions, are combinations of these basic notational devices 
and can also be analyzed. However, owing to the left­
to-right scan of the analyzer, some notations cannot be 
accepted. Examples are: 

4 2 Because some subscripts and superscripts 
X precede the main character. 

3 1 

lim 
n->oo 

Because the lim is handled as three distinct 
t3ymbols, and the n,~, and 00 will be treated 
as subscripts of the characters to the right 
of which they happen to fall. 

In general, however, most forms of mathematical nota­
tion in common use are acceptable and are quickly and 
correctly analyzed. 

Briefly, the analyzer operates as follows. The analyzer 

begins with the list of characters supplied by the recog­
nizer, sorted into left-to-right order according to the X 
coordinate of the left edge of the character. The analyzer 
looks for a spatial relationship between a character on 
the input list and a reference character, which is one of 
the previously analyzed characters in the input list. 
This relationship may be either (1) one that causes the 
input character to be bound to the reference character 
as a subscript, numerator, etc., or (2) the "mainline" 
relation (on a roughly horizontal line) that causes the 
input character to become a new reference character. 
Characters bound to a reference character become sub­
reference characters that can be used recursively in the 
analysis of an input character. This allows nested frac­
tions and multiple levels of subscripts and superscripts. 

The kinds of relationships possible between a refer­
ence character and an input character depend upon the 
nature of the reference character. For instance, if the 
reference character is a letter, the overscore, under­
score, superscript, or subscript relationships are tested. 
If the reference character is a horizontal bar, the 
numerator and denominator relationships are tested. 
This provides a reasonably efficient search and allows a 
degree of error control (for instance, digits cannot have 
subscripts). Reference 10 contains a full description of 
the analyzer. 

MatheIIlatics-structure builder 

To ensure that a user need deal only with two-dimen­
sional notation, a means is provided in the TAM system 
to supply output to the user in two-dimensional nota­
tion. The mathematics-structure builder supplies this 
function. It accepts the linear expression generated by 
the analyzer and produces a clear, typeset-quality* 
two-dimensional expression. The builder is used for two 
purposes. First, it generates two-dimensional displays 
(e.g., 5.8 -109) of the results of computation, including 
matrix computation. Second, it feeds back to the user 
the results of the analyzer's operation. Since the struc­
ture modules distinguish between brackets and paren­
theses supplied by the user and those generated inter- I 

nally, displaying only those supplied by the user, the 
reconstruction of a correct analysis will have the same 
form as the original input; the form of an incorrect 
analysis is usually very different from that of the input. 
Thus, the user need only compare the two displayed 
forms to verify the analysis. 

The builder has two components: a scanner for find­
ing, in succession, the main elements of the linear ex-

* That is, the information generated by the analyzer could drive 
an automatic typesetting device. 



, 
I 

pression and a set of element processors, one for each of 
the forms used in mathematical notation. The element 
processors accept as input an element and its related 
characters (e.g., a variable and its·subscripts and super­
scripts or a fraction bar and its numerator and denomi­
nat or) and produce the two-dimensional equivalent in 
terms of characters and their associated size and posi-' 
tion. Element processors also produce the location and 
size of the smallest possible rectangle surrounding the 
expression for each element. The scanner finds the main 
elements, calls the element processors, and strings the 
output of the element processors together; it also re­
turns the size and location of the rectangle around the 
expression. The scanner and element processors are 
called recursively to analyze subparts of the expression. 
Details of the builder's operation are contained in 
Reference 10. 

Language processing and notation 

The TAM graphics modules accept most of the syn­
tactical forms of conventional mathematical notation. 
In order for the system as a whole to behave according 
to the user's expectation that notation that is accepted 
will be taken to mean what he means by it, the system's 
language-processing modules must implement the 
semantics indicated by syntactical conventions. This, 

I with a few exceptions, they do. (The exceptions, such 
as the operations of integral and differential calculus, 
are signaled as errors.) Despite the exceptions, the set 
of operations that is implemented is adequate for a 
large number of arithmetic-computation tasks. Some of 
the important semantic features of the language pro­
cessors are the following: 

I 
I 

Implicit multiplication-multiplication indicated 
by juxtaposition of two or more variables or con­
stants. This is a standard feature of mathematical 
notation; because, in TAM, all identifiers are single 
letters, implicit multiplication can be provided. 

Implied data types and dimension-frees the user 
from having to declare, in a separate statement, the 
data type and/or dimension of a variable. In 
TAM, this information is acquired from the first 
use of the variable, when possible. (A dimension 
statement for arrays does exist and is used pri­
marily in an optional form that allows an array to 
be preset or cleared.) 

Universal operators-refers to the applicability of 
every operator to all data types for which it is 
meaningful. That is, any operation (such as multi­
plication) can apply to integers, real numbers, 

On-Line Two-Dimensional Computation System 503 

vectors, matrices, and any combination thereof, 
with no notational change or distinction. 

A utomatic prompting-the ability of TAM to ask 
for the value of any variable that is undefined at 
the point of first use. 

Built-in junctions and constants-some functions 
like sine, cosine, are called explicitly by name. 
Others are called by the use of the ordinary mathe­
matical notation; e.g., A-I, where A is a matrix 
calls the matrix-inversion function. 1r and e are. 
among the built-in constants. 

With a few exceptions, the notation used in TAM is' 
standard. One exception is absolute value, for which the 
symbols [ ] were invented because, in United States 
usage, there is no real distinction between the printing 
of the digit 'one' and the printing of a vertical bar. 
Another exception is a loop control statement which, 
except for specific functions such as L and II, does 
not exist in ordinary mathematics. 

Entities 

Quantities. Quantities in TAM are integers or mixed 
numbers. Quantities may be contained in variables or 
arrays or expressed as constants. lVlost storage declara­
tion is implied by usage. Arrays are dimensioned either 
implicitly or explicitly. 

Identifiers. Variables and array identifi~rs are single 
letters. (Note that this permits implicit multiplica­
tion.) The legal alphabet of TAM consists of Greek and 
Roman uppercase and lowercase letters. An identifier 
may be qualified (made unique) through the use of 
overscoring or underscoring. Legal overs core and under­
score characters are: 

-r..J/\.~ 

The large character set accepted by the system gives a 
suitably diverse set of possible identifiers. It is usually 
possible, for example, to copy an equation directly out 
of a paper or textbook and enter it into TAM. 

Operators 

Quantities may be manipulated through the use of 
opera tors as shown below: 

a+b 
a-b 
ab,a·b,a*b 

a 
b' alb 

addition 
subtraction 
multiplication 

division 



504 Fall Joint Computer Conference, 1972 

[ ] 
[ ] 
[ ] 

n 

IT 
i=m 

i=m 

exponentiation 
nth root V = > ~­
factorial 
absolute value 
ceiling 
floor 

product 

summation 

+b,-b 
T 

unary sign 
transpose (two-dimensional arrays only) 

Each operator is usable when meaningful. With few 
exceptions (for example, transpose applies only to two­
dimensional matrices; (-3)! is signaled as an error), 
all operators are usable to manipulate quantities, vari­
ables, and arrays. The operators are legal when applied 
to arrays when an acceptable matrix or vector operation 
is defined. One-dimensional arrays are stored and 
treated as row vectors, with one exception: in multipli­
cation, if one or·both operands are vectors, the operand 
on the left is treated as a row vector and the operand 
on the right is treated as a column vector. The multi­
plication performed is the dot product. 

StateDlents 

There are three distinct TAM arithmetic-computa­
tion statements: assignment, function definition, and 
loop. There are also some built-in functions. 

Assignment. The assignment statement is used to 
set identifiable variables or arrays, presumably for 
use in subsequent statements. An assignment state­
ment is of the form: 

identifier ~ expression 

The expression may consist of any legal manipula­
tion of quantities. 

Function Definition. The TAM user may define 
frequently used arithmetic expressions as func­
tions; he may then call upon these functions when 
necessary. Functions, of course, return values. 
The function definition and call may contain 
parameters. Both the function expression and the 
actual parameters of the call may contain calls to 
other functions. The function-definition statement 
has the form: 

In(PI,P2, . .• Pm) = expression 

where I is a legal identifier, n is an optional alpha-

betic or numeric qualifier, and the Pi are optional 
parameters. The expression may involve any legal 
manipulation of quantities. The identifier I, once 
it has been used as a function name, defines a class 
of functions In and cannot be used later as a vari­
able or array identifier. The functions in class I are 
distinguished from one another through the use of 
the qualifier n. (For example, al(X) = X2 and 
a 2(X) = VX are two functions in class a; a~3 is 
an illegal statement; G and G are not in class a.) 
As many function classes as desired may be de­
fined. The optional parameters, pi, must be legal 
identifiers and may be used as parameters in many 
function definitions and also as variables or array 
names or as function classes. 

Loop Control. A statement may be iterated by fol­
lowing it with loop-control information. Loops 
may be nested to any level, but each loop variable 
in the nest must be unique. Loop control may be 
specified in three forms: 

Loop Control, Form 1 

Statement: i = m, ... , n 
where i is the loop variable (an identifier of a 
simple variable whose value will be incremented I 

by one for each iteration of the statement), m is 
the initial value for i, and n is the terminal 
value for i. m and n may be any legal expres­
sions that yield single numeric values. The itera­
tion is complete when i exceeds n. The statement 
iterated may, but need not, contain references 
to i. 

Loop Control, Form 2 

Statement: i=ml, m2, ... , n 
where i is the loop variable, ml and m2 are the 
first two values for i as the statement is iterated, 
m2-ml defines the loop increment (or decre­
ment), and n is the terminal value. mI, m2 and n 
may be any legal expressions that yield single 
numeric values. The iteration is complete when 
i exceeds (or becomes less than) n. The state­
ment iterated may, but need not, contain 
references to i. 

Loop Control, Form 3 

Statement: i = ml, m2, m3, m4, ... mn 
where i is the loop variable and the mj are suc­
cessive settings for i each time the statement is 
iterated. (The elipsis ( ... ) shown is not a part of 
the loop-control form, as it is in the two previous 
forms, but is included to indicate that the list 



~I 

mj is of user-determined length.) The loop ter­
minates after the statement has been executed 
for i=mn • The statement may, but need not, 
contain references to i. 

Built-In Functions. TAM includes a set of built-in 
functions that the user can activate by including 
one of the names given below (along with an ap­
propriateparameter) within any context in which 
a function call is permissible. The available func­
tions are: 

Name and Parameter 

sin (x) 
cos (x) 
tan (x) 
cot (x) 
arctan (x) 
tan-1 (x) 
In (x) 

Definition 

sine (x) 
cosine (x) 
tangent (x) 
cotangent (x) 
arctangen t (x) 
arctangen t (x) 
natural logarithm (x) 

In expressing the name, any combination of uppercase 
and lowercase Roman letters is permissible; e.g., 
Ln=ln=LN. 

The built-in functions also include those called by 
notational devices: square root, exponential, matrix in­
verse, matrix transpose, and factorial. 

CONCLUSION 

TAM is an experimental system designed and built to 
test the usefulness of, and problems associated with 
providing, natural man-machine communication in the 
context of problem solving by the non-programmer 
physical scientist or engineer. We feel that TAM has 
demonstrated the usefulness of man-machine communi­
cation. It provides considerable computation power in a 
simple, flexible way; learning how to use it requires 
very little time, even if one has not programmed a 
computer; and remembering how to use it is easy. 

More importantly, however, designing TAM has 
helped us to identify the real problems of working with 
natural notation. Fundamentally,' any natural nota­
tion, including mathematics, is ambiguous and context 
dependent. As one result of this, TAM does not con­
tain built-in complex arithmetic capabilities, princi­
pally because it is difficult to resolve the use of the letter 
i as an integer (index of summation), mixed number 
(arbitrary variable), or ~, without reference to the 
global context in which it is being used. Therefore, the 
use of natural notation requires some solution of the 
ambiguity problem. 

Two solutions are possible. One, adopted in most pro­
gramming languages, is to require explicit specification 

On-Line Two-Dimensional Computation System 505 

by the user of the things he wants to use so that there 
can be no ambiguity; this specification must be pro­
vided for each new program. The other, which we are 
beginning to explore, is to assume that the user works 
for a period of time within some specific computational 
context, with its own defined notations, functions, and 
data, and that it should be possible to establish in the 
computer, more or less implicitly, a contextual frame­
work within which the user works as long as he con­
tinues with a specific problem or set of problems. The 
user might start with a general context appropriate to 
his general problem area. To this he could add his nota­
tional devices and functions, much as he might do in 
defining notation and functions when writing a paper. 
A contextual framework could also provide a data­
handling capability. The notions of information storage 
and retrieval are foreign to mathematics, and the vol­
ume of numeric data required for many useful and in­
teresting problems is beyond the reasonable capacity for 
entry from a data tablet~ The context system could pro­
vide a computational capability over a defined data 
base, thus providing a simple way to process and re­
process data. 

We have, basically, just begun to explore the possi­
bilities opened up by the freedom of two-dimensional 
input. We foresee that the TAM system, and others like 
it, are forerunners of a new capability and flexibility in 
natural man-computer interaction. We look forward to 
the day when a user, in any field, can sit down and com­
municate with a computer in the language of his choice 
or invention. 

ACKNOWLEDGMENT 

The continuing progress made on this project owes a 
great deal to many individuals for support, constructive 
criticism and direction. In particular, Mort Bernstein 
for his overall guidance; Jean 19awa, for her work on the 
character recognition; John McGahey, for his work on 
the graphics modules; and Joan Bebb and Jean Saylor, 
for the design and implementation of the language 
processor. 

REFERENCES 

1 W R DE HAAN 
. A utomatic graphic schematic drawing program 

Proceedings Third SHARE Design Automation Workshop 
May 1966 

2 W J BOUKNIGHT K KELLEY 
An algorithm for producing half-tone computer graphics 
presentations with shadows and movable light sources 
Proceedings AFIPS 1970 Spring Joint Computer Conference 
Vol 36 pp 1-10 



506 Fall Joint Computer Conference, 1972 

3 R M BAECKER 
Picture driven animation 
Proceedings AFIPS 1969 Spring Joint Computer Conference 
Vol 34 pp 273-288 

4 R R LINDE et al 
The ADEPT-50 time-sharing system 
Proceedings AFIPS 1969. Fall Joint Conference Vol 35 
pp 39-50 

5 L A GALLENSON 
A graphic tablet display console for use under time-sharing 
Proceedings AFIPS 1967 Fall Joint Computer Conference 
Vol 31 pp 689-695 

6 T L DIAMOND 
Devices for reading hand-written characters 
Proceedings Eastern Joint Computer Conference December 
1957 pp 232-237 

7 G F GRONER 
Real-time recognition of hand-printed text 
Proceedings AFIPS 1966 Fall Joint Computer Conference 
Vol 29 pp 591-602 

8· W TEITLEMAN 
Real-time recognition of hand-drawn characters 
Proceedings AFIPS 1964 Fall Joint Computer Conference 
Vol 26 pp 559-576 

9 R H ANDEHSON 
Syntax-directed recognition of hand-printed two-dimensional 
mathematics 
Presented at ACM 1967 Symposium on Interactive Systems 
for Experimental Applied Mathematics 

10 M I BERSTEIN 
On-line, interactive parsing and programming; final report for 
Phase III 
System Development Corporation Document TM-4582 
August 1970 

11 M I BERNSTEIN T G WILLIAMS 
A two-dimensional programming system 
System Development Corporation Santa Monica California 
Information Processing 68-North-Holland Publishing 
Company-Amsterdam (1969) 



Debugging PL/I programs in the multics environment 

by B. L. WOLMAN 

Honeywell Information Systems 
Cambridge, Massachusetts 

INTRODUCTION 

One of the popular misconceptions concerning PL/I is 
that programs written in PL/I are necessarily ineffi­
cient and hard to debug. Several years experience with 
the Multics PL/I compiler running on the Honeywell 
645 has shown that in spite of the apparent complexity 
of the PL/I language, PL/I programs are easily de­
bugged in the Multics environment, even by novice 
users who are newcomers to PL/I and are unfamiliar 
with the Honeywell 645. In most cases the user can de­
bug his program symbolically without having to refer 
to a listing of the generated instructions or add debug­
ging output statements to the program. This is due to 
a number of factors: 

• the run-time environment provided by the system. 
• the implementation of PL/I. 
• the availability of a variety of powerful debugging 

facilities. 

THE ENVIRONMENT 

The use of PL/I as the principal tool for program­
ming by users of M ultics was envisioned at the very 
start of the project. Features which are required by 
PL/I such as a stack, pointer variables, conditions, and 
a recursive call/return mechanism are all provided and 
are directly supported by the system hardware and/or 
software. Consequently, the basic Multics environment 
is ideally suited to the needs of PL/I programs. In fact, 
nearly all of Multics itself is coded in PL/I and exe­
cutes in this self-maintained environment. I-a 

The Multics system currently provides the user with 
a virtual address space of over 1000 segments of 65536 
words each (some changes now in progress will increase 
the maximum size of a seg.ment to 262144 words). 
Access to these segments is by means of PL/I pointer 

507 

variables which contain a segment number, a word off­
set, and a bit offset. There is a direct correspondence 
between PL/I pointers and virtual addresses in Mul­
tics; PL/I pointer values may be loaded into the ad­
dressing registers of the 645 by a single machine in­
struction. An attempt to use a pointer whose value is 
the PL/I null pointer causes a condition to be signalled. 

The PL/I stack is maintained for each user as a 
series of contiguous frames (block activation records) 
within a single segment. A register is dedicated by the 
system to point at the stack frame of the procedure 
being executed. Multics defines a system-wide standard 
call/return sequence which is relatively efficient. Stack 
frames can be obtained and released by executing a few 
instructions. 

Procedure segments in Multics are normally pure 
and sharable. Access to procedure and data segments is 
set by Multics access control commands and checked by 
the hardware at each instruction and data reference. 
If a user does not have appropriate access to a segment, 
or if any other error such as an attempt to divide by 
zero happens, a machine fault occurs. This fault is 
turned into a PL/I condition (e.g., "accessviolation" 
or "zerodivide") and is signalled by the PL/I condition 
mechanism. All but a few catastrophic errors are han­
dled in this manner. 

Multics provides a default error on-unit which is 
invoked if the user has not established an on-unit for a 
specific condition. In most cases, the default on-unit 
prints an appropriate error message (which may include 
information as to probable causes for the error) and 
calls the command processor to read a command from 
the user's input stream. The stack chain of calls lead­
ing up to the fault is preserved; in many cases the user's 
program can be restarted. 

In Multics there is no real difference between a com­
mand and a program written by the user: both are 
PL/I procedures. Any program written in PL/I follow­
ing command argument· conventions may be invoked 
as a "command". 



508 Fall Joint Computer Conference, 1972 

When the user types a command line of the form 

edit alpha beta 

the Multics command processor searches a specified 
set of directories for a procedure named "edit" and 
issues the equivalent of the PL/I statement 

call edit("alpha", "beta"); 

'rhe procedures found in the system directories are the 
"commands" and utility procedures normally available 
to Multics users. Since the user can change the search 
rules used by the system, he can tailor his own command 
set if he chooses. 

THE IMPLEMENTATION 

The implementation of PL/I in Multics is particu­
larly complete and has few restrictions. 6.7 The only 
omission of any consequence is tasking. The Multics 
implementation allows: 

• arbitrary pointer qualification including chains 
of locators and use of functions as qualifiers. 

• adjustable data with no restrictions. Arrays may 
have any number of adjustable bounds. Structures 
may have any number of adjustable members. 

• operations on aggregates. 
• functions which return values whose length or 

bounds are not known at the time the call is made, 
e.g., returns(char(*» or returns«*) fixed bin). 

• entry variables. 
• recursive procedures at no extra cost. 
• full stream and record I/O. 
• all data types including complex and decimal. 

Since the implementation is so complete, the pro­
grammer does not have to worry about what features 
are or are not available to him. The ability to use the 
full language reduces the amount of code the user has 
to debug by increasing the amount of work handled by 
the run-time support system provided by the compiler. 

The Multics PL/I compiler produces efficient object 
code, even when measured against the best efforts of 
experienced hand coders· using assembly language. The 
availability of a compiler which generates efficient pro­
grams greatly reduces the user's desire to want to 
switch to assembly language for reasons of efficiency. 
This is particularly important in Multics because of 
the richness of the machine instruction set (512 instruc­
tions and 64 types of address modification) and the 
complexity of the system environment from the view 
point of an assembly language coder. 

Multics PL/I makes use of a separate "operator seg-

ment" which contains assembly language coding for 
about 50 commonly used functions such as string mov­
ing, complex multiplication, and the index operator, 
as well as tables of constants for masking, shifting, 
storing characters, etc. This segment is shared by all 
PL/I programs. Communication with the operator 
segment is by means of a work area in a standard posi­
tion in each stack frame. The operator segment is en­
tered by a short sequence of instructions which loads 
certain machine registers with parameters and then 
jumps directly into the operator segment at a known 
location. The use of the operator segment reduces the 
cost of PL/I programs by reducing their size and by 
reducing paging activity. 

If a begin block or internal procedure block does not 
declare any automatic variables with adjustable bounds 
or sizes and can only be entered by first entering its 
parent block, then the block is said to be "quick". The 
Multics PL/I compiler does not use a separate stack 
frame for such blocks. Instead, they share the stack 
frame of their parent block. The overhead of calling a 
quick block, exclusive of the cost of preparing the argu­
ment list, is only three instructions: one each at call, 
entry, and return. The cost of a quick procedure is also 
reduced because automatic storage in the parent block 
can be addressed directly. 

The availability of a really inexpensive mechanism 
for internal procedures means that users can write them 
without having to concern themselves with efficiency. 
The artifice of using label variables and goto statements 
so that a block of code can be executed efficiently from 
a number of places is not necessary. 

The compiler makes no restrictions on the format of 
structures. This is important, since programmers can 
choose a structure description that is appropriate for 
the problem they are trying to solve without having to 
consider its acceptability to the compiler. However, it 
is possible for a user to specify a structure which causes 
the compiler to generate very expensive accessing code. 
There are a few "common sense" rules users can follow 
if they are concerned about the efficiency of their pro­
grams. 

Extensive error checking is done during compilation; 
there are nearly 500 possible error messages. Except for 
a few cases of multiple, related errors within a single 
statement the Multics PL/I compiler normally finds 
most errors in a single run. It is infrequent that a user 
will correct a set of source errors and recompile his pro­
gram only to receive another batch of error messages. 
Errors are reported on the user's console as they are 
discovered; the printed message normally includes the 
source for the offending statement. 

The listing generated by the compiler is designed to 
be printed by a high-speed line printer but is formatted 



Debugging PL/I Programs in the Multics Environment 509 

so that items of interest to the user can be easily located 
in the listing segment by inspecting it with an on-line 
editor. The user can control the amount and level of de­
tail of information placed in the listing. 

DEBUGGING FACILITIES 

Multics provides a number of special commands 
which aid user debugging. There is a powerful break­
point debug command, a facility for tracing procedure 
calls, and tools which help the user determine the operat­
ing characteristics of his programs. There are several 
options that the user can specify when he uses the PL/I 
compiler to cause it to generate additional information 
for use by debugging commands. Of these, only the 
"profile" option causes any change in the code gen­
erated by the compiler. 

The run-time symbol table 

The PL/I compiler and the system debug command 
cooperate to allow the user to debug his program sym­
bolically. The compiler normally generates a run-time 
symbol table only if "get data" or "put data" state­
ments are used in the source program. The compiler 
can be instructed, however, to generate a "full" symbol 
table which includes all identifiers in the source pro­
gram. 

Each entry in the run-time symbol table describes an 
identifier in the user's program giving its name, storage 
class, location, size, bounds and other information 
needed to access the identifier. Information is available 
about the block in which the identifier is defined as well 
as its relationship to other members of the strucutre to 
which it belongs. 

The run-time symbol table facility is much more 
powerful than it needs to be just to support data di­
rected I/O. 

• Parameters, defined, and based variables can all 
be represented in the table. When a variable is de­
clared based on a specific pointer, e.g., "dcl a 
based(p)", information is kept which allows the 
address of that pointer to be obtained at run-time. 

• The size, offset, bounds, multipliers, or virtual ori­
gin of any identifier can be any arbitrary expres­
sion. This is necessary for the representation of 
based variables. 

• .References to identifiers in the user's program from 
data directed input or from requests to the system 
dehugger need not be fully qualified. The same 
algorithm used by the compiler to resolve partially 
qualified names is also used by the support program 
which searches the run-time symbol table. 

print blowup.pl1 

blowup: procedure; 

dcl (j,a(10}) fixed binary, 
loop_index fixed binary external static, 
recoverY_label label variable external static, 
sysprlnt fi Ie; 

recoverY_label = thru; 

do loop_index = -1 to -100000 by -Ii 
j = a{loop_index}; 
end; 

thru: put skip list("l oop index = ", loop_index}; 
put skip; 
end; 

r 2127 2.205 

pll blowup table 
PL/I 

UAfH-l I NG 307 
The variable "a" has been referenced but has never l1een set. 
r 2128 5.516 

blowup 

Error: out_bounds_err by blowupllOO 
referencing stackl777777 
r 2129 2.474 

debug 
/b I owup/100& t, s 

j = a(loop_index}; 
loop_i ndex 

450 -1209 
.Q 
r 2131 3.544 

Figure I-The PLjI condition mechanism is used for most errors, 
including those defined by Multics. In this example, the program 
generates a fault by looping until it runs off the front of the stack. 
The default error on-unit prints the location at which the fault 
occurred (100 in blowup) and the location being referenced 
(-1 in the stack). The program was compiled with a run-time 
symbol table, so the Multics debug command may be used to 
print the source for the line in which the fault happened. The 
request syntax accepted by debug is designed to minimize typing: 
the request specifies segment blowup, location 100 in the text 
section, and source line output. The value of a variable may be 
obtained merely by typing its name; the response gives the 
address of the variable (450 in the static data segment) as 

well as its value ( -1209). 

The run-time symbol table is generated at the end of 
the object segment and is shared by all users of the seg­
ment. If it is not used during execution, there is nQ over­
head required to support it: the pages it occupies will 
not be brought into core memory; no code is required 
to initialize it. After the program has been debugged, 
the run-time symbol table can be eliminated from the 
object segment without having to re-compile it. 

The compiler will also generate a "map" of the ob­
ject program when a full symbol table is requested by 
the user. This map is a table, placed at the end of the 
object segment, giving information about the location 
in the object segment of each source statement. Tbtl 
availability of this table means that the user can refer 
to his object program by source line number, e.g., to 
set a breakpoint at a specific line number. Similarly, 



510 Fall Joint Computer Conference, 1972 

the system debugger can tell him the line number cor­
responding to a given location in the object program. 
In fact, as is demonstrated in Figure 1, the debug com­
mand can print the source line that corresponds to the 
object location. 

The debug command 

The command "debug" can be invoked at any time; 
for example, after an error condition has been signalled 
for which no on-unit exists. It may also be called di­
rectly from the user's program. It accepts requests from 
the user for actions such as examining some location in 
the virtual memory or printing a trace of the chain of 
calls in the user's stack. It is aware of the different PL/I 
data types, so variables in the object program may be 
displayed in the format appropriate to their type. 

When a program has been compiled with a run-time 
symbol table, the user can refer to it symbolically, 
either with identifiers defined in the program or by the 
line number on which a statement begins. For example, 
if the user's program was dealing with a two-dimen­
sional based array of integers, he could change one of 
the elements in the array by entering the request 

p~x(i+5, j -2) =3 

which takes the form of a PL/I style assignment. The 
addresses of "p", "x", "i", and "j" would be obtained 
from the symbol table. Any of the identifiers in this ex­
ample could be part of a structure. 

The debug command can also be used with PL/I 
programs when a run-time symbol table is not available. 
In this case, the user must refer to the compilation list­
ing of his program in order to determine the location at 
which a variable is stored or at which a given statement 
starts. 

The debug command has other features which let 
the more experienced user examine or alter the values 
in a machine register or display the status of the ma­
chine at the time a fault occurred. These facilities are 
not normally needed if a symbol table is available. 

The debug command also lets the user set conditional 
or unconditional breakpoints in object segments. When 
the breakpoint instruction is executed, the debug pro­
gram gains control. If the condition associated with the 
breakpoint is satisfied, a message is printed; at this 
point the user can enter requests to debug. One of the 
actions available is to continue execution from the 
point of the break. The user may associate with each 
break a set of debug requests which are to be automat­
ically executed whenever the break is encountered; thus, 
for example, the user might use the break mechanism 
to "insert" a (very simple) PL/I assignment state-

blowup 

Error: ou t_bounds_err by b Im/upll00 
referencing stackl777777 
r 2134 1.057 

hold 
r 2134 .211 

edm f i x.pll 
!)egment not found. 
Input. 
fix: procedure; 

dcl loop_index fixed binary external static, 
recovery_label label variable external static; 

loop_index = 12345; 
goto recovery_label; 
end; 

Ed It. 

q 
r 2135 1.789 

pll fix 
Pl/I 
r 2135 3.732 

fix 

loop index = 
r 2135 1. 724 

12345 

Figure 2-When a fault occurs, the complete status of the 
executing program may be preserved. The "hold" command 
causes Multics to retain the chain of stack frames (block activa­
tion records) up to the current frame until the user issues an 
explicit "release" command. In this example, the user inputs and 
compiles a small procedure to fix up the loop index that caused the 
bounds violation in the example of Figure 1. The program blowup 
is reactivated by a non-local transfer of control to the external 
label variable and completes normally. The same change of the 
loop index and re-start of blowup could also be done using only the 

debug command. . 

ment into his program. There is a mode of execution 
available with debug which lets the user run his 
program one PL/I statement at a time. 

An object program may have more than one break 
set in it; similarly, more than one program may have 
active breakpoints. Facilities are available in debug for 
listing and altering breaks. Setting a break involves 
changing the object program, so breakpoints remain 
active until explicitly removed by the user. Breakpoints 
should not be used when other users are sharing the seg­
ment. 

There is an "escape" facility which causes debug to 
pass the line typed by the user to the Multics command 
processor instead of treating it as a request. This is 
a very powerful feature since it allows the user to in­
voke any series of Multics commands (or any of his 
own programs) without having to leave the debug com­
mand. He could, for example, run a special program to 
display· the values of the static variables used by the 
program he is trying to debug. If he did not have such a 
program, he could input it, compile it, and test it while 



Debugging PL/I Programs in the Multics Environment 511 

preserving the complete status of the program he was 
originally debugging. 

The ability to "escape" back to the full Multics sys­
tem to execute any series of commands is generally 
available in any command such as the editor that inter­
acts with the user. As is shown in Figure 2, the "hold" 
command may be used to preserve the execution envi­
ronment after a fault. 

The trace command 

The command "trace" lets the user monitor all calls 
to a specified set of external procedures. Trace modifies 
the standard Multics procedure linkage mechanism so 
that whenever control enters or leaves one of the pro­
cedures specified by the user, a debugging procedure is 
invoked. The arguments given to the debugging pro­
cedure by trace enable it to obtain the values of the 
arguments and return point of the procedure being 
called. The user can also provide his own debugging 
procedures instead of the one supplied as a default by 
the tracing package. 

print (trev rev).pll 

trey: proc(string); 

dcl string char(*) unal, 
rev entry(char(*» returns(char02) varying); 

put skip lIst(rev(strlng»; 
put skip; 

end; 

rev: proc(strlng) returns(char02) varying); 

dcl string char(*); 

i = index(strlng," II); 
if i = 0 then return(string); 
else return(rev(substr(strlng, I» II " " II substr(strlng, 1, I»; 

end; 

r 2131 4.164 

trey "now is the time" 

Fatal error. Process has terminated. Uut of bounds fault on user's stack. 
flew process created. 
r 2131 3.712 

trace rev 
r 2131 .578 

trev"now is the time" 
Call 1 of rev from trevl1l7 
ARli 1 = "no.l is the time" 
Call 2 of rev from revll06 
ARG 1 = " is the time" 
Call 3 of rev from revll0li 
ARG 1 = "·is the time" 
QUIT 
r 2132 2.428 

Figure 3-The flow of control in to and out of any external 
procedure may be monitored with the Multics debugging pro­
cedure trace. In this example, trev is a driver program which calls 
procedure rev to reverse the words in a string specified by the 
user when trev is called. rev is coded as a recursive procedure; it 
contains a bug which causes infinite recursion. The "fatal error" 
occurs when there is no room left in the stack segment for a new 
frame. The reason for the infinite recursion becomes obvious 

when trace is used. 

The action taken by the default trace debugging pro­
cedure is to print a message on the user's console when­
ever control enters or leaves one of the procedures being 
traced. There are a number of options which the user 
can specify to request such actions as printing the argu­
ments (at entry, exit, or both) or stopping (at entry, 
exit, or both). The user can control the frequency with 
which the tracing message is printed, e.g., every 100 
calls after the 1000th call. He can also specify the maxi­
mum recursion depth he wishes to see. The user can also 
request that the tracing message be printed only if the 
contents of some specified location in the virtual mem­
ory has changed. The default trace debugging procedure 
"stops" the execution of the user's program by calling 
the debug command; this makes all of the facilities of 
debug available to the user. An example of the use of 
trace is presented in Figure 3. 

The user may start tracing a procedure at any time, 
even if it has already been executed. Tracing may be 
removed at any time; subsequent calls of the procedure 
will execute normally. Any procedure which uses the 
standard Multics calling sequence may be traced with­
out interfering with other users who may be sharing the 
segment. 

Determining program efficiency 

The two debugging packages debug and trace which 
we have just discussed help the user find errors which 
prevent his program from running properly. There is 
another class of errors which are much harder to find. 
These are usually flaws in the program design (or per­
haps in its implementation) which cause the program to 
run correctly but to take much longer to execute than 
it should. Simply locating the largest statement in the 
program or the biggest procedure is not sufficient to 
locate the causes of program inefficiency because that 
statement or procedure may be executed only once; 
the real offender may be some small statement which 
gets executed very frequently. Without detailed knowl­
edge of program flow during execution, instruction 
counts alone are not much good. 

The cost of executing a specified procedure, either for 
a single call or a total of many calls, can be determined 
by using the "meter" option of the trace command. 
This causes trace to read the system clock when control 
enters or leaves the specified set of procedures. The 
clock counts in microsecond steps, so high resolution is 
possible. 

Once a procedure has been found to be inefficient, 
its operating characteristics can be examined by re­
compiling it with the PL/I "profile" option. 8 This op­
tion causes the compiler to generate in the internal stat-



512 Fall Joint Computer Conference, 1972 

ic data area a table which contains an entry for each 
statement in the source program; the table entry con­
tains information about the source line as well as a 
counter which starts out as zero. Each statement in the 
program is modified to start with an instruction to add 
one to the counter associated with the statement. 

Mter running a program compiled with the "profile" 
option, the user can determine the number of times each 
statement in the program was executed. The table entry 
contains the raw cost of the statement measured in in­
structions, so the user can determine both the absolute 
total cost for the statement as well as its relative cost 
compared to other statements. 
A number of different tools have been developed for 
presenting the information available in the profile table. 
Figure 4 shows the source for a small procedure printed 
by a program which computes the percentage of the to­
tal time spent in each statement. Figure 5 shows the 
same profile information presented in another format. 

time_prof i 1 e she 11 

Profile of shell 

LIf~E PEI{CEI~T ~TATEj·IEHT 

1 she 11 : proC<x); 
'1. 
3 del x(*) fixed bin; 
4 
5 del (i,j,k,d,t) fixed binary; 
{) 

7 .0 d hbound (x, 1) ; 
8 
9 .1 down: d 2*divideCd,4,17,0> + 1; 

10 
11 .1 do i 1 to hboundC x, 1) - d; 
12 .8 k i + d; 
13 
14 12.7 up: j k d; 
15 
16 63.3 if x (j > > x(k) 
17 then do; 
18 .'1. t = x{j) ; 
19 .3 x(j) xCk); 
20 .4 x(k) = t; 
21 end; 
22 
23 15.8 if j > d 
24 then do; 
25 3.0 k = j; 
2G 3.0 go to up; 
1.7 end~ 
28 .6 end; 
29 
30 .1 if d > 1 then go to down; 
31 .0 end; 

r 1047 4.5~b 

Figure 4-The execution profile of a Shell sort routine after 
having sorted the descending sequence 999, 998, ... , 0 into 
ascending order. Each statement is labelled with the percentage 
of the total execution time spent in that statement. The profile 
tells us that the algorithm is quite good since unnecessary 

interchanges were not often done. 

print_profile shell 

lll~E STl-1 COUNT COST PROGRAI,I 

7 1 1 
shell 

4 
9 1 6 30 

11 1 6 66 
12 1 500 1500 
14 1 7767 23301 
16 1 7767 155340 
18 1 234 234 
19 1 234 702 
20 1 234 702 
23 1 7767 31068 
25 1 7267 7267 
26 1 7267 7267 
28 1 500 1000 
30 1 6 24 
31 1 1 1 

TOTAL 228506 
r 1048 3.461 

Figure 5-Another presentation of the execution profile of the 
procedure shown in Figure 4. The cost is measured in number 

of instructions executed. ' 

The paging characteristics of a program can be mea­
sured by using the "page trace" facility. The Multics 
paging mechanism maintains a buffer for each user in 
which the system records the segment number, page 
number, and time of occurrence for each of the last few 
hundred page faults taken by the user's process. A com­
mand is available which formats the information kept 
by the system. 

DIFFICULTIES 

As might be expected, there are problems associated 
with debugging PLjI programs in Multics. Most of 
these problems are minor and have the effect of requir­
ing the user to know more about the internal workings 
of Multics than he might otherwise have to know. 

The most difficult problem occurs when a program 
in the user's process commits an error so severe that the 
system cannot continue running the process. An example 
of such an error is using up the entire stack segment 
(perhaps because of unlimited recursion). When the 
system detects an error of this magnitude, it prints a 
message such as: 

Fatal Process Error. Out of bounds fault on user's 
stack. 

and creates a new process, thereby erasing all informa­
tion about the old process. 

This type of error can be very difficult to find,because 
no information is available to the user about where it 
occurred. Future versions of Multics will alleviate this 
problem by allowing the user to retain information 
about the old process. The system will also be changed 



Debugging PLjI Programs in the l\1:ultics Environment 513 

to detect when the user is near the end of his stack; 
when this occurs, a special "stack" condition will be 
signalled. 

COMPARISON WITH OTHER WORK 

PLjC9 and the IBM Checkout Compiler1o are ap­
proaches to the problem of debugging PLjI programs 
in which a special compiler is used during the debug­
ging phase. Extra checking is done at run-time to catch 
programming errors such as the use of undefined varia­
bles. No particular effort is made to generate good ob­
ject code since it is assumed that the program will be 
re-compiled with a production compiler after having 
been debugged with the special compiler. 

An advantage of this approach is that a great deal of 
information about the original source program may be 
preserved at run-time, thus allowing good diagnostics. 
A debugging compiler can often check for errors whose 
detection would be intolerably expensive for a produc­
tion compiler, e.g. a mismatch between a based variable 
and the object identified by the pointer value. The 
Checkout Compiler allows the user to make incremental 
symbolic additions to his program, a very desirable 
feature. 

A disadvantage of using a special complier is that two 
compilers are involved in the debugging process and 
therefore two sets of compiler bugs. Another disadvan­
tage is that meaningful figures on program performance 
are hard to obtain. 

Multics provides a single PLjI compiler which is 
used· by all programmers, whether novice or expert. 
Extra checking (other than that defined as part of the 
PLjI language) is not done at run-time. The run-time 
symbol table and the map of the object program let the 
user refer to his program symbolically. Since a produc­
tion compiler is being used, accurate figures on program 
performance are available. 

A "program" in M ultics often consists of a number of 
separately compiled procedures; the Multics PLjI com­
piler, for example, consists of 181 procedures compris­
ing over 137,000 instructions. Because of the poor run-

I' time performance normally available with. a special 
':1 debugging compiler, it is doubtful whether such a large 

1

,,1'1, collection of procedures could be successfully imple­
mented using a debugging compiler. Since a special com­
pilation is not required for their use, the Multics debug-

I
" ging tools debug and trace may be successfully used in 
I finding bugs in production software. Even if a module 
i could be re-compiled with a debugging compiler, the 
{ resulting object program would not be the same as the 
" one which failed. 
lill' EXDAMSll is a powerful debugging tool which uses 
'II 

a pre-processor to modify the original source program 
before compilation. Calls to special monitoring proce­
dures are inserted at points of interest in the program. 
During execution a record is kept of the complete execu­
tion history of the program. This allows the programmer 
to easily determine the point at which a given variable 
changes, for example. This sort of debugger would be 
useful, even in Multics, when a program is first being 
debugged; its usefulness is limited by the fact that a 
special compilation is required. 

Evans and Darley12 discuss source language debug­
ging of higher-level languages. They present a number 
of principles which they believe are important. The 
Multics debugging commands satisfy most of their 
criteria: 

1. The user has flexible control over the execution 
of his program. The program may be run in steps 
which range from a single procedure call, through 
a single statement, down to a single instruction. 

2. The data being operated on may be examined 
and altered at any time and this may be done in 
the PLjI notation. 

3. The conventions of the debugging language are 
to a large extent designed to minimize typing. 
(It is only fair to point out that the Multics de­
bug command has been accused of being overly 
terse.) 

The area in which Multics falls short of the features 
desired by Evans and Darley is the lack of the facility 
for incremental compilation. 

ACKNOWLEDGMENTS 

The Multics PLjI compiler was designed and imple­
mented by R. A. Freiburghouse, the author, G. D. 
Chang, and J. D. Mills; significant contributions were 
also made by P. A. Belmont, P. A. Green, and A. C. 
Franklin. The Multics debug command was written by 
S. H. Webber. The trace command was written by the 
author. Many other members of the Honeywell and 
M. I. T. staffs, notably M. B. Weaver, D. Bricklin, and 
D. P. Reed, have made important contributions to 
easing the process of debugging PLjI programs in Mul­
tics. 

REFERENCES 

1 E I ORGANICK 
The multics system.~ An examination of its structure 
MIT Press Cambridge Massachusetts 1972 

2 A BENSOUSSAN C T CLINGEN R C DALEY 
The multics virtual memory: Concepts and design 
Comm ACM 15 5 May 1972 pp 308-318 



514 Fall Joint Computer Conference, 1972 

3 R C DALEY J B DENNIS 
Virtual memory, processes and sharing in multics 
Comm ACM 11 5 May 1968 pp 306-312 

4 F J CORBATO J H SALTZER C T CLINGEN 
M ultics-The first seven years 
AFIPS Conf Proc 40 1972 SJCC AFIPS Press 1972 
pp 571-583 

5 M ultics programmers' manual 
Honeywell Document AG90-93 1972 

6 R A FREIBURGHOUSE 
The multics PLjI compiler 
AFIPS Conf Proc 35 1969 FJCC AFIPS Press 1969 
pp 187-199 

7 R A FREIBURGHOUSE 
The multics PLjI language 
Honeywell Document AG94 1972 

8 DE KNUTH 

An empirical study of Fortran programs 
Stanford University Computer Science Department Report 
CS-186 

9 H L MORGAN R A WAGNER 
PLjC:-The design of a high-performance compiler for 
PLjI 
AFIPS Conf Proc 38 1971 SJCC AFIPS Press 1971 
pp 503-510 

10 IBM Systemj360 operating system: PLjI checkout compiler 
IBM form number GC33-0003 1971 

11 R M BALZER 
EXDAMS-EXtendable Debugging and Monitoring System 
AFIPS Conf Proc 34 1969 SJCC AFIPS Press 1969 
pp 567-580 

12 T G EVANS D L DARLEY 
On-line debugging techniques: A survey 
AFIPS Conf Proc 291966 FJCC AFIPS Press 1966 pp 37-50 



Data structures in the extensible programming 
language AEPL * 

by E. MILGROM** 

New York University 
New York, New York 

and 

J. KATZENELSON*** 

Technion-Israel Institute of Technology 
Haifa, Israel 

INTRODUCTION 

The extensible programming language AEPL has been 
designed as a tool for the implementation of a large 
class of problem-oriented languages or languages for 
specific applications. The reason for such a goal is that 
we believe that there exist numerous areas of human 
interest generating problems which can be solved with 
the aid of a computer. We think also that to be able to 
approach these problems using languages which are 
close to the terminology and the methodology of the 
respective areas 'is a significant advantage: it enables a 
user to think in familiar terms and it liberates him 
from the burden of extraneous detail. This has been 
the reason for the uneconomic proliferation of a large 
number of programming languages, each more or less 
well adapted to the solution of a particular class of 
problems (see for instance Sammet's book18 for a sur­
vey of a number of problem-oriented languages). Ex­
tensible languages propose to cover wide areas· of 
application at lesser cost and greater convenience. A 
detailed description. of a large number of current exten­
sible languages and systems can be found in·a report 
by Solntseff,21 together with an extensive bibliography 

* Based in part on a thesis submitted by the first author to the 
Faculty of Electrical Engineering of the Technion in partial 
fulfillment of the requirements for the degree of Doctor of Science 
in Technology. 
** Presently with the Department of Applied Mathematics, 
University of Louvain, 3030 Heverlee, Belgium. 
*** On sabbatical leave at the Department of Electrical Engineer­
ing and. Computer Sciences, University of California, Berkeley, 
California 94720. 

515 

of the area. Many extensible language schemes have 
been described in detail.2- 5,7 ,9,10,16,19 

At the present time, we do not believe that the exist­
ing extensible languages can reasonably claim to re­
place all existing general-purpose and special purpose 
languages, mainly for reasons of efficiency. We concede 
therefore that the usefulness of AEPL will be greatest 
for application areas which do not warrant the cost of 
a specially written compiler and where the matter of 
efficiency is relatively unimportant. Another possible 
use of AEPL is during the design phase of a new appli­
cation language: AEPL provides a rapid and cheap way 
to experi~ent with different versions of a proposed 
language. 

We believe that the major innovations present in 
AEPL are the treatment of sets, used to create data 
structures and to define new data types, and the use of 
a powerful syntax description mechanism derived from 
the Markov Algorithm. We think also that most of the 
power of the system stems from its particular archi­
tecture and the concept of a special machine or pro­
cessor which embodies the semantics of the language. 

In what follows, we give a description of the data 
structure concepts of AEPL and we show how these 
concepts are used to create complex data structures 
and new types of data elements. A complete descrip­
tion of the language can be found elsewhere.15 

The next section of this article presents some of the 
design objectives of AEPL; the following one describes 
in general terms the overall model of the AEPL system. 
Finally, the last section discusses the data structure 
concepts and the semantics of the data definition fa­
cility. 



516 Fall Joint Computer Conference, 1972 

GENERAL DESIGN OBJECTIVES 

During the design phase of AEPL, we tried to remain 
consistent with a number of general concepts and 
ideas which we discuss in this section. 

Extensibility 

The three main aspects of extensibility which we set 
out to provide were the ability to define new types of 
data items and new operations on old or new data 
items and the possibility to modify extensively the 
syntactic frame of the language. The AEPL system 
was designed so as to present itself to the users as a 
language, sometimes called core or kernel language, 
which includes a number of basic data types, a number 
of operators for these data types and a syntactic frame 
within which one can describe sequences of operations 
on data, i.e., programs. The core language includes 
also the tools which enable one to modify these basic 
constituents and create 'extended languages'. Note, 
however, that the adjective 'extended' does not nec­
essarily imply addition of features to the core language: 
one can use the extension mechanisms to produce a 
language which is less rich than the kernel by deletion 
of undesired features. 

Minimality 

In the design of an extensible language, one is tempt­
ed to limit the number of primitive language features 
to the bare minimum and to rely on extensibility for 
the creation of useful languages from the original core 
language. While the precise definition of a minimum 
set of features is a problem in itself, it is clear that the 
emphasis on minimality leads to kernel languages which 
are so primitive and involuted that their use is difficult: 
they have to be drastically extended in order to be of 
any practical use. 

The design of AEPL is a compromise between a de­
sire to keep the number of features of the kernel as low 
as possible and the requirement that the language be 
a fairly convenient programming tool. 

Generality and completeness 

Rather than to emphasize minimality, our approach 
has been to try to limit the number of primitive con­
cepts, not the number of built-in language features. 
For that purpose, we tried to isolate a few very general 
ideas regarding data structures and syntax and to im­
plement them in a language which would respect the 
concept of completeness as expressed by Reynolds :17 

any value or class of values which is permitted in some 
context of the language should be permissible in any 
other meaningful context. This makes the langauge 
very regular: the number of special cases and particu­
lar conventions is greatly reduced. We believe that 
this is an important feature for an extensible language, 
since it reduces the number of possible inadvertent 
violations of the language rules. 

THE MODEL 

The AEPL system is composed of three parts: 

• a core language, 
• a processor, 
• a translator. 

1. The AEPL core language is a relatively small 
language which resembles Algol 60 in the sense 
that it includes a number of basic expression 
and statement forms (including declarations) 
and that the name-scoping of its variables is 
governed by an Algol-like block-structure. It 
differs from Algol 60 in the following aspects: 

• the primitive data items manipulated in 
AEPL are not the integer numbers, real 
numbers, arrays, etc., of Algol 60, but so­
called t-values and objects as described be­
low; 

• the AEPL core language contains a data 
definition facility which enables the user 
to define and manipulate new data struc­
tures; 

• the AEPL core language includes a num­
ber of facilities for modifying its own trans­
lator, thereby allowing an extensive syn­
tactic variability. 

2. The AEPL processor is a machine which oper­
ates on data structures . of a particular kind, 
namely executable data structures called pro­
grams. Programs may be created and operated 
upon by the user in the same way as any other 
data structures. Programs are distinguished 
only by the fact that if the AEPL processor is 
applied upon them or, more precisely, if con­
trol is transferred to a program data structure, 
a number of actions will be performed by the I 

processor. 
The AEPL processor recognizes 63 different 

kinds of programs, i.e., the processor is a ma- I 

chine with a repertoire of 63 different instruc-



Data Structures in Extensible Programming Language AEPL 517 

tions. It is possible to combine a number of such 
programs into a compound data structure; con­
trol can then be transferred to this structure 
and the processor will then execute the different 
actions specified by the individual programs in 
a well-dB fined order. 

3. The AEPL translator is a program for the AEPL 
processor whose purpose is to transform an in­
put string of characters into another data struc­
ture according to the rules of a special kind of 
grammar. At certain points of the translation , 
control may be transferred from the translator 
program to certain parts of the generated struc­
ture, thereby yielding "execution" of the trans­
formed text by the processor. 

The AEPL translator is composed of a lexi­
cal scan and a parsing phase. The parser con­
sists of a parsing algorithm derived from the 
Markov Algorithm 8 ,11-13 and a modifiable gram­
mar which 'drives' the algorithm.. The source 
text submitted by a user may contain state­
ments whose execution affects the grammar by 
addition or deletion of rules. This feature is used 
to modify the syntax of the language: one may 
add new operators, new kinds of expressions, 
new types of statements dynamically' it is also 
possible to redefine (overload) or delete existing 
language structures. 

4. In conclusion, one may view the AEPL system 
as consisting of a program (the translator) exe­
cuted on a special machine (the processor). The 
translator transforms the input into several 
data structures. A certain number of those data 
structures can be interpreted as instructions for 
the processor and control can be transferred to 
them. If the input contains the appropriate 
command, the execution of the corresponding 
data structures by the processor will modify the 
translator: the language will have been extended. 

The translator program is present in the mem­
ory of the processor together with the generated 
data structures unless those have been deleted 
by specific commands. Thus, at any instant of 
time, the "run time environment" of a user's 
program consists of the whole AEPL system 
augmented by the programs which were exe­
cuted in the past and the data structures re­
sulting from the execution of those programs. 
This approach is similar to that of languages 
such as LISP and BALM.9 

Since the processor is implemented concep­
tually as a program executed on an existing 
computer, the AEPL system can be considered 
to be interpretative. 

DATA STRUCTURES 

Principles 

One of our aims has been to create in AEPL a simple 
bu~ general data definition and manipulation facility 
WhiCh would allow us to handle a wide class of data 
structures. This facility should be powerful in order 
t? ena?le the user to define complex data organiza­
tIOns; It should however be simple enough to under­
stand and to use. This last point required that the data 
structure facility be baSed on a small number of well­
chosen primitives. 

Another design decision which has been made re­
garding AEPL is the total separation between data 
structures as conceptual organizations of data and 
storage structures or representations of data structures 
in memory. At present, the user is provided with a 
flexible data structure manipulation system, but he has 
~o control over the way the structures are represented 
m memory. 

I t is clear that an algorithm can be specified and 
checked out for logical flaws without reference to mem­
ory representations. Indeed, when a complex algorithm 
is designed, it is common practice to clear the main 
issues and to avoid excessive detail by specifying the 
?ata structures first and postponing decisions regard­
Ing memory structures to a later stage. On the other 
hand, it is certain that the efficiency of any algorithm 
depends on the memory representations of the data 
structures. Therefore, in its current form, AEPL is a 
tool which is useful in the first stage of the design of 
algorithms. Using AEPL, one can verify and debug an 
algorithm in terms of its logic rather than in terms of 
its storage structures. Mter the debugging phase, how­
ever, it may be necessary to modify the default storage 
structures in order to increase the efficiency of the al­
gorithm. At this stage, it is certainly easier to experi­
ment with new storage structures, since one is at least 
almost certain that the logic of the algorithm is correct. 

A complete programming system such as the one 
we aimed. at should also provide means for controlling 
and .checkmg the memory representations. This requires 
an l,mplementation specification language which would 
allow the specification of storage structures by addition 
of statements to a program rather than by the modi­
fication of the program. This idea is not new: it has 
been proposed by Balzer,! Schwartz,2 and Earley 6 

among others. 

Basic data elements 

There are two kinds of data elements in AEPL: t­
values (terminal values) and objects. Both kinds are 
strongly interrelated. 



518 Fall Joint Computer Conference, 1972 

-t-values are entities which can be used as values 
(in the sense described below) of attributes of 
objects. Examples of t-values are integer num­
bers, character-strings, sets of integer numbers. 

-Objects are entities to which six t-values are 
associated in the following way: we say that an 
object possesses six attributes, named respec­
tively: 

name-, value-, mode-, type-, scope-, and 
rule-attribute. 

Each attribute may possess a value, which is necessari­
ly a t-value. If an attribute of an object possesses no 
value at some point in time, it is said that its value is 
undefined. It is possible to inquire about the value of 
any attribute of any object, and to modify that value. 

Another way of looking at this would be to say that 
one object describes particular relationships between 
the six t-values which are the values of its attributes. 
The nature of these relationships will be explained be­
low. 

T-values 

The AEPL system provides the following kinds of 
t-values: 

-atomic t-values: integers, reals, character­
strings, labels and references; 

-compound t-values or, in our terminology, sets: 
-explicit sets or E-sets, 
-conceptual sets: C-sets, R-sets, P-sets, U-sets, 

I-sets, F-sets and primitive sets. 

The primitive sets are: 

-the set of all integer t-values, 
-the set of all real t-values, 
-the set of all character-string t-values, 
-the set of all label t-values, 
-the set of all reference t-values. 

Although the term "set" is used, the concept is not in 
every case the same as the one used in mathematics. 
Some of the AEPL sets are ordered and may contain 
the same element many times; other sets (e.g., the 
primitive sets) correspond precisely to the mathemat­
ical notion of set: an unordered collection of distinct 
elements. 

Classes of t-values 

The set of all integer t-values is sometimes called 
the class of all integer t-values; similarly, the other 

primitive sets are primitive classes. The term "class" 
is used for a set which specifies the "kind" or "type" 
(in the Algol 60 sense) of a t-value. The primitive 
classes are available in the kernel language; other 
classes can be formed by means of the extension facili~ 
ties. In fact, any set can be used in AEPL to define a 
class of t-values (see below). 

Among the five primitive classes, only the class of 
reference t-values needs further explanation. 

References 

A reference is a t-value which designates an object 
in a unique way. One of the ways to gain access to the 
attributes of an object is by using a reference to that 
object. We do not concern ourselves with the imple­
mentation of such references: the important fact is that 
for every reference t-value there exists one and only one 
object which is referred to by that t-value. The refer­
ence concept is a generalization of the pointer concept 
which does not imply any particular implementation. 

Sets 

As mentioned above, a set, in AEPL, is a collection 
of t-values which is itself a t-value. Sets are used: 

-to create aggregates of t-values, 
-to define new classes of t-values. 

AEPL distinguishes between two kinds of sets: explic­
it sets and conceptual sets. 

An explicit set is a finite ordered collection of t-values 
which are effectively present in the system. Such sets 
correspond to the usual programming concepts of vec­
tor, list or sequence. An example is the explicit set com­
posed of the integer t-values one, two and three, in that 
order. 

A conceptual set is a collection of t-values which is 
defined implicitly. It may be finite or infinite, ordered 
or unordered. Such a set is defined by a predicate: it 
consists of all the t-values for which the predicate is 
true. In mathematical notation: 

{x I P(x)} 

An example is the set of all integer t-values, or the set 
of all character strings beginning with the letter A, or 
the set of all prime numbers smaller than 100. Sets are 
described in greater detail below. 

Other classes of t-values 

There are a number of classes of t-values which are 
not primitive classes, but which are used within the 



I 
'I: 
I: 

1,,\1 

" 

Data Structures in Extensible Programming Language AEPL 519 

translator program. Because of the model described 
above, the data structures of the translator are accessi­
ble to the user. Among other structures, the translator 
for the core AEPL uses a number of classes, called 
built-in classes, which define domains of t-values which 
may be of interest to the user: these classes are built 
in terms of the primitive classes in the same way that 
user-defined classes are constructed. Among these built­
in classes is the class of all identifier t-values (charac­
ter-strings beginning with a letter and containing only 
letters or digits) and the class of program t-values (ex­
plicit sets which can be interpreted as commands to 
the AEPL processor). 

Objects and their attributes 

Objects are entities to which six t-values are asso­
ciated: one object describes specific relationships be­
tween these t-values, which are said to be the values of 
the attributes of that object. We describe here the roles 
of the attributes of an object. ' 

The attributes of an object 

The name-attribute 

The value of the name-attribute of an object or, for 
short, the name of an object, is a t-value belonging to 
the class of identifiers: it may be used to refer to an ob­
ject in the same way as a reference t-value. An identifier 
is thus associated with an object through the name­
attribute of that object. Many objects may have the 
same identifiers as value of their name-attribute, but 
at every point in time a given identifier may be used 
to refer to only one of these objects. The choice of the 
object which is referred to by a given identifier is 
governed by the name scoping rules which depend on 
the block structure of the text submitted to the trans­
lator. 

The value-attribute 

The value of the value-attribute of an object or, 
again for short, the value of an object is a t-value whose 
class is defined by the mode-attribute of the object 
(see below). This attribute is closely related to the 
usual concept of value of a constant or of a variable in 
other programming languages. 

The mode-attribute 

The value of the mode-attribute of an object a is 
a reference to an object {3 whose value is a set of t-

values to which the value of a belongs. The value of {3 

thus defines the domain of the values of a or their class. 
For short, we say that {3 is the mode of a or that object 
a possesses mode {3. 

The reason for the existence of the mode-attribute 
is simply to allow the association of a meaning with 
the internal representation of the value of an object. 
The mode of an object a will indeed indicate whether 
the value of a is an integer t-value, a reference, a set, 
and so on. The corresponding Algol 60 concept is that 
of type of a variable; the name "mode" has been cho­
sen because of the similarity with the Algol 68 22 idea. 
Another purpose for the mode-attribute is its use, simi­
lar to that of syntactic type, during the parsing process. 
The modes of the objects involved in the parsing play 
indeed an important role in the selection of the gram­
mar rules which must be applied to transform the in­
put string into the parse tree. 

The type-attribute 

The type-attribute of an object can possess two 
values which indicate whether the object' is a variable 
or a constant. An object is variable if the set of possible 
values for that object contains more than one element; 
otherwise it is constant. Clearly, one could. indicate 
that an object a is constant by having its mode be a 
reference to an object {3 whose value is a set with one 
elem~nt, namely the value of a. However, it is usually 
preferable not to use this device; it is more appropriate 
to distinguish between a variable object whose value 
is the integer t-value seven and a constant object whose 
value is the integer seven by means of the type-attri­
bute. The mode-attributes of these two objects could 
then both be a reference to an object whose value is 
the set of all integer t-values. 

The scope-attribute 

The scope-attribute of an object can possess three 
values denoted GLOBAL, LOCAL and DUMMY which 
define the scope of the relationship between the object 
and the identifier which is the value of its name-attri­
bute.15 ,16 

The rule-attribute 

The purpose of this attribute is related to the gen­
eration of program t-values by the parsing process.15 ,16 
The value of the rule-attribute belongs to the built-in 
class of program t-values. 



520 Fall Joint Computer Conference, 1972 

Primitive objects 

To all primitive classes correspond built-in primitive 
objects. We thus have an object whose name is INT 
and whose value is the class of all integer t-values. The 
mode of this object has to indicate that its value is a 
primitive class: this is achieved by having the mode of 
object INT be a reference to a special object known 
to the system as the object whose name is PRIMI­
TIVE and whose value is the set of all primitive class­
es. The value of the mode of PRIMITIVE is un­
defined. (The program which operates on the data 
structures recognizes the name PRIMITIVE.) 

An example 

Figure 1 illustrates, through a schematic represen­
tation, the relationships among three objects. The ob­
ject A, i.e., the object whose name-attribute has the 
identifier A as value, has as other attributes: 

-the value is the integer t-value twenty-seven 
(the dotted line is used to indicate this), 

-the mode is a reference to the object INT, 
-the type is the t-value indicating that A is a 

variable, 
-the scope is the t-value indicating that the asso­

ciation of the identifier A with this object is 
global, 

-the rule is irrelevant (its value is either unde­
fined or not important in this context). 

Sets-detailed description 

Explicit sets 

An explicit set or E-set is a finite ordered collection 
of t-values. It corresponds to the usual notions of vec­
tor, list or sequence. Every member of such a collection 

Name 

Value 

Mode 

Type 

Scooe 

Rule 

.....- A 

r ---.. 
.-I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

VARIABLE 

GLOBAL 

'-'" 
.-' 

" 
27 

--i. .I.. .,.... 
INT .......... - -
--

CONSTANT CmlSTANT 

GLOBAL GLOBAL 

~ ....... -' -

Figure 1-The objects A, INT and PRIMITIVE 

is called a component. E-sets may be used to create 
aggregates of data or to define new classes of t-values. 

The basic operations on E~sets are: 

-selection of a component by ordinal position 
or by name (retrieval or storage of a value), 

-addition or removal of a component, 
-selection of a subset, 
-test for membership, 
-finding the number of components, 
-concatenation of two E-sets. 

The language possesses a notation for constant E-sets, 
e.g., 

E{1,2,'ABC,'E{3,4} } 

which denotes an E-set of four components, the fourth 
of which is itself an E-set with two components. 

One can define other operations on E-sets in terms of 
these basic operations by means of the syntactic exten­
sibility mechanism of the language. 

If one wishes, for instance, to introduce unordered 
finite sets of distinct elements, one can do so easily by 
representing these sets as E-sets and by ignoring the 
ordering relation among the components. At least two 
basic operations must however be redefined: 

-the test for equality between two sets must ig­
nore the ordering, 

-the addition of an element to a set must verify 
that the element is not yet a member of that set. 

Other operations on unordered sets (union, intersec­
tion, power set, and so on) can then be written in terms 
of the basic operations. Unordered sets of ordered pairs 
may be used,as in SETL,20 to represent mappings; 
functional application can then be easily defined for 
such mappings. 

E-sets can be used to define new classes of t-val­
ues by enumeration. For instance, the set E{'1','3','5', 
'7', '9'} could be used to define the class of odd digits. 
Similarly, the set E{1,2,3,5,7,11,13} could be used to 
define the class of prime integers smaller than 15. 

Conceptual sets 

A conceptual set is a set defined by a predicate. Such 
a set is not present in the system under the form of a 
collection of t-values: it is present purely by convention 
as the set (in the mathematical sense) of t-values for 
which the predicate is true. A conceptual set is thus a 
collection of t-values defined by a certain common prop­
erty. These sets are represented in AEPL by descriptions 



I 

Data Structures in Extensible Programming Language AEPL 521 

of the properties of their elements rather than by a list 
of their elements. Since such a description is usually 
composed of several elements, AEPL represents a de­
scription by an E-set. The description of a conceptual 
set may be stored in the value-attribute of an object; 
the mode of that object will indicate that its value may 
be interpreted as the description of a conceptual set. 

The primitive sets are conceptual sets corresponding 
to the primitive classes of AEPL: they exist in the sys­
tem as the values of the primitive objects INT, REAL, 
CHAR, LABEL and REFERENCE. Other conceptual 
sets belong to one of the following categories: 

C-sets, R-sets, P-sets, U-sets, I-sets and F-sets. 
The reason why there is more than one kind of con­
ceptual set besides the primitive sets is simply one of 
ease of programming: it is not always convenient to 
represent a set by a general predicate; certain particular 
cases deserve special treatment. 

The basic operation involving conceptual sets is the 
test for membership. 

C-sets 

According to the functions of the attributes described 
above, if an object 01. has an E-set as value (i.e., as value 
of its value-attribute), then the mode of 01. should be a 
reference to an object {3 whose value is a set of E-sets, 
namely the class to which the value of 01. belongs. This 
class may be defined by a C-set: a C-set is indeed a 
set of E-sets. Its description is composed of the fol­
lowing five t-values: 

Number-type is a t-value which indicates whether the 
number of components of the E-sets which belong to 
this C-set is variable or constant. 

Number is a t-value which is the number of compo­
nents of the E-sets which belong to this C-set if this 
number is constant (examine number-type to find this 
out); otherwise, this t-value is a reference to a Boolean 
function of two arguments: an integer t-value n and a 
reference to an object 01. whose value belongs to the 
class of E-sets described by this C-set. The function 
returns the value true if and only if the integer n is a 
permitted value for the number of components of the 
value of 01.. 

Component-type is a t-value which indicates whether 
the E-sets belonging to this C-set are homogeneous or 
not. A homogeneous E-set is one whose components 
belong to the same class. 

Component-class is a t-value which . defines the class 
of every component of any E-set belonging to this C­
set in the following way. If the E-sets are homogeneous 
(examine component-type to find this out),then com­
ponent-class is a reference to an object whose value is 

the class to which all the components belong. If 
the E-sets are nonhomogeneous, then this t-value is 
a reference to a function of two arguments: an integer 
t-value n and a reference to an object 01. whose value 
belongs to the class of E-sets described by this C-set. 
The result of this function is a reference to an object 
whose value is the class to which the nth component of 
the value of 01. belongs. 

Names is either undefined or a reference to a func­
tion of two arguments, an identifier id and a reference 
to an object 01. whose value belongs to the class of E-sets 
described by this C-set. The function returns an integer 
t-value n which is the ordinal position of the component 
of the value of 01. whose name is to be id. If no such com­
ponent is found, then the function returns zero. 

Figure 2 schematizes an example in which the ob­
ject PAIR has, as its value, the set of all E-sets with 
two integer components which are unnamed. The values 
of number-type (constant), number (2), component­
type (constant), component-class (a reference to INT) 
and of names (undefined) define this by convention. 
The value of object X (a pair of integers) belongs to 
the class defined by PAIR, so the mode of X is a refer-

Name 

Value 

Mode 

Type 

Scope 
Rule 

r­
I ~----i 
I 
I 
I 
I 
I 

l .... 
"""" .... 

EE 13 

27 

E-set 

,..- INT .......... 

-
. CONSTANT 

GLOBAL 
....... ,..,. 

---... 
CONSTANT number-type 

2 number 

CONSTANT component-type 

component-class 

names 

C-set 

-4RIMITI~ 

CONSTANT 

GLOBAL 

....... ..,.,; -
Figure 2-A possible data structure for an object X whose 

value is a pair of integers 



522 Fall Joint Computer Conference, 1972 

Name 

Value r t-----"----I 
Mode : 1-------4 
Type : 

Scope I LOCAL 

Rule I 

I------~----J to built-in definition 
of PROG 

~~!~ ----+---. 

~I---~~~~r-~--r::::---r==~~~-
program 
t-value 

'--_--'I _,_---' 
Figure 3-A program t-value and its structure 

ence to PAIR. We wish to point out there that the 
schematic representation of an E-set as shown in Fig­
ure 2 does not imply any particular implementation. 

Another example of a class of E-sets can be found in 
Figure 3 which illustrates the structure of program t­
values. 

A program t-value is a particular kind of E-set which 
can be interpreted by the AEPL processor as a com­
mand to perform some actions. The class of program 
t-values is predefined in the AEPL system ;16 the exam­
ple of Figure 3 shows a program t-value composed of 
two components: an operator and an E-set of three 
references to objects A, Band C. The "execution" of 
this structure by the AEPL processor will cause the 
sum of the values of objects A and B (namely the inte­
ger t-value 15) to be stored as the value of the value­
attribute of object C. 

Other conceptual sets 

In order to shorten this presentation, we shall not 
give the complete descriptions of the components of 
the other kinds of conceptual sets here. We shall limit 
ourselves to an informal description of the properties 
of the conceptual sets. 

R-sets (restriction sets) 

R-sets are used to impose a restriction on the elements 
of another set. This restriction takes the form of a Bool­
ean function which specifies which t-values are mem-

bers of the restricted set. In mathematical notation: 

{xeS I ,P(x)} 

Examples of sets defined by means of R-sets: 
-the set of all positive integers, 
-the set of all prime integers, 
-the set of all prime integers smaller than 15, 
-the set of all character-strings 

beginning with the letter A. 

P-sets (property sets) 

This kind of conceptual set is similar to the class of 
R-sets; it defines a subset S' of a given set S by dis­
tinguishing a specific property. This property need not, 
however, be expressed as a predicate; the user must 
nevertheless specify how the property is to 'be used to 
distinguish the elements of the subset. This involves 
modifying the membership operation to perform the 
appropriate actions when testing for membership in 
S'. P-sets are thus an escape mechanism enabling the 
user to design' different kinds of conceptual sets. 

U-sets and I-sets (union and intersection sets) 

These conceptual sets make it possible to define 
classes of t-values as unions or intersections of other 
sets. Examples of sets defined in such a way: 

-the set of all integer and real t-values, 
-the set of all prime integers smaller than 15. 

F-sets (file sets) 

These sets are used to define input-output sequential 
files. 

CONCLUSION 

Itt this article, we have presented an overview of the 
main features of the AEPL system. We have discussed 
in detail the data structure concepts which form 
the basis for the data definition facility of AEPL. Using 
these concepts, a user can create, in a straightforward 
manner, new kinds of data items and aggregates of data. 
Other features of the system enable the user to define 
new operators for any kind of data items and to create 
new language structures such as statement forms. 

Our experience with the language has been limited 
to pen-and-paper coding since the system is not yet 
implemented. A language for the creation and manip­
ulation of linear graphs obtained by extension of the 



Data Structures in Extensible Programming Language AEPL 523 

kernel AEPL is described in detail elsewhere. 15 In 
our opinion, this and other examples show the feas­
ibility and the usefulness of the approach described in 
this paper. 

ACKNOWLEDGMENTS 

We would like to express our gratitude to the following 
people for the numerous and fruitful discussions we 
had with them: Prof. Y. Wallach and Dr. E. Kantor­
owitz of the Technion, Prof. J. Feldman of Stanford 
University, Profs. J. C. Boussard and M. Griffiths of 
the University of Grenoble and Messrs. S. Schuman 
and P. Jorrand of the IBM Scientific Center in Greno­
ble. 

REFERENCES 

1 R M BALZER 
Dataless programming 
Proc AFIPS 1967 FJCC pp 535-544 

2 J R BELL 
The design of a minimal expandable computer language 
Doctoral dissertation Stanford University 1968 

3 T E CHEATHAM Jr 
The introduction of definitional facilities into higher 
level languages 
Proc AFIPS 1966 F JCC pp 623-637 

4 T E CHEATHAM Jr A FISHER P JORRAND 
On the basis for ELF-An Extensible Language Facility 

. Proc AFIPS 1968 FJCC pp 937-948 
5 C CHRISTENSEN C J SHAW (eds) 

Proceedings of the Extensible Language Symposium 
SIGPLAN Notices 4 (Aug 1969) pp 1-62 

6 J EARLEY 
Toward an understanding of data structures 
Comm ACM 14 10 (Oct 1971) pp 617-627 

7 B A GALLER A J PERLIS 
A proposal for definitions in Algol 
Comm ACM 104 (April 1967) pp 204-219 

8 B A GALLER A J PERLIS 
A view of programming languages 
Addison-Wesley Publ Co Reading Mass 1970 

9 M C HARRISON 
BALM-An extendable list-processing language 
Proc AFIPS 1970 SJCC pp 507-511 

10 E T IRONS 
Experience with an extensible language 
Comm ACM 13 1 (Jan 1970) pp 31-40 

11 J KATZENELSON 
The Modified Markov Algorithm as a language parser-linear 
bounds 
J of Systems and Computer Sciences to be published 

12 J KATZENELSON E MILGROM 
The Markov Algorithm as a language parser 
In preparation 

13 A A MARKOV 
Theory of algorithms 
Academy of Sciences of the USSR 1954 English 
translation by Israel Program for Scientific 
translations 

14 M D McILROY 
Macroinstruction extension of compiler languages 
Comm ACM 3 4 (Apri11960) pp 214-220 

15 E MILGROM 
Design of an extensible progammming language 
Doctoral dissertation Technion-Israel Institute of 
Technology 1971 

16 E MILGROM J KATZENELSON 
AEPL-An Extensible Programming Language 
In preparation 

17 J C REYNOLDS 
GEDANKEN-A simple typeless language based on the 
principle of completeness and the reference concept 
Comm ACM 13 5 (May 1970) pp 308-318 

18 J E SAMMET 
Programming languages: history and fundamentals 
Prentice-Hall Co Englewood Cliffs N J 1969 

19 S A SCHUMAN (ed) 
Proceedings of the International Symposium on 
Extensible Programming Languages Grenoble 1971 
SIGPLAN Notices 6 12 (Dec 1971) 

20 J T SCHWARTZ 
Abstract algorithms and a set-theoretic language for 
their expression 
Prelimin~ry draft Courant Institute of Mathematical 
Sciences New York University New York N Y 1970-72 

21 N SOLNTSEFF A YEZERSKY 
A survey of extensible programming languages 
Computer Science Tech Report No 71/7 
MacMaster University Hamilton Ontario 1971 

22 A VAN WIJNGAARDEN (ed) 
Report on the Algorithmic Language ALGOL 68 
Numerische Mathematik 14 (1969) pp 79-218 





The universal consulting language 
alias-The investment analysis language 

by CAROLE A. DMYTRYSHAK 

Bankers Trust Company 
New York, New York 

INTRODUCTION 

IAL (Investment Analysis Language) is a computer 
language which can be used to generate economic fore­
casts, develop data bases with complicated list struc­
tures, analyze results from psychological tests or com­
pare alternative investments. Unfortunately, the label 
"Investment Analysis Language" has really limited the 
number of people who have considered using the lan­
guage. IAL has been developed as a tool for a group of 
internal consultants in order that they can solve these 
problems quickly taking into consideration the types of 
problems they are asked to solve, the tools available 
and their own talents. Unfortunately, since IAL was 
developed for a bank, the label "investment analysis" 
was used in its name. A more appropriate title would be 
the UOL, Universal Consulting Language. Regardless 
of the industry, regressions, statistics and adaptive fore­
casting are performed in the same manner. 

1 am convinced that the use of the Investment Analy­
sis Language is a good way of getting the maximum 
output from a group of internal consultants (i.e., Man­
agement Science, Financial Analysis or Operations Re­
search Group) in the shortest period of time. To illus­
trate my point, I will present the history of IAL, discuss 
the need for developing such a language, explain the 
characteristics of IAL and why they are essential to an 
efficient operation. A specific example of the use of 
IAL at Bankers Trust, the support the language receives 
from the American Bankers Association and future uses 
of the language, will clarify the major arguments. 

THE NEED FOR IAL 

The problems 

Most corporations concentrate a collection of bright 
young men and women in departments such as Manage-

525 

ment Science, Operations Research, Financial Analysis 
and Planning or Corporate Planning. Regardless of the 
formal title, the composition of the group and the prob­
lems it is asked to solve are of the same structure. The 
group is composed of highly paid people who have ad­
vanced degrees in business administration, operations 
research, management science, economics or some other 
related field. 

The problems they are presented with generally have 
the same set of characteristics: 

1. They must be solved quickly. For example, an 
analysis to look at the effect of a change in the 
prime lending rate must be completed and all 
the financial implications reported to the chief 
lending officer of a bank before he gets impatient 
and makes a decision without the benefit of the 
knowledge gained from the study. Because of this 
need for faster solutions, time-shared computer 
systems are one of the tools used by the group. 

2. A request to solve the problem is often a one­
time assignment. For instance, a study on leasing 
747's to an airline is needed only once then the 
leasing group is out looking for new clients. 

3. When performing the analysis, many factors 
must be taken into consideration and these fac­
tors tend to make the problem highly technical 
and complicated. When, looking at a leasing 
problem, we must take into consideration tax 
rates, depreciation schedules, reinvestment rates 
and the resale value of the equipment. It is im:­
possible for even the most skilled analyst to take 
all these factors into account without the use of a 
computer. 

4. The programs developed for the analysis must 
be flexible. Often, after working on a problem, 
the results will lead to other questions. To 
answer these questions another degree of so-



526 Fall Joint Computer Conference, 1972 

phistication must be added to the program and 
quickly. 

5. Similar types of analysis require the same basic 
operations to be performed on different data. To 
analyze financial deals one always performs 
future value or present value calculations. 

As can be seen by these characteristics, it is essential 
that problems be solved quickly. Yet these very char­
acteristics make it twice as hard to solve the problem. 
The organization of the group and the tools used by the 
group are key factors in achieving fast throughput. 

Previou8 8olution8 

There are three basic structures which have been fol­
lowed in organizing a group of internal consultants. 
First, and most expensive, is an all-analyst staff at­
tempting to do their own programming as well as analy­
sis. This is expensive both in terms of salaries and in 
utilization of talent: analysts are generally paid more 
than programmers but are not efficient programmers. 
N or are analysts interested in investing much of their 
time in extensive programming tasks. The other end of 
the spectrum is an all programmer staff to perform 
analysis as well as programming. The only point in 
favor of this method is that programmers are not as 
highly paid as analysts. Programmers are often pres­
sured into giving the user just what he requested in 
terms of printouts but in most cases are not permitted 
to make the in-depth analysis required to solve the 
problem. 

The middle of the road, and most common approach, 
is to have programmers and analysts work together on 
the same problem. This method does work and appears 
very efficient at first glance. However, it breaks down 
because the analysts and programmers communicate 
and operate on two distinct levels. Communication is 
always a problem whenever professionals from two di­
verse fields are assigned to the same projects. 

When the analyst and programmer finally do find a 
basis for communication, they may be creating an un­
necessarily complex and unique solution. The analyst's 
main concern is structuring the analysis to cover any 
contingency. He knows that he is working with an 
expert who has mastered the computer, and, therefore, 
he has no hesitation in requesting revisions to a pro­
gram and adding another degree of complication to the 
study with very little consideration for the marginal 
cost of the revision. If he were told, "We can make 
those changes but it will take three days of reprogram­
ming" he might not find the revisions quite as necessary. 

On the other hand, the programmer is anxious to 

please and may not object to adding another degree of 
complexity to an already complex problem. In most 
cases, the end result is a monster program that has taken 
several weeks or months to develop and is not general 
enough to handle anything but the immediate problem. 

A new 8olution 

In 1968, David M. Ahlers became the head of the 
Management Science Group at Bankers Trust (BTCO) 
and he brought with him the basic modules for the IAL 
system. The idea and the modules for the language had 
been developed over a period of several years while 
Mr. Ahlers had been studying and teaching at Carnegie­
Mellon University. 

Mr. Ahlers wanted to be able to teach financial con­
cepts as applied to real problems without falling into 
the trap of teaching programming. He needed a com­
puter tool that was easy to understand and use. When 
consulting, he could not afford to start from scratch and 
program every phase of an assignment. In order to save 
time in future projects he began to save the routines he 
had written for performing those calculations which 

. were common to most projects. Since he had to work on 
several different types of computers his routines had to 
be easily transferred and basically, hardware inde­
pendent. These needs led to the development of IAL. 
Since the problems faced when teaching and consulting 
are very similar to· those of Bankers Trust's Manage­
ment Science Division it was decided to use IAL ·for 
most projects. Revisions were made to the language and 
it was installed on three different time-sharing systems 
used by Bankers Trust. The user's manual was com­
pleted and later. the language leased to The American 
Bankers Association for distribution to commercial 
time-sharing vendors. 

DESCRIPTION OF IAL 

IAL is a computer-based language consisting of over 
60 functions which can be called on to perform analysis 
in areas ranging from time value of money to adaptive 
forecasting. The language is structured so that users of 
different degrees of proficiency in any area are able to 
use it and in some cases to become quite sophisticated 
with increased use of IAL. 

In the following discussion the hypothetical user is 
never termed "programmer." The principal user should 
be an analyst with specialization in business administra­
tion, economics, finance or some other related field. IAL 
has been designed in such a way that the user does not 
have to know how to program, nor spend a great deal of 
time learning how to use an interactive terminal. 



I 
'i ,I, 

,Ii 

The analyst will find it faster to specify his needs 
directly, using IAL, rather than calling on the services 
of a programmer. Because of this tool the structure of 
the internal consulting group will naturally evolve into 
a group of analysts and perhaps one or two program­
mers. These programmers will be assigned projects re­
quiring expertise in the computer field. 

Based on FORTRAN 

IAL is written in a subset of FORTRAN. This set of 
FORTRAN is composed of the intersection of the 
FORTRAN languages available on commercial time­
sharing when IAL was developed. In its present form 
IAL is very similar to FORTRAN II and contains the 
standard operations of that language. The primary aim 
was to be able to install the language quickly, without 
any major modifications, on any time-sharing system 
which offered FORTRAN. IAL is now provided as a 
service by six different time-sharing vendors. It is run­
ning on computers made by five different manufac­
turers. Installation has not presented many problems 
to date. 

Blocks of commands 

IAL is composed of a set of blocks and functions 
witp.in those blocks. The blocks can be combined in any 
fashion. The functions within each block are related by 
the kinds of jobs they perform. For example, the time 
value of money (TIMEE) block contains all of the 

TABLE I-Blocks of Commands 

Number of 
Block Name Functional Area Commands 

ENTEL Input/Output of data via a terminal, 8 
QTRNK Utility functions for statistical 2 

routines 
ENFIL Save and retrieve data from 5 

permanent storage devices 
ENGRF Graphing data 2 
TDATA Transformation of data 1 
TIMEE Time value of money calculations 15 
INTRR Internal rate of return computations 3 
DEPRE Depreciation and tax credit analysis 4 
QALTS Evaluation of qualitative time series 5 

(lor 2 series) 
QALCP Evaluation of qualitatives time series 4 

(continuation of QALTS) 
CAPBD Capital budgeting and risk analysis 3 
NUMTS . Forecasting of numerical time series 4 
REGRS Correlation and regression analysis 4 
INVRS Inversion of matrices 1 

The Investment Analysis Language 527 

future value and present value commands, the teletype 
input/output (ENTEL) block contains all of the print 
and read commands for the teletype, and the graphing 
routines are in the block ENGRF. The language was 
divided into blocks for two reasons; the time-sharing 
system at that time did not have large quantities of 
core available for the user and it was felt that a user 
would be able to gain a better understanding of the 
commands if they were organized by functional area. 
Table I contains a list of the blocks and their functional 
areas. 

Each command-a function 

Each command in IAL is a FORTRAN function and 
the characteristics of the FORTRAN functions have 
been incorporated into the language. The communica­
tions link between the main program and the various 
functions is the function name and the argument list. 
The function name is used for program control while 
the argument list is for data flow. As an example, com­
mand RELAT was designed to determine if two data 
series are statistically related and if so what is the rela­
tionship. If the user were looking at series A and Beach 
with N points he could execute the following call in his 
program 

CALL RELAT (A, B, N). 

If he wanted to take advantage of the control parameter 
passed through the function name he could nest RELAT 
in QUEST. 

CALL QUEST (1, RELAT (A, B, N». 

QUEST will translate these control parameters and 
display one of the following messages depending upon 
the relationship between the two series. 

THE ANSWER TO QUESTION 1 IS NO 
THE ANSWER TO QUESTION 1 IS YES 

THE 1ST SERIES IS GREATER THAN THE 
2ND 

THE ANSWER TO QUESTION 1 IS YES 
THE 2ND SERIES IS GREATER THAN THE 

1ST 

The command structure gives two advantages: 

(a) The user has complete control of the informa­
tion that is displayed. In many computational 
packages if the user calls the regression com­
mand, the system will print out the coefficients, 
the intercept, the standard deviation, the resi­
duals, the Durban-Watson coefficient and any 



528 Fall Joint Computer Conference, 1972 

TABLE II-I/O Commands 

Name Function Call Statement* 

TTYI Enter 1 value via terminal TTYI (ID, X) 
OUTI Print 1 value on the OUTI (ID, X) 

terminal 
INTTY Enter table, Y, with N INTTY 

rows and M columns (ID, Y, N, M) 
NOUTT Print table Y with N NOUTT 

rows and M columns (ID, Y, N, M) 
SAVE Store on a permanent SAVE 

storage device table Y (ID, IF, Y, N, M) 
with N rows and M 
columns 

NFETCH Retrieve from a perma- NFETCH 
nent storage device (R, IF, Y, M*N) 
table Y with N rows 
and M columns located 
on line J 

QUEST Print out the results of QUEST (IF, FN) 
statistical tests in terms 
the user can understand 

* In the command calls 
ID-the output identification number 
X-variable being displayed or entered 
Y -table being displayed or entered 
N-number of rows 
M-number of columns 
IF -file number 

FN -name of statistical function 
R-Iocation where retrieving is to begin 

other statistic that captured the programmer's 
interest at the time the package was developed. 
This is wasteful since not all users understand 
how to correctly interpret the results. When 
using the regression command in IAL all of the 
relevant statistics are calculated and passed 
to the main program through the argument list. 
The user then has the option to print any of the 
values he feels are needed for the analysis. 

(b) The concentration of the I/O routines in a lim­
ited set of commands has made installation of 
IAL on various time-sharing systems relatively 
easy. It has been found that the execution of the 
I/O commands are the most system-dependent 
operations on any time-sharing system. When 
installing IAL on a new system, the nine I/O 
commands have to be modified but the compu­
tational routines are transferred without further 
modifications. Flexibility was a key ingredient 
to early users of time-sharing systems since 
they were required to make frequent switches 
in services, for one reason or another. 

User works at own level 

IAL always allows the user to work at his own level 
of sophistication-to the extent that he feels at home 
with the language. For example, a user· can call one 
command (SFORM) to look at a time-series to deter­
mine what the forecast for next time period is. This 
command will provide him with the results and these 
results will be dependent upon whether he indicates 
that the series has trend and seasonal components. If 
the user does not know or can not make an assumption 
as to whether the trend or seasonal components exist, 
he can include in the argument list calls to the TREND 
and SONRA commands. 

CALL SFORM (A,12,TREND(A,12),SONRA(A, 
12),B) 

The commands will then set the necessary param­
eters for the SFORM command using statistical tests 
based on a 90 percent confidence interval. If the user is 
more knowledgeable in statistical analysis and would 
like to set up a different set of confidence limits or to 
know the underlying statistics used in determining the 
results, he is able to run the SFORM command and set 
up the necessary parameters 

CALL INTTY (1,A,12,1) 
CALL SFORM (A,12,1.,1.,B) 

He can also descend to another level and use the re­
gression command which is basic to SFORM. 

The use of the I/O commands varies heavily depend­
ing upon the level of the sophistication of the user. The 
user has the option of using the commands to store indi­
vidual lists of data in files or to create data structures of 
linked lists. For instance, in the reporting system for 
BTCo's Corporate Planning model, a directory system 
consisting of three levels is used. This directory is used 
for retrieving data as well as for creating the headings 
and subheadings used by a new report generator. Be- ~ 

cause of the careful design of .the general purpose file 
manipulation commands, the user is given a powerful 
set of tools to handle his storage problems. He can use 
this system for basic storage of data or build a directory 
system for the storage and retrieval of the information. 
At the core of the data storage and retrieval system are 
the two commands SAVE and NFETCH. Their tasks 
are explained by their names. SAVE stores data and 
NFETCH retrieves information stored by the SAVE 
command. 

If the user wishes to store a Table A containing .6 
rows and 3 columns in the file designated as File 2, his 
program would contain the command 



CALL SAVE (1,2,A,6,3) 

When the system executes the SAVE command in 
the user's program, the system will issue the message 

SAVE 1 FILE 2 LINE 1001. 
The line identification (1001.) tells the user the line 

number at which the header items for the save and first 
data element are stored. The line number is used by the 
NFETCH command for retrieving the data. To retrieve 
information the user's program will need the following 
command 

CALL NFETCH (1001.,2,A,3*6) 

From these two simple commands a complicated 
directory system can be developed. To build a simple 
directory of a series of 6 tables, each containing 2 rows 
and 5 columns, the user could write the following pro­
gram: 

DO 1 J=1,6 
CALL INTTY (J,A,2,5) 
B(J) = SAVE (J,1,A,2,5) 

1 CONTINUE 
CALL SAVE(7,2,B,6,1) 

The user will have stored list B containing the line 
numbers of his 6 saves in File 2 and the 6 tables in File 1. 
The portion of a program which automatically retrieves 
the third data series is 

CALL NFETCH (1001.,2,B,6) 
CALL NFETCH (B(3) ,1,A,2*5) 

The user who does not understand the directory con­
cept or does not have a problem complicated enough to 

,,, warrant such sophistication is not hampered by any 
involved system of control codes or options on what to 

I use. To the more sophisticated user the system is open 
1 ended, and he may decide upon the level of complexity. 

The system is also open ended for the novice user, for as 
his skills grow he too can build more complicated and 
involved routines. 

Providing a language which gives analysts the capa-
1 bility of working at their maximum technical capacity 

rather than forcing them to work at a level established 
by a programming package is one of the best ways of 

, getting the greatest value per dollar per analyst. 

11,11,'1:' Open-endedness 

I' The report generating command just added to the 
,il system points up another characteristic of the system. 

The Investment Analysis Language 529 

TABLE III-Function Names Related to Job 

Function Name Operation 

GRAPH Produce a graph containing up to 8 data series 

PV Calculate the present value of a number 

TREND Test a data series to determine if a trend exists 

RELAT Determine if two data series are statistically 
related 

GROW Compute growth rates 

UTEST Perform a Mann-Whitney U Test on a set 
of data 

The language has no apparent limit to the number of 
commands which can be incorporated into it. 

If a user finds that he is performing certain computa­
tions frequently, there is no reason why he cannot 
write a function to perform these computations and use 
it in conjunction with IAL. At Bankers Trust we have 
added sets of commands for calculating bond prices, 
yields and coupons. The IAL user's manual has been 
designed so that a user can incorporate documentation 
for the commands he creates. This provides a central 
library for all routines used by the group. 

Function names 

The name of each IAL command is related to the task 
the command performs. Table III shows some of the 
commands and their related functions. This method of 
naming functions helps the user analyze his problem 
and understand the operations he performs, instead of 
issuing a series of numerical codes as in the case of the 
early statistical routines. It also provides a means of 
instant documentation. 

EXAMPLES OF THE USE OF IAL 

A forecasting problem 

One of the most common uses for IAL is in the build­
ing of forecasting models and tracking the output of 
these models. 

An economist wishes to take the monthly values of 
an index of business activity for the last 3 years, devise a 
model to describe past performance and forecast quar­
terly activity for the next four quarters, and analyze 
these forecasts. 



530 Fall Joint Computer Conference, 1972 

To do this he has decided to write two programs. The 
first 

will 1 accept the data 
2 graph the data 
3 devise a model 
4 and store the model data ona permanent file 

The following program when executed will answer 
his needs. 

CALL NFILE(1,'MODEL ') 
CALL INTTY(1,B,0,36) 
CALL NGL (B,1,36,2,0) 
CALL GRAPH(1,1,6) 
CALL OUT1 (2,SFORM (B,36, TREND (B,36), 

SONRA(B,36) ,A)) 
CALL NOUTT(3,A,10,1) 
CALL SAVE(4,1,A,10,1) 
STOP 
END 

271.00 277.83 284.67 2Q1.50 298.33 :'>05.17 312.00 
0- - - - - - - - - + - - -- -- - -- +- - - -- - - -- + -- - -- - - -- + - - - - -- - - - +- - - - - - - - - + 

1.00 
2. 00 I 
3. 00 I 
4. 00 I 
5.00 I 
6. 00 I 
7.00 I 
8.00 I 
9.00 

11.00 
11.00 
12.01 
13 .on 
14.00 
15.00 
16.00 
17. 00 
18.0n 
19.00 
20.00 
21. on 
22. 00 
23.00 
24.00 
25.on 
26. 00 
27. 00 
28. 00 
29. on 
30 .00 
31. 00 
32.00 
33.00 
34.00 
35.00 
36.00 

RESULT 2 IS 311.% 
RESlJL T 3 
ROIl 

311.11 
0.85 
0.0 
o. a 
2.00 
5.38 
o. a 

, 0.0 
311.96 

10 3799.44 
SAVE 4 LitlE 1001 FILE 1 

Graph I 

When the program is run' the following actions, appear 
on the terminal 

USING BTC IAL 
EXECUTION BEGINS ... 

TTY INPUT 1 
36 FREE FORM VALUES 

?271.,278.,282.,288.,289.,283.,288.,288. 
?291.,281.,277.,279.,293.,295.,300.,302. 
?297.,307.,304.,312.,306.,297.,291.,298 
?307.,306.,310.,309.,304.,305.,310.,305. 
?308. ,300. ,298. ,307. 

From the output we see that 311.96 is the forecast 
for the next month. The equation which describes the 
behavior of this series is 

A t =311.11+.85*t 

The second program the analyst writes is to revise his 
original model each month as new data is collected. 
He will 

1 read in the new observation 
2 forecast 1 period ahead 
3 then forecast 3, 6, 9 and 12 periods ahead 
4 Print out 'the forecasts as well as the upper and 

lower confidence limits for each forecast 

CALL NFILE1 (l,'MODEL ') 
CALL NFETCH(1001.,1,A,10) 
CALL OUT 1 (2,FORM1 (A,1.,TTY1 (1) ,EI)) 
CALL OUT1 (3,FORMT (A,3.,FH1,FL1)) 
CALL OUT1(4,FH1) 
CALL OUT1(5,FL1) 
CALL OUT1(6,FORMT(A,6.,FH2,FL2)) 
CALL OUT1 (7,FH2) 
CALL OUT1(8,FL2) 
CALL OUT1 (9,FORMT (A,9.,FH3,FL3)) 
CALL OUT1 (10,FH3) 
CALL OUT1(11,FL3) 
CALL OUT 1 (12,FORMT (A,12.,FH4,FL4) ) 
CALL OUT1(13,FH4) 
CALL OUT1 (14,FL4) 
CALL SAVE(l,l,A,lO) 
STOP 
END 

When the program is run with a new observation of 



318 the following results appeared on the terminal: 

USING BTC IAL 
EXECUTION BEGINS ... 
TTY INPUT 1 IS 

1318. 
2 IS 314.43f-next period forecast RESULT 

RESULT 
RESULT 

3 IS 316.34f-forecast 3 periods ahead 
4 IS 323.0'7. 

)confidence limits 
RESULT 5 IS 309.61 
RESULT 6 IS 319.21f-forecast 6 periods ahead 
RESULT 7 IS 326.99 
RESULT 8 IS 311.42 
RESULT 9 IS 322.07 
RESULT 10 IS 330.93 
RESULT 11 IS 313.22 
RESULT 12 IS 324.94 
RESULT 13 IS 334.89 
RESULT 14 IS 314.99 
SAVE 1 LINE 1041 FILE 1 

The corporate planning Illodel 

The most ambitious undertaking using IAL was the 
development of the Corporate Planning System at 
Bankers Trust. The Management Science Division was 
transferred from the Computer Research and Develop­
ment Department to the Corporate Planning Task 
Force in the Office of the Chairman. Our mission was to 
gather operating data from various sources in the bank, 
make forecasts and develop a model to be used in the 
Corporate Planning process. This system had to take 
into consideration various economic environments, 
operating characteristics of the bank, possible invest..., 
ment strategies and internal policies. Through this 
process, a set of expense and income guidelines was de­
veloped on a departmental level, covering the next six­
teen quarters. 

To accomplish this task many people with varied 
talents. were needed. In order to spread the workload, 

I the projects were divided into several small proj"ects 
with a project coordinator to ensure compatibility of the 
separate projects. Figure 6 shows how each project fit 
into the Corporate Planning system. Each project will 

~. be discussed separately. 
~il 
, Forecast interest rates and spreads 

Iii One of the roles of the Economics Department is to 
'Ii serve as the official forecaster of certain key rates for 
1:1 the bank. 
~I 

FIVE 

KEY RATES 

The Investment Analysis Language 531 

GENERATE 
RATES AND ... 
CHECK OUT .... 

GENERATE 
SPREADS 

RATE 
& 

SPREADS 
FILE 

Figure I-Forecast interest rates and spreads 

An analyst was assigned to generate the rates needed 
to drive the planning model and to act as liaison be­
tween the Economics Department and the Task Force. 
Five key rates were generated by the Economics De­
partment and then the analyst expanded them to pro­
vide rates needed for the model. The analyst had to 
check that these rates were economically consistent 
with the rest of the bank's forecasts, and generate the 
spreads between rates. 

IAL's forecasting routines were used to generate the 
rates, the regression routines were used to check the re­
lationships between rates and the I/O routines were 
used for storing these rates and spreads so that they 
could be acceAAed bv the model. 

Link into the bank' 8 commercial loan system 

Although our model was to be run on an outside time­
sharing system, we needed large quantities of data from 
the bank's in-house commercial loan system. This sys­
tem had been written in COBOL five years earlier and 
would have required many hours of modification before 
we could get our output directly from the operational 
system. Rather than spending an extensive amount of 
time on this problem, our solution was to have a program 
written in PL/l to read the commercial loan tapes and 
write the necessary records in a format which could be 
easily read by FORTRAN. Some of the IAL modules 
were installed on our in..;house batch system and then a 
series of IAL programs were written which simu­
lated the loan portfolio for the next sixteen quarters, 
generated the proper schedules and rates for the out­
standing loans and divided the loans into categories 
needed for the model. The data was then stored on the 
time-sharing system using the IAL I/O functions. 



532 Fall Joint Computer Conference, 1972 

~ v-· -C> 
EXTRACTION 1-1> 

PROGRAM 

Figure 2-Link into Bank's commercial loan system 

Gather direct expenses and income data 

In order to generate salary expense tables, coefficients 
were needed to apply to hypothetical salary policies. 
The line of attack was to use a forecasting model on 
another time-sharing system to produce future levels 
for various loan and deposit types in the New York 
market. This was then broken down to bank and then 
departmental levels. Prior to this, historical loan and 
deposit information was gathered plus 150 time series 
of various activities performed within the banking 
operations groups. These series were the various ac­
tivities that had to be performed to service the loan and 
deposit accounts. Using regression commands it was 
possible to determine the relationship between activity 
and account levels. The relationship between people 
and activity was also revealed. By starting at desired 
loan and deposit levels, then calculating the numbers of 
people needed and then finally using policy data, we 
could derive salary expenses. 

Build the corporate planning model 

The focal point of this effort is the Corporate Plan­
ning model. In order to design the model and to write 

MODEL 
FORECAST OF 
N.Y. LOAN & 

DEPOSITS 

BREAKDOWN 
INTO BANK 
& MARKET 

SHARES 

ACTIVITIES 
TO 

PEOPLE 

Figure 3-Gather direct expense 

PEOPLE 
FILE 

AGED 
LOANS 

& 
RATE 
FILE 

RATE 
AND 

SPREAD 
FILE 

Figure 4-Build the corporate planning model 

the actual programs, an analyst who understood or­
ganizational structures and the accounting conventions 
of the bank was an absolute must. This was not a job 
for a programming or forecasting type. The task in­
volved using all of the information provided by the 
other members of the Task Force and generating an 
earnings estimate and a tax strategy for the bank. In 
fact, this project was worked on in parallel with all of 
the other projects for the system. Because all of the 
input data had been stored using IAL, there was no 
problem of compatibility. Since record layouts are 
standardized as a result of using IAL, given the file 
name the user is able to access any data on that file. , . . 
Since all of the forecasting has been done In prevIOUS 
programs IAL was needed only for data manipulation, 
retrieval of tables stored on files, and printing of data. 

Generate the operating goals on a department level 

The final output from the system was a set of operat­
ing goals for the various divisions within the bank. 

GOAL 

BREAKDOWNT 
DEPARTMENT 

GOALS' 

Figure 5-Generate departmental goals 



Figure 6-Corporate planning project 

This program was assigned to a professional programmer 
because the expertise required for this project was a 
knowledge of data and file structures. 

Review of the project 

The· programming and forecasting portions of this 
project were completed in two months time. A project 
of this magnitude could never have been completed in 
this period without the use of a language such as IAL. 
IAL allowed us to use each analyst where his expertise 
would be an asset to the project and programming 
per se was never an issue~ 

A project of this size usually is slowed down because 
team members have to wait while others complete 
their portions of the project. Because of the modularity 

, of the major project design and the ease with which the 
user could store and retrieve data, data files and pro­
grams could be tested in parallel. This gave each analyst 
a chance to fine-tune his project and not have to rely on 
somebody else in order to meet his deadline. 

I
I, The most difficult portion of the project was not com­

I munications within the team but the collection of data 
I and learning the exact meaning of the collected data. 

II
' Relieved of programming details, the group was able to 

devote more time to the real analysis side of the project. 

I, BENEFITS GAINED FROM USING IAL 

It is impossible to put a dollar value on the savings 
',' that the Management Science group has realized by 

The Investment Analysis Language 533 

using IAL for the last three years. This is primarily be­
cause the type of projects assigned to the department 
has changed radically. Prior to 1968 the group worked 
on short, one-time studies in various areas in the bank. 
After 1968 it was decided that the Management Science 
group should decrease the programming staff and have 
analysts work on a few key projects. The analysts were 
to do their own programming using IAL. 

Less programming time 

Although the projects assigned to the Management 
Science group were much more comprehensive after 
this change in policy, the programs used for analysis 
tended to be much shorter. A program composed of a 
series of calls to the IAL functions was usually less than 
a page (66 statements) in length. These short pro­
grams required less time in the debugging stage. The 
IAL functions had already been tested and certified so 
the user only had to make certain that the arguments 
used in the calls to the functions agreed with those of 
the language. Most errors occurred because the user 
did not read his manual carefully or because he made a 
mistake entering his parameters to the functions. 

Cut time-sharing costs 

The department's time-sharing expenses had been 
steadily increasing until the installation of IAL. Our 
expenses were cut by % after the advent of IAL. Thi~ 
included the decrease in terminal rental as well as a 
decrease in the cost for using commercial time-sharing 
systems. 

Decreased need for documentation 

Every analyst was forced to use IAL and as a result, 
to become familiar with the language. He was able to 
read any program written in the language~ This bene­
fited the group in two ways. There was little need for 
extensive documentation of a program and the only 
docu~entation required was a list of data to be pro­
vided by the user and a list of the results. With this, 
any analyst could pick up a project or work on the 
programs without extensive orientation. 

As a result, the analyst had more time to spend on the 
structure of a problem. He did not have to worry about 
communicating his vague suspicions on how the pro­
gram should be structured. He was on his own and in 
most cases loved it. 



534 Fall Joint Computer Conference, 1972 

A ids in communication 

One of the biggest advantages to be gained from using 
IAL is that everybody is speaking the same language. 
IAL is actually enforcing a set of definitional and com­
putational standards on the user group. As an example, 
all users will be calculating depreciation schedules, in­
ternal rates of return and present values using the same 
methods. The benefits gained from a common language 
can be spread throughout the organization as well as 
within an individual group. At Bankers Trust the 
Management Science Division, Economics Division, 
BT Consultants (financial consultants) and the Credit 
Analysis Group all use IAL. The groups are able to share 
programs without extensive documentation, discuss the 
solutions to problems and in some cases, implement the 
solutions without overwhelming communications prob­
lems. In this way any organization can leverage the 
unique talents of various groups within it and develop 
company-wide projects. 

Today there are many good. packages and languages 
available for various types of analysis. Packages have 
been designed to run regressions, to perform statistical 
analysis and to calculate present values. These packages 
are good but IAL has the capability of operating in all 
of these areas. This means that every professional in a 
research group, regardless of his expertise, is speaking 
the same language. This is one of the strongest argu­
ments for using IAL. 

PROBLEMS WITH THE LANGUAGE 

Terminal I/O 

The obvious drawbacks are those that meet the user's 
eye first. Until recently, the terminal I/O commands 
were very brief and there was no generalized report­
generating capability. The language was designed as a 
tool for research and as such did not need options for 
elaborate reports. 

Another drawback was that the user was initially 
providing input on-line as his program was running. 
In many cases, depending on the time-sharing system 
when the user accidentally typed an alphabetic charac­
ter for a number he would be forced to start over and 
rerun the program. 

These two problems have been solved first by adding a 
generalized report generator to the list of commands 
and secondly designing a function which allows the 
user to enter data through the editor of the time-shar­
ing system instead of on-line. 

Extended lists 

Because of the need to pass tables of various lengths 
and dimensions it was necessary to design the system 
around extended lists instead of tables. An extended list 
is devised for a table of M by N. dimensioning and stor­
ing it in a list of M*N length. Element (1, 2) of the 
table is stored in element of M + 1 of the list. This 
presents no problems to those using all IAL functions 
in a program. If a user wishes to mix his own code with 
IAL he must be very careful when moving elements in 
the extended lists to make sure that they would cor­
respond to the correct element in his imaginary table. 

New users 

If a potential user of IAL has learned to use BASIC 
or FORTRAN he usually feels that he is a pretty good 
programmer and is generally more of a problem than 
somebody who has never programmed. A person with 
previous experience feels he doesn't need help and the 
idea of using a package is pretty silly. The only way 
that this can be solved is to have him working with 
somebody using the language. He will observe how easy 
it becomes to use the functions and gain confidence in 
the language. 

After a while he will get a great deal of satisfaction out 
of being able to do the programming end of the project 
with such ease. 

Distribution of I AL 

IAL has been leased to The American Bankers As­
sociation by Mr. Ahlers. The ABA is distributing the 
system to commercial time-sharing vendors throughout 
the United States and hopefully IAL will be marketed 
world-wide. IAL has been installed on seven time-shar­
ing systems and is available to any vendor who wishes 
to install the language, provided he goes through the 
prescribed certification process. This process was insti­
tuted to guarantee the integrity of the computational 
routines after installation on a new system. In most 
cases IAL is available at no extra charge to any sub­
scriber on anyone of the seven time-sharing systems. 
Plans are now being processed to make IAL available 
to the universities and it will soon be used in the gradu­
ate schools at Carnegie-Mellon University and Harvard 
University. 

After IAL becomes available as a teaching tool in 
the business schools, more and more young anaylsts will 
find it an efficient means of performing most of their 
financial analysis. 



The American Bankers Association has also offered 
week-long courses in the use of IAL and the financial 
principles behind the language. These courses have been 
attended by many members of the Management Science 
and Operations Research groups from all of the major 
banks in the United States. 

A users manual for the language has also been written 
and is distributed through the ABA. 

FUTURE OF IAL 

The IAL system has been a success in the financial 
and research areas. A demand has been developed for 
new functions which will fit into the IAL framework 
but deal with very specialized areas of banking or 
mathematics. As described earlier, various modules 
have been added: corporate tax modules, bond modules 
and generalized report generators. Functions are being 
added to the system to solve linear programming prob­
lems and for use in adaptive forecasting. IAL was 
originally designed to be used for short research prob­
lems but I feel that its real future lies in serving as a 

The Investment Analysis Language 535 

communications link in large projects. This can be the 
unifying thread in a large project such as the corporate 
planning model designed at Bankers Trust. The lan­
guage has proven to be an ideal means of communica­
tions within a group or corporation. 

ACKNOWLEDGMENT 

I would like to thank Dave Ahlers for the opportunity 
of working on such an interesting project. I am also 
indebted to Judith Liersch and Arlene Kaplan for their 
tireless efforts in re-reading, and re-reading, and re­
reading this paper. 

REFERENCES 

1 D M AHLERS 
I AL reference manual 
American Bankers Association 1970 

2 C A DMYTRYSHAK 
The development of the investment analysis language 
MS Thesis Department of Computer Science Pratt 
Institute June 1970 





The design approach to 
integrated telephone information 
in the Netherlands 

by R. A. DIPALMA * 
Litton-M ellonics 
Sunnyvale, California . 

and 

G. F. HICE 

PANDATA N.V. 
Rijswijk (ZH), the Netherlands 

t· INTRODUCTION 

The Integrated Telephone Customer Information 
System (ITCIS) is a computer network system which 
was initiated by the Dutch Post,' Telepho~e and 
Telegraph (PTT) and PANDATA N.V., a Dutch 
software company partly owned by PTT, in June 
1970. The initial definition study concerned the feasi­
bility of integrating several data files each containing 
t~lephone customer data (Billing, Directory Prepara­
tIOn, and Work Order Administration). In addition, 
there were efforts under way by a PTT research group 
concerning the automation of the Directory Assistance 
Service and, by another group, the Telephone Cable 
and Pair Administration. The conclusion reached in 
the definition study indicated that integration was not 
only feasible, but, that a completely integrated on­
line system, including Cable and Pair and Directory 

II A . SSlstance would be economically desirable. 
Subsequently, the Preliminary Design of ITCIS 

I was undertaken in October 1970. Within this design 
stage, hardware and software elements were designed 
for a system based on the projected workload for 1980 

I when, it was estimated, there would be more than 4 
,'. million telephone customers. The applications included 

within the integrated system are: 

• Directory Assistance Inquiry 

* Formerly of PANDATA N.V. 

537 

• Directory Preparation 
• Billing and Collections 
• Work Order Entry and Administration 
• Customer Services Inquiry 
• Cable and Pair Administration and Inventory 
• Management Information. 

These applications involve large batch runs coupled 
with high load real-time inquiry. . 

During the Preliminary Design effort, a number of 
trial configuration approaches were developed and 
examined to determine the most favorable approach 
for ITCIS. A decision matrix analysis, combined with 
a method for converging opinions, was used. The result 
of this analysis is that a . configuration approach based 
on a centralized data base, on-line to all administra­
tive districts is the most advantageous. The hardware 
facility required to support this centralized data base 
designated the Central Processing Facility (CPF) , i~ 
a multi-processor mainframe using large capacity re­
movable disk storage to contain the data base. 

Access to this shared centralized facility will be 
provided via dedicated communications circuits be~ 
tween each district and the CPF. These circuits will 
be terminated in each district by a small general purpose 
computer, designated a Computer Based Concentrator 
(CBC) which will act as data concentrators and re­
mote batch terminals. 

There are over 150 points at which a remote device 
must be located. These include 13 telephone district 



538 Fall Joint Computer Conference, 1972 

headquarters, 20 directory assistance operator rooms 
and 120 technical service areas. Each district head­
quarters requires remote batch facility and a minimum 
of one teletypewriter (TTY) and visual display unit 
(VDU). A cluster of up to 40 VDU's is needed in each 
of 20 operator rooms. Each of the 120 service areas 
requires a minimum of one TTY. 

Some generalized system software, other than that 
supplied by the manufacturer, will be required to 
support ITCIS application programs, in the areas of: 

• District computer operating system and com­
munications 

• Real-time communications and processing at the 
CPF 

Detailed design and programming of the first phase of 
implementation of ITCIS has now begun. This phase 
will automate Directory Assistance (Inquiry 008) and 
Cable and Pair. 

There are several points of interest in this design 
effort which will be discussed in more detail. These 
include the hardware/software environment men­
tioned briefly above, some of the design techniques 
used, and the use of a manufacturer-implemented 
version of the CODASYL Data Base Task Group 
Report. 1 

HARDWARE/SOFTWARE ENVIRONMENT 

The CPF proposed for the final system is a UNIVAC 
1110 multi-processor with three subsystems of 8440 
disk storage (2.5 billion characters). Two Control 
units are used with each disk subsystem. It is a 2X2 
system with 2 Command/Arithmetic Units (CAU) 
and 2 I/O Access Units (IOAU). Memory consists 
of 128K words of Main Memory (plated wire) and 
262K words of Extended Core Memory. The com­
munications interface consists of 2 Communications 
Terminal lVIodule Controllers (CTMC) and 8 Com­
munications Terminal Module (CTM). A tape sub­
system of 6 drives is included. Unit record I/O is 
handled by 2 UNIVAC 9300's with printers and card 
reader/punches. See Figure 1 for the CPF configura­
tion. 

The remote processors (CBC) will most likely be 
PDP II/20's. Each PDP 11 (15 in all) will act as 
remote batch terminal, accepting card and paper tape 
input and producing printed output. The main func­
tion, however, consists of being an on-line communica­
tions multiplexor and concentrator. The configuration 
consists of 8K (16 bit) words of memory augmented 

MAIN 
MEMORY 
(65K) 

COt1MAND 
ARITHMETIC 

UN IT 

I/O 
ACCESS 

UN IT 

16 I/O 
CHANNELS 

8440 
SUBSYSTEM 

1 
(8 DISK 
UNITS) 

8440 
SUBSYSTEM 

2 
(8 DISK 

UN ITS) 

MAIN 
MEMORY 
(65K) 

COMMAND 
AR ITHMET IC 

UN IT 

I/O 
ACCESS 

UN IT 

16 I/O 
CHANNELS 

8440 
SUBSYSTEM 

3 
(6 DISK 
UNITS) 

UNIVAC VIII C 
MAG TAPE DUAL 
CONTROL UNIT 

9300 
AND 9330 

SUBSYSTEMS 

Figure l-CPF configuration 

COMM LINES 
TO CBC's 

by 64K words of disk storage. Card, Print and paper 
tape I/O is provided, as well as interfaces for the re­
quired terminals and high speed link to the CPF. See 
Figure 2 for the CBC configuration. 

The high speed link will be leased lines (15) operating 
at 2400 and 4800 bps, full duplex. The communications 
technique used is segmented messages with acknowl­
edgement of first, last and retransmitted segments. 
Cyclic error protection codes are used. 

There are over 600 terminals required (in 1980). Of 
these, 425 are Uniscope 100's for Directory Assistance 
Inquiry and Customer Service Inquiry. Both multi­
station and stand-alone ·connections are allowed with 
remote connections via 2400 bps lines and modems and 
local connections via 4800 bps cables. There are almost I 

200 Automatic Send/Receive (ASR) teletypewriters 
situated in customer service areas and connection de­
partments for work order entry, maintenance and 



I 

Design Approach to Integrated Telephone Information 539 

~ . 
'" . 
"- . 
~ . 
>- • 

CBC 
( COMPUTER-BASED 

CONCENTRATOR) 

Figure 2-CBC configuration 

HODEM T 

~ 
FULL DUPLEX H102 
TRANSMISSION 
LINE OPERATING 
INITIALLY AT 
2400 BAUO. WITH 
POSSIBLE EXPAN­
S10N TO 4800 
BAUD 

inquiry. The TTY's are connected to the CBC's over 
local leased 110 bps lines and may be connected in 
multi-drop or stand-alone fashion. Figure 3 shows the 
approximate location of terminals throughout the 
Netherlands. 

The total configuration is to be built up in a modular 
way over the period of 1972 to 1978 according to ap­
plication implementation and system growth. The 
stress has been on flexibility, modularity and relia­
bility. 

The emphasis in design of the software for ITCIS 
has also been on flexibility, modularity and reliability. 
The software to implement ITCIS has either been 
selected from available general purpose UNIVAC 
software, or is being developed as a joint effort of 
PANDATA and PTT personnel. 

In order to meet the requirements cited above, as 
much general purpose UNIVAC software as possible 
is being used. To qualify, the software must meet 
performance requirements and be available now or in 
the· immediate future. The software being used from 
UNIVAC is: 

• EXEC-8 The operating system in its entirety 
and without modification, is being used to control 
the CPF resources. This means that ITCIS is not 

a dedicated system but can be shared by other 
applications, perhaps even other real-time ap­
plications. 

• DMS-ll00 Is also being used in its entirety. The 
run time component of DMS-l100, called DMR, 
is presently available as a single thread program, 
with a reentrant version, capable of concurrent 
run-unit execution, to be available in June 1972. 
Figure 4 shows how the components of DMS-1100 
are used to build a SCHEMA and an application 
program to manipulate the Data Base. 

• RTS UNIVAC Real Time Scope Handler, has 
been modified by PANDATA to activate the user 
whenever a message comes in on any communica­
tion line, to dynamically handle message buffers 
and to provide a general pool capability. 

Figure 5 shows how both jobs and inquiries are 
initiated in this system. Figure 6 shows the interface 
to the data base. 

o TELEPHONE DISTRICT HEAD0UARTER/ 
DIRECTORY ASSISTANCE OPERATOR ROOM/ 

@ 6i~~~~6R~R~~SISTANCE OPERATOR ROOt1/ 
SERVICE AREA 

o SERVICE AREA 

Figure 3-Telephone districts of the Netherlands, 
showing network 



540 Fall Joint Computer Conference, 1972 

The application software being developed for 
ITCIS is also indicated and explained in Figures 5 and 
6. It should be noted that the scheme is open-ended 
enough so that new applications .can be added to 
the IT CIS network by simply connecting new terminals 
to the CBC's and adding real-time transaction pro­
cessors or batch runs needed to the CPF software. 

DESIGN TOOLS 

The entire design effort has been conducted. within 
the framework of the PANDATA System Development 
Methodology (SDM) which is a standard controlling 
the design and development of large-scale systems. 
This method provides detailed sets of activities within 
each stage of seven stages of system development. For 
each activity, there are explicit steps that must be 

CREATE A SCHEMA TO 
DESCRIBE THE DATA 
BASE. THE WAY ANY 
PARTICULAR APPLICA­
TI ON PROGRAM WOULD 
LIKE TO SEE IT. 

CREATE AN APPLICATION 
PROGRAM TO DO A 
PARTI C ULAR JOB ON THE 
DATA BASE. 

Figure 4-Use of DMS-llOO to create a data base SCHEMA and 
an application program 

OFF-LINE 
BATCH RUN. 

DOES NOT USE 
ITCIS DATA 

BASE AND 
RUNS SEPARAT 

FROM 
ITC IS 

(REAL TIME 
RESPONSE) 

BATCH MONITOR 
INITIATES BATCH 

JOB WHEN A 
BUFFER IS FULL 

OR AT SPECIFIED 
INTERVALS 

(DELAYED' 
RESPONSE 
UP TO ONE 
DAY) 

SA TeOl 
COLLECTS 

TRANSACTIONS 
ON A BATCH 
BUFFER (BY 
• TYPE OF 

TRANSACTION) 

(TO EXEC-8 
COARSE SCHEDULER 

Figure 5-Software environment-CPF inquiry and batch job 
initiation 

performed which result in specific products and require 
specific inputs. When followed closely, the SDM has 
provided high quality and complete documentation, 
and has resulted in well controlled timely development 
efforts. 

In addition to the general design philosophy su p­
ported by SDM for ITCIS, two Operations Research 
tools were used during Preliminary Design in a rather 
unorthodox, but effective, and therefore interesting 
manner. The tools themselves were not unusual at all 
to problems in System Design or business-Decision 
Theory and Simulation. 

USE OF DECISION THEORY 

Initially, there were a wide variety of basic system 
approaches (both centralized and decentralized) which 
could have been used for ITCIS. In order to resolve 
such controversial and subject problems, a "payoff" 



I 
I 

I 

Design Approach to Integrated Telephone Information 541 

ITC I S 
DATA 
BASE 
IN P UT / 
OUTPUT 

OUTPUT ANSWERS 
TO INQUIRIES 

UN I VAC 
DMS-
11 00 

RUN-TM 
PORTION 

INPUT/ 
OUTPUT TO 
ITC I S 
DATA BASE 

*' (DMR) 

LOCAL 
OUT PUT 

EXEC-8 PRINT­
ER PUNCH SH1-
BIONT COtWLEX 

OFF-LINE BATCH 
(INCLUDING 

ALL RUNS 
STARTED 

LOCALL Y OR 
REMOTELY. 

INDEPENDENT 
OF ITCIS 

I 
I 
I 
I 
I 
I 

, I 
r~~-L-, 
INOTE: I 

IBATCH RUNS ARE I 
NOT STARTE 0 

IIMMEDIATELY BUTI 

I~~E T~~H~~~~~~ I 
I~~A~~~T i~~:~~: -I 
Gi~R+~6\:~E I 
ITIME AND CORE I 
(AN NOT BE GIVEN I 
L ______ ..J 

Figure 6-Software environment-CPF inquiry and batch job 
processing 

matrix was used in the following manner: 

1. Four alternative configurations were designed, 
varying from completely decentralized (thirteen 
stand-alone processing facilities, one for each 
telephone district in the Netherlands) to com­
pletely centralized (all computing done at a 
central facility). These four configurations define 
rows of the decision matrix (see Figure 7). 

2. A number of detailed· Selection Criteria were 
p.stablished in the categories shown on Figure 7. 

3. Value Analysis followed. Members of the 
ITCIS Preliminary Design Proj ect Staff and 
other interested parties were asked to rate the 
criteria according to value. 

4. Efficiency analysis was conducted with a small 
·group more familiar with the trial configura­
tions; efficiencies of each approach toward 
meeting each criteria were established and 
quantified. In some cases (e.g., cost) a quanti­
fication was simple and direct-in others quan-

tification was more subjective but could some­
time be related to cost. For example, the re­
liability of two approaches can be made equal 
by spending more money on one of the ap­
proaches. 

5. The coordinator of the analysis (one of the 
authors) carried arguments to various partici­
pants. As a result the deviation of many re­
sponses was lessened. 

6. The standard deviation high, low and mean 
figures for efficiency and value were put into 
the efficiency matrix and the value vector, and 
3 matrix multiplications were performed, using 
means, high and low figures. 

7. The results were clearly in favor of the two 
centralized approaches, although the unit pro­
c essor and the multi-processor options were hard 
to distinguish. A choice was later made for the 
multi-processor because in the configuration 
required it is cheaper, and· the modular archi­
tecture of the UNIVAC 1110 (UNIVAC was 
the most serious contender because PTT had 

DECISION MATRIX 

CRITERIA --~ CRITERION 

CON FIG- 1 
URATION l 

APPROACH 

APPROACH A 

13 COMPUTERS. 
CONNECTED TO 
SERVICE INTER-
DISTRICT 
TELEPHONE NUMBER 
INnUIRIES 

APPROACH B 

SEVERAL COM-
PUTERS (BUT NOT 
13 ) INTERCON-
NECTED AND SHAR-
ING A CENTRAL 
DATA BASE. BUT 
EACH CAPABLE OF 
STAND-ALONE 
OPERATION 

APPROACH C 

MULTIPLE UNIT 
PROC ES SORS AT A 
CENTRAL FAC I LITY 
WITH A REDUNDANT 
SHARED DATA BASE 

APPROACH 0 

A SINGLE MULTI-
PROCESSOR SYSTEM 
(AS DESCRIBED IN 
PART I I) 

SELECTION CRITERIA CATEGORIES: 

COST 
RELIABILITY 
SECURITY 
DES IGN FACTORS 
ERGONOMIC FACTORS 

CRITERION 

2 

Figure 7-Decision matrix 

CRITERION 

; 

EFFICIENCY 
OF APPROACH 
B TOWARD 
MEETING 
StLECTION 
CRITERION i 



542 Fall Joint Computer Conference, 1972 

a UNIVAC 1106 already, which was to be used 
for development) is almost as internally re­
dundant as completely separate computers. 

The Decision Theory Analysis, although still sub­
jective in some cases, reduced subjective decision to 
such a low level that most participants were unable to 
be swayed by prejudice toward the much more en­
compassing (but still underlying) question of centraliza­
tion vs. decentralization. 

USE OF SIMULATION 

Design validation for a system as large and complex 
as ITCIS is very difficult and simulation of ITCIS 
was one of the primary methods used to answer design 
questions. Very early in Preliminary Design a GPSS-II 
model (GPSS-1100 was not yet available) was written 
of the ITCIS system, to investigate CPF throughput, 
line utilization, etc. It was soon found that the ITCIS 
model was pushing the standard version of G PSS-II 
to its limit. GPSS-II extended version would not run 
on the PTT 1106 because the core was too small and, 
in addition, GPSS was not suitable for such a highly 
interactive, complex system. Certain useful results 
were still obtained but more simulations were planned 
for detailed design to examine the behavior of the 
CPF under overloads, etc., as the hardware and soft­
ware design become firmer. 

Splitting the model into submodels was considered 
but the entire ITCIS is very interactive due to the 
communications technique and the nature of Inquiry 
008, i.e., multiple operator/computer interactions due 
to a single telephone number inquiry. 

Of the available UNIVAC simulation packages, 
systems and languages, SIMULA I (which was de­
veloped at the Norwegian Computing Center) was 
selected because: 

• It was supported as standard UNIVAC software 
(unlike SIMSCRIPT and GASP) 

• It allowed similar model structure to GPSS (i.e., 
flow or process oriented) 

In fact the SIl\IULA language is so powerful that 
a model can be organized in a manner very much like 
the required organization of other modelling systems. 
(SIMULA 67 was not yet available but would have 
been even more suitable.) 

As a result a special purpose simulation system was 
developed. (See Figure 8.) It is based in SIMULA, to 
be used to create models of ITCIS by changing the 

MODEL SET UP AND 
INITIALIZATION 
(DONE BY OUTER 
ALGOL BLOCKS AND 
PROCESS OF 
SIMULA) 

r - - - -, 

i ~~mATION, : 
I TERMINATION 
I AND OUT PUT I 
L _____ ~ 

r ------, 
I, 

I S IMULAT I ON OF CO~IPU - I 

I 
I ~~~~~A~~ROWARE AND I, 

[ "" ,,,",,,,, .. 1 m!2.'5. 
COMPUTE AND J EQUIPMENT PROCESSES. 
OUTPUT REPORT SIMULATE HARDWARE 

cor4PONENTS (CPU, DISK, 
ETC.) AND SOFTWARE 
COMPONENTS OF THE 
SYSTEM. THE EPRO' S 

,.-- - -- --: TPRO 
ARE GENERATED AT IN IT-

• SIMULATION OF IALIZATION IN THE MAIN 
I TRANSACTIONS SCHEDULE ~~gHss (UPPER LEFT 
H!l9~~ 

( INTEGER 
ARRA y) 

mg_.~!!!l~'!. TRANSACTION :·~OCES-
SES. EACH PROCESS 

TPRO i EACH ENTRY IS A 
IS A DATA SET, WITH POINTER TO A DATA 
ITS oWlr TYPE, 14ES- SCHEDULE SET DESCRIBING THE 
SAGE LEW,TH, RANDOM ACTI~ PARTICULAR PIECE 
INTEGER AND INDEX IF OF EQUIPMENT. 
INTO ITS SCHEDULE. ';"'- .- NOT 
THE SCHEDULE FOR 

.... 
BUSY 

EACH TYP:: OF TPRO 
TELLS WHIC!: [PRO'S 

--......:-. ARE TO BE USED BY A 
~ 

TPRO AND IN WHAT 
SCHEDULE ORDER. TPRO' S ARE 
INDEX ~P!l_09~UR!lA'!. 

ACTIVE BETWEEN USAGE f--- SAME NUMBER OF ENTRIES OF EPRO' SAND PAS-
AS IN fPRO ARRAY. SIVE WHILE WAITING EACH EN~RY I S A SET IN AN EPROQUE OR 

'-----<0 WH ICH I S USED AS THE BEING PROCESSED. - PLACE I~AITING 0UEUE FOR 
IN TPRO' S. 

~ 
QUEUE 

Figure 8-Major components of ITCIS simula modeling system 

parameters of an input data set. (This can be done 
easily by using a system utility.) This simulation sys­
tem was developed so that changes to ITCIS could 
easily be incorporated in the model without repro­
gramming, and a great deal of detail could be inserted 
in certain areas of the model without affecting other 
areas. 

This much generality was felt necessary for the 
ITCIS project, but the resulting system is in fact useful 
for modelling any teleprocessing system, and there are 
plans to use it in other systems. 

The only model completed to date was a model very 
similar to the GPSS-II model. The results are com­
patible although more extreme situations show up in 
the SIMULA model. The SIMULA program takes I 

about one-third of the core required by the GPSS ' 
model and executes in about 85 percent of the time 
required by the GPSS program. 

I 

I 

I 

I 

I 

I 

I 



Design Approach to Integrated Telephone Information 543 

SUMMARY 

The ITCIS System, besides the usual expected ad­
vantages of providing better customer service and 
maintaining lower operating costs, has resulted in the 
testing of a System Development Methodology, the 
development of a Simulation tool which will make 
simulating computer systems several orders of magni­
tude easier, and the synthesization of a decision theory 
technique which should prove ~seful in many sub­
jective situations. In addition the value of using 
Economies of Scale has been demonstrated, in that a 
large system, designed to handle a peak inquiry load 
which will only last a few hours a day, will be used 

during non-peak hours to handle all other customer 
services. 

By the end of June 1972, a SCHEMA had been 
written using the DDL of DMS-1100, and trial runs 
indicated that use of this large, general purpose system 
is feasible. The possible availability of a COBOL 
compiler which can generate re-entrant, asynchronous 
program code also indicates that it may be possible to 
use COBOL to a much greater extent than normally 
thought possible in systems programming. 

REFERENCE 

1 October 1969 Report of the CODASYL Data Base Task 
Group of the CODASYL Programming Language Com­
mittee 





Field evaluation of real-time capability 
of a large electronic switching system 

by W. C. JONES and S. H. TSIANG 

Bell Telephone Laboratories 
Naperville, Illinois 

INTRODUCTION 

The Bell System's No.1 Electronic Switching System! 
(N o. 1 ESS) was designed for medium-to-Iarge tele­
phone offices. Its performance has been improved 
radically since first put into service on May 30, 1965, 
in Succasunna, New Jersey. By June, 1972, some 250 
No. 1 ESS offices were in service equipped with over 4 
million customer lines. 

This paper describes a load test which was conducted 
recently in a field office to evaluate the real-time capa­
bility of the latest program, named SPCTX -5. 

In order to aid the reader in the comprehension of this 
paper, some background information is provided. 

BACKGROUND 

General 

Capacity of a telephone system is multidimensioned. 
It can be measured in terms of quantity of calls pro­
cessed, number of customers served, traffic load handled 
by the switching network, etc. The No.1 ESS capacity, 
to date, has been limited only by the capability of the 
processor and its associated program. The number of 

I calls that the system can handle is directly proportional 
I to the amount of time that it takes to process individual 

calls. 

History on call capacity 

In the past 6 years, a great deal of effort has been 
I expended to increase the call-carrying capacity of the 

No. 1 ESS as well as to add new features. Improvements 
.1 were made through both hardware and software means. 
I Of the several developments that have produced a sub-

545 

stantial increase in the traffic-handling capacity of No.1 
ESS, the streamlining of the program is perhaps the 
most significant. 

Figure 1 shows a history of the No. 1 ESS call capacity 
improvements. In 1965 and 1966, we had only two No.1 
ESS offices in service, and the maximum call carrying 
capacity at the time was about 25,000 peak busy hour 
calls. This is only an estimate since few meaningful 
measurements were taken. Peak busy hour calls are the 
number of calls estimated for an office on its highest 
normally recurring busy hour during the busy season. 
This number must be known in order to engineer the 
office properly. It is generally assumed that of the num­
ber of peak busy hour calls, about 85 percent complete 
to talking and about 15 percent to busy or no answer. 

The capacity of the system is usually expressed in 
terms of a range--maximum, average, and minimum. 
This is because the type of traffic handled varies from 
office to office. For example, an office may have more 
interoffice calls than intraoffice calls. The machine time 
consumed by processing different types of calls are dif­
ferent. 

The program released at the beginning of 1967, has a 
capacity of about 27,000 peak busy hour calls. Soon 
after, program improvements were made to increase the 
call capacity to 32,000. 

In 1968, a significant increase in capacity was 
achieved through the addition of a signal processing 
unit (SP) to the basic central control processing unit 
(CC), to take over many of the repetitive functions 
such as scanning lines and collecting dialed digits. SP 
is essentially an input/output processor. With SP, the 
system reached a capacity of about 64,000. In 1969, 
further program improvements were made which in­
creased the capacity to 71,000. 

As more experience was gained, it became clear that 
the central control processor was spending most of its 



546 Fall Joint Computer Conference, 1972 

., 

.... .... 
>C 
!:U 
Ua: 
C::t 
Q. O 
~:z: 
I~ 
"'::t 
~ID 
>:.:: 
U)C 

'" Q. 

120K 

90K 

60K 

30K 

o 1966 1967 1968 1969 

flj MAXIMUM 
AVERAGE 
MINIMUM 

1970 1971 1972 

CALENDAR YEAR 

Figure I-No.1 ESS capacity 

real time in network connections. To simplify some of 
these actions, the service link network was developed. 
This equipment is a new adjunct to the standard 
switching network, and is designed to simplify the 
operations that set up ringing and digit-receiver con­
nections. The service link net~ork hardware relieves 
the No.1 ESS program of much of the chore of establish­
ing these routine connections and, thus, increases the 
call capacity by greatly reducing the average time the 
program is spent with each call. Introduction of the 
service link network in 1970, raised the No.1 ESS capac­
ity to 83,000. Major program improvements were made 
in 1971, which resulted in a maximum capacity of over 
100,000. This was the original No. 1 ESS design objec­
tive. 

It is significant that these capacity improvements 
have been made at the same time that many new 
features, which tend to reduce capacity, were being 
added. The program introduced at the beginning of 
1967, has 137,000 instructions (44 bits/instruction). The 
latest program, which has incorporated many new 
features as well as fault detection and diagnosis for the 
new hardware and call capacity improvements, has 
over 230,000 instructions of which over half are re­
quired for maintenance. 

Capacity studies 

Figure 2 shows a greatly simplified model of the real­
time usage in No. 1 ESS. The number on the ordinate 

shows the real-time consumption; the bottom half 
represents 100 percent of CC real time, and the top 
half 100 percent of SP real time. The SP performs all 
the input/output (I/O) work, and the CC executes all 
other work associated with each call. 

The abscissa shows peak busy hour calls. As shown in 
this Figure, different job segments comprise the total 
real time consumed. The SP overhead and the CC over­
head are constant, relatively independent of the amount 
of traffic being processed. The equipment dependent 
I/O real-time consumption is directly rela~ed to the 
amount of equipment, such as lines and trunks, in the 
office. A trunk is a circuit which provides a communica­
tion channel between telephone offices. The line repre­
senting the equipment dependent I/O indicates that 
the real-time usage increases as calls per hour increase. 
The lines for the per call I/O and per call other work 
show the percent of real-time consumption also rising as 
the level of calls goes up. The slopes of these lines de­
pend upon the average amount of real time consumed 
per call. As program improvements are made, the slopes 
decrease. As a result, the call capacity goes up. 

A number of techniques have been developed to per­
form real-time studies. Simulation2 is one of these tech­
niques. A somewhat simpler method is to determine the 
number of machine cycles required for overhead and I 

for processing various types of calls su.ch as intraoffice 

O------------------------------~----------------------------------------_, 

Il. 
en 

80 

SP OVERHEAD 

---IOO4-----------------------------------~~ 

80 
UJ 
~ 
~ 

...J 60 
<[ 
UJ 
a: 

(,) 
(,) 

CC OVERHEAD 

O~------------~------------~------------r_--------_,------------~ 
o 20 40 60 80 

PEAK BUSY HOUR CALLS (XI03) 

Figure 2-No. 1 ESS real-time usage 



Field Evaluation of Real-time Capability of Large Electronic Switching System 547 

with TOUCH-TONE®, outgoing with multifrequency 
pulsing, etc. These cycle counts can then be used to 
estimate the call carrying capacity. In early days, both 
call-type cycle counts and capacity calculationsre­
quired a large amount of manual effort. Since there are 
many different types of calls, both jobs were time con­
suming and tedious. Now, all have been automated. 

In the automated procedure, a programmable elec­
tronic call simulator controlled by a computer system, 
is used to generate a set of test calls in the system 
laboratory. While a call is being processed, machine 
cycles are counted by a program-controlled counter. 
ESS utility programs collect and record the counts on a 
magnetic tape. This tape is then processed on a com­
mercial computer which prints out the cycle counts. 

A total of 50 call-type cycle counts have been col­
lected. Since each type of call is processed by the system 
in stages separated by time breaks, the call-type cycle 
count is made up of cycle counts of many program seg­
ments. The segment cycle counts are summed to deter­
mine the real time required for each type of call. 

The overhead and call-type cycle counts form the 
data base for a capacity estimating program ESS1CAP, 
and are used for computing the call processing capacity 

" of No.1 ESS offices. ESS1CAP is a conversational, time­
shared computer program. Capacity is estimated in the 
manner similar to manual calculations employed pre­
viously, except that the manual effort is greatly reduced. 
In the manual method, the number of input items that 
the telephone company traffic engineer had to ·provide 
was great-well over a hundred. Now only about 20 

~' input items are needed for the ESS1CAP program. 
;1 These are the traffic mix of the office for which the peak 
'(" hour call capacity is to be estimated. Traffic mix in-

cludes such items as percent originations of total calls, 
and a further breakdown of originations into partial 
dials, intraoffice, and outgoing calls. ESS1CAP is also 

I an important tool for evaluating capacity improve­
ments. Our experience with ESS1CAP capacity predic­
tions has been good. However, its accuracy had not been 
fully verified under controlled load conditions. 

LOAD TEST 

Purposes 

Although we were reasonably sure about our call 
capacity estimates, we felt that there is no substitute 
for a load test with real calls. Some of the reasons for the 
load test are to verify the real-time improvements and 

, to check the accuracy of the cycle count data collected 
. with the newly automated procedures. Such a test is also 

II. 

important to secure the confidence of the telephone 
operating companies in the use of the ESS1CAP pro­
gram, which is made available to them for call capacity 
estimates of their No. 1 ESS offices. Another reason for 
performing the load test is to determine the adequacy 
of the present overload control with the increased call 
capacity. 

In overload control, the executive control program 
must ensure that peaks of traffic do not overwhelm 
the system and cause it to process less than an optimal 
load. An overload control program can modify the 
operation of the executive control. Under overload 
conditions, scanning for new service requests is slowed 
down and the hopper which is used to store these service 
requests, is emptied much less frequently. It is both 
convenient and desirable to handle overload by limit­
ing the traffic. Each additional service request is a 
commitment by the system to perform a certain amount 
of data processing. By an orderly deferral of further 
commitment during overload, we guarantee that the 
data processing overload is rapidly eliminated. Other­
wise, the delays in processing calls becomes so great 
that many customers hang up before their calls have 
been completed. This wastes that portion of call pro­
cessing which had already been completed, and leads to 
further overloads when these customers try again to 
complete their calls. The overload control has been 
simulated on a general-purpose computer; however, it 
has not been fully verified in the field under overload 
conditions. 

Environment and equipment 

The load test was conducted in an office at Portland, 
Oregon, prior to its cutover into service. The system 
was running very well at that time with no obvious call­
effecting hardware or software problems. There was a 
sufficient number of trunks and service circuits avail­
able in that office to make the test possible. Service 
circuits include items such as signal transmitters, digit 
receivers, ringing and other similar circuits. A total of 
1100 test lines and 1000 trunks were employed in the 
test. 

The calls are generated by 11 load boxes. Load box 
is a type of test set (Figure 3). Each set can originate 
calls on 50 lines which are divided into ten groups of 
five lines each. A maximum of 13 digits may be pulsed 
over each group. All five lines in the same group will 
dial the same digits, but each group can have a different 
set of dialed digits. Using the technique to be described 
later, it is possible to terminate five lines dialing the 
same number to five different lines. Audible signals can 



548 Fall Joint Computer Conference, 1972 

Figure 3-Load box 

be monitored on a single line at any time through the 
use of the monitor amplifier and speaker furnished. 
Lamps are also provided for indicating the states of the 
lines, such as origination, dialing, and disconnect. Vari­
ous timing adjustments can be made which determine 
when to start dialing, disconnect, etc. It should be 
pointed out that most test set actions are governed by 
time delays rather than system responses. For example, . 
a set will start dialing after a preset delay following 
origination, whether dial tone is received or not. 

The test set also provides termination for 50 lines. 
Each terminating line is equipped with a lamp, counter, 
and a circuit to detect ringing. Upon reception of a call, 
this circuit will trip ringing-simulating an answer 
back to the system, light the lamp and increment the 
counter. The circuit also applies a special tone to the 
terminating line for manual monitoring purposes. When 
this tone is received at the originating end, it verifies 
that a talking path is indeed established. The counter is 
used to determine the number of calls that are completed 
to talking. 

The load box traffic tends to be more bunched than 
real customer traffic. Although staggered originations 
and disconnects are provided among the ten groups in a 
load box, the five lines in each group, nevertheless, will 
originate and disconnect simultaneously. Dialing for all 
50 lines will be done at the same time. Therefore, the 
load presented to the system by the load boxes is more 
severe than one would encounter with real life traffic. 

Techniques 

A number of techniques are used to get around some 
of the constraints and problems associated with the test 
environment and the existing test equipment. 

To simulate an outgoing call to another office and an 
incoming call from a distant office, a loop-around tech­
nique is employed. Under this case, a call is originated 
from a test line to an outgoing trunk. The output of this 
trunk is then fed back into No. 1 ESS by looping around 
the tip and ring conductors of the outgoing trunk to 
an incoming trunk. The system completes the loop by 
placing a terminating call to another test line in the 
office. Each loop-around call, therefore, consists of two 
calls, one outgoing and one incoming call. If a load box 
repeats its cycle every 36 seconds, then each test line 
can generate calls, either intraoffice or loop-around, at 
the rate of 100 per hour. 

To terminate five lines in each group (dialing the same 
number) to five different lines, the speed calling tech­
nique is used. In No. 1 ESS, this is one of the new 
customer services provided. Speed calling permits a 

Figure 4-Sequencing unit 



Field Evaluation of Real-time Capability of Large Electronic Switching System 549 

customer to place calls to one of a group of frequently 
called numbers by dialing an abbreviated code instead 
of the seven or more digits that would normally be re­
quired. The abbreviated code consists of an access code 
of 11 plus one or two digits depending upon the size of 
the abbreviated dial list. 

With this method, five lines in the group are all as­
signed the speed calling feature, and each is given a dif­
ferent abbreviated dial list. Thus, all five lines dialing 
the same abbreviated dial code will place calls to five 
different terminating directory numbers. The calls can 
even be a mixture of intraoffice and interoffice calls. 
Also different types of signaling over different trunk 
groups can be selected for the interoffice calls. All this 
is accomplished by selecting the proper directory num­
bers for the abbreviated dial lists. The real-time con­
sumption in processing a speed dialed call is about the 
same as a conventionally dialed call. The time saved in 
collecting the extra digits is consumed by the additional 
time required in translating the abbreviated code. 

Eleven load boxes if simultaneously originating, dial­
ing, outpulsing, and disconnecting, would place a very 
unrealistic load on the system. This is true even if 
enough service circuits existed in the office to permit 
such a test. Equipment limitations are major considera­
tions in designing the load test. For example, the number 
of transmitters of a given type limits the nu~ber of 
interoffice calls that can be placed simultaneously at 
any given time. To stagger the operation of load boxes, 
a sequencing unit was designed (Figure 4). This unit 
generates start signals to load boxes in a fixed-time 
relationship. Therefore, it permits staggering of origina­
tions, dialing, and disconnects between load boxes. 
This results in a more evenly distributed load to the 
system, and simulates more closely the real-life traffic 
through the office. 

With 11 load boxes operating at a 30-second cycle 
time, it was possible to generate 120,000 test calls per 

~-----r-------, 
I I 
I I 
I I 
: I 
I I 
I 
I 
I TEST 
I EQUIPMENT L ______ .--J 

~-----

NO.1 ESS 

... 
0« 
a: 
t-

}i~ 
ti° 

- Q 
L--__ ---I LOO P 

AROUND 

Figure 5-Load test arrangement 

LOAD 
BOX 

2 

3 

5 

6 

7 

8 

9 

10 

11 
o 10 

_ DIAL TONE 

l1li DIALING 

mEl OUTPULSING 

30 40 50 

"I}}}}]d 

tttn 
kJ 

[]!J RING & TRIP 

EEl TALKING 

o DISCONNECT AND 
AWAITING ORIGINATION 

Figure 6-Load box timing chart 

hour. The load box traffic mix was chosen to duplicate, 
as nearly as possible, the expected mix at the Portland 
office. 

Figure 5 shows the load test arrangement. Figure 6 
displays a simplified 30-second cycle timing chart for 11 
load boxes. It gives the relationship between load 
boxes and the time allowed for the various phases of 
call processing: 5 seconds for dial tone, 3 seconds for 
abbreviated dialing, 5 seconds for outpulsing (trans­
mitting signals over outgoing trunks), 6 seconds for the 
ring and ring trip, 2 to 4 seconds for talking, and 7 to 9 
seconds for disconnect and awaiting origination. This 
type of timing chart is utilized to determine the maxi­
mum service circuit and trunk demand. Analysis of 
this nature is based on the concept that the load pattern 
is repetitive. It can be appreciated that accurate timing 
adjustments for load boxes and the sequencing unit are 
extremely important. 

Test monitoring 

There are many hardware and software performance 
indicators built 'within the No. 1 ESS. The system 
routinely prints out messages on various aspects of its 
well being. 

One particular message, the quarter hour message, is 
of particular interest to us during the load test. It shows 
the total number of originating and incoming calls pro­
cessed by the system in the preceding 15-minute period. 



550 Fall Joint Computer Conference, 1972 

Dial tone speed test data are also included as a part of 
the message. To conduct a dial tone speed test, the sys­
tem performs a routine test every 4 seconds (or 225 
tests in 15 minutes). The test involves an origination 
from a random selected line. If dial tone is not detected 
within 3 seconds, a counter is incremented. Dial tone 
delay is an important indicator of the quality of service 
provided to the customers. The dial tone speed test 
data, therefore, is closely watched in the normal service 
of an ESS office. A high percentage of more than 3-
second delays usually indicates an overload or some 
other trouble condition. 

Another important data included in the quarter hour 
message is the number of the executive control or main 
program cycles. As traffic load builds up, the main pro­
gram cycles get stretched out longer and longer. Conse­
quently, the total number of main program cycles be­
comes less in a fixed length of time. The main program 
cycle rate, therefore, is an inverse function of machine 
load. 

Early studies of the traffic data obtained from the 
then existing program have led to the use of 3500 as the 
minimum number of main program cycles in each 15-
minute interval that can be tolerated while meeting all 
customer service requirements. The peak call capacity 
of the system, therefore, is the call rate which results 
in 3500 main program cycles per quarter hour. 

The call completion rate, that is the number of calls 
completed to talking, can be derived from the load box 
counters. Since the ratio of originating calls and incom­
ing calls is known from load box setups, the call com­
pletion rate can be calculated with reasonable accuracy 
from the quarter hour traffic data. This is a much easier 
method than the one which requires resetting and read­
ing some 560 counters for each test. 

TEST RESULTS 

Call capacity 

The observed call capacity follows closely but gen­
erally higher (about 5 percent) than the capacity pre­
dicted by the capacity-estimating ESS1CAP program. 

For the Portland load box traffic mix (10 percent 
intraoffice, 45 percent incoming, 45 percent outgoing 
calls) the peak busy hour call capacity computed by 
the ESS1CAP is 108,000 calls at a main program cycle 
rate of 3500 per 15 minutes. ESS1CAP assumes that 
85 percent of calls complete to talking and 15 percent 
to busy or no answer. The load test result shows 111,300 
calls per hour at a main program cycle rate of 4767 per 
15 minutes. T~ere were no dial tone delays over 3 sec-

onds during this test. This call completion rate was 
99.8 percent. In real-time consumption, a completed 
call takes more machine cycles than a call to busy or no 
answer. Therefore, the overall results, in terms of the 
number of calls, main program cycles, and call comple­
tion rate, are considerably better than expected. 

The highest load box traffic placed on the system was 
118,080 calls per hour. For this test, the overload con­
trol was disabled with a program overwrite to avoid 
having the inputs rejected at a lower traffic level. At 
this load, 98.5 percent of calls completed to talking, 
and 1.5 percent to partial dial or recorder. A call will be 
routed to a reorder tone if a needed service circuit is 
not available. Partial dial in this case was caused by 
load box dialing before receiving dial tone. About 1.8 
percent of calls encountered dial tone delays over 3 sec­
onds. The main program cycles were 1092 in the 15-
minute interval. The longest duration of a main pro­
gram cycle was 5.5 seconds. This data was obtained 
through a program overwrite which prints out the num-. 
ber of various main program cycle durations in a special 
message. The system performed remarkably well even 
at such low number of main program cycles. 

It is believed that the dial tone speed test failures 
and long main program cycle durations were caused pri­
marily by load bunching of load boxes. Figure 7 shows 
a plot of the number of main program cycles per 
second versus elapsed time on one of the test runs. 
The load bunching is clearly evident. A Varian recorder 
(40 cm per second tape speed) was used in gathering 
this data. 

Figure 8 shows some of the data on main program 
cycles versus traffic and ESS1CAP predictions. This 
figure applies to Portland office only. 

U 
III ., 
II: 
III 
L 30 ., 
III ... 
U 
>-
U 20 
:IE 
c 
II: 
c:J 
o 
:: 10 

z 
C 
:IE 

TRAFFIC 106KIHR 
LOAD BOX CYCLE TIME: 30 SEC 

~ O~~~+W-U-U~~~~~~~~~~~~~ 

o 
o 
z 

10 20 30 40 50 

TIME-SECOND 

Figure 7-Distribution of main program cycles in load 
test-a random sample 

60, 



Field Evaluation of Real-time Capability of Large Electronic Switching System 551 

PORTLAND OFFICE LOAD TEST 
(SPCTX- 5 PROGRAM) 

40K~--------~--------~--------~-' 

II: 
~ 3&K~ 

~ i 
II: 
III 
t­
Il: 
C 
~ 
G 

• ... 
&. 

• III ... 
U 
~ 
u 
I 
c • CD 
o 
II: 
&. 

Z 
C 
2 

30K~~~----+---------~--------1-' 

20K 

ESS1CAP 
PREDICTION 

10KJ---------~--------~--~----~-; 

.. 
• 1. 

3.IK ---- ---- ----, 
108K/HR •• .,: 

o 
o 10K 20K 30K 

CALLS PER QUARTER-HOUR 

Figure 8--Number of main program cycles versus traffic 

It should be pointed out that even though the number 
of calls in the load test matches closely the ESS1CAP 
predictions with similar number of main program cycles 
at very high traffic, the corresponding test load to the 
system is greater. This is because the call completion 
rate in the load test was higher. 

Main program cycles 

As mentioned earlier, to meet the service require­
ments, 3500 was used as the minimum number of main 
program cycles per quarter hour. The test result shows 
that at the Portland office, the system is capable of 
providing good service well below the 3500 minimum 
limit. When the system was processing calls at the rate 
of 116,300 calls per hour (8300 over ESS1CAP pre­
dicted peak capacity), the number of main program 
cycles was 2104 in a 15-minute interval. At this level 
of traffic, only 15.5 percent of originating calls en­
countered more than 3 seconds of dial tone delay ~ The 
service requirements allow 20 percent. 

It appears that for the Portland office, the system can 
operate satisfactorily with 2500 main program cycles 
per quarter hour. The system not only would be able to 
'meet, but also would exceed the service requirements. 
This corresponds to about 4 percent additional capacity 
over and above what has been achieved for the present 
program. Whether the lower main program cycle limit 
can be applied universally to all offices with the same 
program merits further investigation. 

Overload control 

The present overload control appears to be satis­
factory. 

A temporary program overwrite was installed so that 
the various overload parameters could be modified via 
teletype input messages. A series of load tests were 
made by varying this set of parameters. It was possible 
to clamp the quarter hour main program cycles in the 
general vicinity of any desired number during overload. 
In other words, we can limit the load to the system to 
any amount regardless of the service demands . 

Based upon our experience at Portland, the existing 
values of overload parameters could be left as they are. 

Program problems 

The load test also provides maximum interactions 
for various segments of different call programs. Usually 
more program bugs will show up under heavy load, not 
because they are traffic dependent, but rather the con­
ditions which lead to the bugs happen more frequently. 
During the entire 2-week load test period, only one call­
affecting program problem was found, and this problem 
is truly traffic sensitive. 

Many outgoing calls were lost during the early part 
of our test under heavy load. In ESS call processing, a 
certain timing is required to be done on outgoing trunks 
placed on a waiting list after each use. The program 
performs this timing on ten trunks every 200 milli­
seconds. In very high traffic, there were more trunks 
put on the list than could be taken off. Thus, not 
enough trunks were available to handle calls. A program 
change since has been made to correct this situation. 

SUMMARY 

A series of load tests have been made on the Bell Sys­
tem's No.1 ESS latest program in a field office at Port­
land, Oregon. The results of these tests have validated 
the real-time improvements predicted. The call capacity 



552 Fall Joint Computer Conference, 1972 

estimate made by the ESS1CAP computer program is 
credible and conservative by about 5 percent. The sys­
tem is capable of providing good service at the Portland 
office well below the main program cycle rate of 3500 
per quarter hour. A 2500 figure is more realistic. This 
corresponds to a gain of an additional 4 percent capac­
ity. Overload control appears to be satisfactory. 

New improvements, primarily in programming rather 
than in hardware, are being made which will further in­
crease the No. 1 ESS call capacity in the future. 

REFERENCES 

1 W KEISTER et al 
No. 1 electronic switching system 
Bell System Technical Journal Vol 43 Parts 1 and 2 
September 1964 

2 P N ADOR S H TSIANG 
Operational testing of software by means of simulation 
techniques 
lEE Conference Publication No 52 International Conference 
on Switching Techniques for Telecommunication Networks 
London England April 21-25 1969 



Iii' 

Minimum cost-reliahle computer communication networks 

by JOHN DEMERCADO 

Ministry of Communications 
Ottawa, Canada 

INTRODUCTION 

A designer of a computer-communications network 
must consider the reliability of a given network design 
as a function of its realization costs. Although there is 
an abundance of graph theoretic and queuing tools that 
have generated algorithms for the topological synthesis 
and analysis of large networks, 1 ,2,3 it is unfortunate that 
the reliability and cost dimensions of the problem have 
not been satisfactorily related. 

In this paper a fast recursive algorithm6 and elements 
of the theory of discrete Markov process5 are combined 
to develop a new theory of reliability prediction for 
gen~ral networks whose nodes and links have constant 
failure and repair rates. 

The methods presented are applicable to a large class 
of networks including computer-communication net­
works. The reliability theory as presented permits the 
time behavior of these networks to be rigorously 
treated. 

In particular, methods are given for computing 
reliability functions5 for the network. These functions 
given the probability that the network is in an accept­
able state at time t; methods are also given for com­
puting the moments of the first time that the network 
passes from given . "acceptable" states to any arbitrary 
or specified "failure" states. 

In the section on Preliminaries, a method is outlined 
for obtaining the transition probability matrix of a 
Markov chain that contains the per unit time proba­
bilities of communication between each pair of nodes 
in the network. 

In the section on Reliability lVlodelling these methods 
are applied to develop a reliability prediction model for 
any given network. An algorithm for minimum cost 
reliability modelling which delineates the computa­
tional procedure for using these results is then given. 
The recursive algorithm for computing the transition 

553 

probability matrix for a general network is presented 
in the Appendix. 

PRELIMIN ARIES 

Let I P v I be the 2 X 2 transition probability matrix 
associated with node 1]v of a n network 1]. That is 

Av pa,a,v pa.!,v 

v=l, ... ,n (1) 
Fv PI,a,v PI,l,v 

where entry pa,a,v is the probability that node 1]v which 
now operates successfully will operate again successfully 
one unit of time later. Node 1]v is said to be in acceptable 
state Av if it is operating successfully and failure state 
Fv if it is not. Similarly, let I P vu I be the 2X2 transition 
matrix associated with the link (uv) of the network 1], 

that is: 

Auv Fuv 

Auv pa,a,u,v pa,l,u,v 

I Puv I (uv) E {L} (2) 
Fuv PI,a,u,v PI.!.u,'D 

where pa.!,u,v is the probability that link (uv) which is 
now operating successfully will fail in the next period 
of time. The probability PI.a,u.v is the repair probability 
this is, the probability that if link (uv) is now failed it 
will be repaired in one unit of time. The link (uv) is 
said to be operating successfully when it is in state Auv 

and unsuccessfully when it is in state F uv. 

The network 1] is thus specified by a set of n nodes, 



554 Fall Joint Computer Conference, 1972 

l1v; v=l, ... n, denoted by {N}, a set of links {L}, and 
a set of matrices associated with these nodes and links. 

Then for every node 'Y/i and any other node 'Y/j not 
directly connected to l1i by a single link, it is possible 
using the Algorithm given in the Appendix to compute 
the set of 2 X 2 matrices 

Aij Fij 

Aij Xa,a,i,j Xa,j,i,j 

I Xij I = j=l, ... , n (3) 
Fij XI,a,i,i XI,I,i,i 

In equation (3), I Xii I is the one step transition 
matrix for the node pair l1i, l1j. In particular Xa,a,i,j is 
the probability that there was communication between 
nodes l1i and l1h at time t and that there will be com­
munication at time t+ 1. The network is said to be in 
acceptable state A ih if the nodes l1i and l1j can com­
municate at time t, and in state F ij otherwise. 

For a n node network there are n such 2X2 matrices 
for each node l1i and it is possible to combine these into 
a transition probability matrix I Mi I of dimension 
2nX2n for each node l1i as 

I Ai I I Bi I } A.~F, 
(4) 

I Di I ICd } F.~F, 

Where A i and F i are the set of acceptable* and failed 
states associated with node 1Ji. They specify its opera­
tion with respect to the other nodes of the network. In 
general then the probabilistic behavior of the network 
can be characterized by the set {I Mil}, i = 1, ... n of 
2nX2n matrices. The matrices I Ai I, I Bi I, I Ci I, I Di I 
are n X n square matrices which contain the one step 
transition probabilities. In particular 

I Ai I, governs the transition from Ai---7Ai; Vi= 1, ... n 
I Bi I, governs the transition from Ai---7Fi; Vi= 1, ... n 
I Ci I, governs the transition from Fi---7Fi; Vi= 1, ... n 
IDi I, governs the transition from Fi---7Ai; Vi= 1, ... n 

n 

* Ai = U Aik. 
k-i 

For the purpose of this paper the matrices I Ci I, 
i = 1, ... n will be considered as n X n unit matrices, 
corresponding to the case of distinct independent failures 
of individual nodes. The techniques presented could be 
modified for general I Ci I matrices to include progressive 
degrees of failure, and dependence of failures of given 
nodes on other nodes. For the purposes of reliability 
modelling the matrices I Di I can be considered as nXn 
null matrices (all entries zero) . 

Furthermore, from the definitions given in Equations 
(3) and (4) it is readily apparent that the matrices 
I Ai I and I Bi I are diagonal matrices. This fact greatly 
simplifies computational procedures. 

All the methods presented in this paper depend on 
the computation of the matrices shown in Equation (3). 
The recursive algorithm described in the appendix has 
been developed to calculate these transition proba­
bilities for a general network. 

RELIABILITY MODELLING 

For each node of the network, a reliability function 
Ri(t) can be defined as 

[

network 11 is in every acceptable] 
Ri(t) =Prob 

state in Ai at time t 

that is, node l1i is reliable provided it can communicate 
with all other nodes in the network at time t. Defining 
Si(O) as the (1 X2n) initial state vector for node l1i: 

Typically 

Si(O)' = 11, ... 1, 0 ... 0 I 
nones n zeroes 

Let Si(t) be the state vector at time t corresponding to 
node l1i, and the kth element of the vector Si(t) be 
Si,k(t); then 

n 

Ri(t) = II Si,k(t); i=l, ... n (5) 
k=1 

The product in (5) is over the set of acceptable states 
and the state probabilities satisfyb 

Transition failure probabi'ities 

Let Pik (t) be the probability that node l1i initially 
connected to node 11k is no longer connected to node 11k 

after t units of time. Let I Pi(t) I the nXn matrix of 
these probabilities, then the following is true 



Minimum Cost-Reliable Computer Communication Networks 555 

Theorem 1 

Consider a network 7], with nodes 7]iE {N}, i = 1, ... , n 
and links (ij) E {L}. Let the transition matrices for 
these individual nodes and links be I P v I for 7]vE {N} 
and, I P uv I for (uv) E {L} respectively. Then 

(6) 

where 

Proof 

This is a straightforward extension of Theorem 2 in 
Reference 5. 

A special result of Theorem 1 is the following: 

Corollary 

The n X n matrix of the steady state probabilities 
defined as 

(7) 
t->oo 

satisfy 

i=l, ... , n (8) 

where I I / is a nXn identity matrix. I Pi I also will be a 
n X n identity matrix since all physical systems will 
ultimately fail with probability 1. 

Proof 

Equation (6) can be expanded as 

therefore the limit in Equation (7) is the sum of the 
infinite Geometric series 

co 

I Pi I = ~ I Ai It I Bi I 
t=O 

which is (8) Q.E.D. 

I Moments of the first time to failure 

The Reliability Modelling of the Network 7] is com­
pleted if in addition to the Equations (5), (6) and (8) 
it is possible to compute the moments of the first time 
that various types of disconnections occur in the 
network. 

Closed form expression for these moments can be 

obtained for each of the nodes 'Y/i in terms of the matrices 
I Ai I and I Bi /. To obtain these expressions, define for 
node 'Y/i the random variables r ik as 

rik="first time that node 'Y/i is no longer 
connected to 'Y/k." 

Then Pik (t) is the probability distribution function of 
the random variable r ik that is 

(10) 

Generating functions 

Since rik is a discrete random variable its moments 
can be obtained from its generating function gik(Z) 
which is defined 

co 

gik(Z) = ~ Ztpik(t) (11) 
t=1 

For each node 7]iE {N} of the network 'Y/ we obtain a 
matrix I Gi(z) I of generating functions which can be 
written in matrix form as 

co 

I Gi(z) 1= 2:: zt I Pi(t) I, i=l, ... , n. (12) 
t=1 

Let I riCk) I be the (nXn) matrix of the kth moments, 
k= 1,2, ... of the random variables {rij} for node 'Y/i. 
Then: 

{k=1,2, ... 

{i=l, 2, ... , n 

Using the Equation (6) it is possible to obtain a closed 
form expression for I G i (z) I and hence I r i (k ) I in 
terms of the matrices I Ai I and I Bi I without the need 
to evaluate infinite series of the form given in Equation 
(12). This result is given in Theorem 2. 

Theorem 2 

Let 'Y/ be a n node network, with nodes 'Y/i E {N}, and 
links (uv) E {L} with corresponding one step node and 
link transition failure probabilities I P v I and I P uv I. 
Then the generating functions I Gi(z) I for the moments 
of the random variable r ij "first time no connections 
exist between node 'Y/i and node 'Y//' are given as 

i=l, ... , n 

(14) 



556 Fall Joint Computer Conference, 1972 

Proof option r, the matrices 

Substituting (6) into (12) and expanding gives 

00 00 

I Gi(z) I = ~ zt I Ai It-II Bi 1+ ~ zt I Pi(t-l) I (15) 
t=I t=I 

the first term in (15) is z II I I-z I Ai 11-11 Bi I and 
the second is simply z I Gi(z) I. Q.E.D. 

It can also be shown5 that the moments tiCk), k=1 
the random variable t i, where· . 

t (== "first time that node 1]i is disconnected 
from all other nodes" 

are ·given by 

n 

tiCk) = ~ tij(k) k=l, 2, ... 
j=I 

(16) 

In particular for k= 1, Equations (13) and (16) are the 
important mean times to first failure. 

MINIMUM COST RELIABILITY MODELLING 
ALGORITH1VI 

In general the problem facing the network designer 
is which equipment to use to realize a given network 
within a given cost range and with what reliability. 
There are many, variations of this algorithm depending 
on which aspect of the network design problem is 
receiving the most emphasis. In the version indicated 
below emphasis will be placed on the problem of 
implementing the most reliable network that is below 
a certain cost. . 

Network costs 

Let {C(N)} and {C(L)} be the cost matrices for the 
nodes and links of network 1]. That is the cost C of a 
realization of 1], for a given topology and type of equip­
mentis 

C= ~ C(1]i)+ ~ C[(uv)] (17) 
'lie { N} (uv) E {L} 

Algorithm 

Given the network 1], with nodes 1]iE {N} and links 
(ij) E {L}, and link and node cost transition matrices 
for r implementation options, that is given for each 

r=l, 2, ... 

Find those options that will realize 1] with the best 
reliability and have cost less than or equal to some 
constant C. 

~ C(1]v) + ~ C(uv) ~C 
nVfl N} (UV) f{ L} 

Step 1 

Find the set of options whose realizations of 1] 

satisfy (17). If none then C is too low, and should 
be incremented by an amount t,.C and Step 1 
repeated. When options are found go to Step 2. 

Step 2 

Use the Recursive Algorithm in the Appendix for 
each network node 1]i and each of the options r, 
that satisfy the condition (17), to compute the 
general one step transition probabilities in Equation 
(3) and arrange these as matrix I Mil for the 
rth option 

I M{ I; i=I, ... n; r=I, ... , h 

Go to Step 3. 

Step 3 

Let us assume that there are h such options, for 
each acceptable option r, r=I, ... , h, compute 
using the methods given in the paper 
[Rl(t);1 Pl(t) 1;/ tl(k) I;t{(k)], i=I,2, ... ,no 
The most reliable network is the one which has the 
"best" reliability function, longest mean time to 
failure, etc. Usually the designer can do the selection 
trade offs, by comparison of the above functions 
for the different options. 

Example . 

Consider the network 1] with full duplex links 

{N} = {1]I, 1]2, 1]3}, {L} = {(1]l'Y/2), (1]11]3), (1]21]3)}. The 
following options, can be used to construct this network. 
Furthermore the cost of the network realization should 
if possible not exceed C = 250 units. 



.1 ] 

.88 ' 

.15] , 

.8 

[.9 .1] 
I P32

1 = 
.04 .96 

[.9 .1] 
I P122 I = I P21

2
1 = 

.2 .8 

.15] 

.92 

.12] 

.86 

Minimum Cost-Reliable Computer Communication Networks 557 

Use of the Algorithm 

Step 1 

Using Equation (17) we find for these two options 
Option 1: Cost 236 units < C = 250 units 
Option 2: Cost 213 units < C = 250 units 

:. Both Option 1 and Option 2 must be considered as 
possibilities in realizing the network 'Y]. 

Step 2 

The recursive algorithm in the Appendix is now 
used to find general one step transition matrices 
for each node 'Y]i, i = 1, 2, 3, for each of the two 
options r= 1, 2. 

Option 1 : node 'Y]1 

Au .90 0 0 .10 0 0 

0 .86 0 0 .14 0 

0 0 .88 0 0 .12 

Option 1 : node 'Y]2 

.90 0 0 .10 0 0 

0 .80 0 0 .20 0 

0 0 .85 0 0 .15 

== f I As1 1II1 Bi II 

Option 1 : node 'Y]3 

.88 0 0 .12 0 0 

0 .85 0 0 .15 0 

0 0 .75 0 0 .25 



558 Fall Joint Computer Conference, 1972 

Option 2: node 111 

An .9 0 0 .1 0 0 

0 .88 0 0 .12 0 

0 0 .82 0 0 .18 

Option 2: node 112 

.91 0 0 .09 0 0 

0 .83 0 0 .17 0 

0 0 .80 0 0 .2 

Option 2: node 113 

.87 0 0 .13 0 0 

0 .79 0 0 .21 0 

A33 0 0 .81 0 0 .19 

Step 3 

The methods given in the Paper can now be used 
to compute the reliability function, mean times to 
failure, etc., for each of the network realizations 
using option 1 and option 2. Computation indicates 
that option 2 will yield better performance than 
option 1 even though it costs less. 

ACKNOWLEDGMENTS 

The author would like to thank Mr. Nicholas Spyratos 
for his assistance in the preparation of this paper, and 
his secretary lVIiss Gail Widdicombe for expertly 
producing the manuscript. 

REFERENCES 

1 H FRANK . I FRISCH 
Communications, transmission and transportation networks 
Addison Wesley 1970 

2 J DEMERCADO N SPYRATOS 
The synthesis of non flow redundant computer 
communications networks 
Proceedings Brooklyn Polytechnic Symposium on 
Computer-Communications and Teletraffic NYC 
April 1972 

3 J DEMERCADO K TOTH 
The synthesis of computer communication networks 
Department of Communications Report June 1972 available 
from Library Department of Communications 100 Metcalfe 
Street Ottawa Ontario 

4 E HANSLER 
A fast recursive algorithm to calculate the reliability of a 
communication network 
IEEE Transactions on Communications Vol COM-20 No 3 
June 1972 pp 637-640 

5 J DEMERCADO 
Reliability prediction studies of complex systems having many 
failed states 
IEEE Transactions on Reliability pp 223-230 Vol R-20 No 4 
November 1971 

6 J DEMERCADO N SPYRATOS 
Recursive algorithms for stochastic networks 
(To appear) 

APPENDIX 

In this appendix an algorithm6 is presented for deter­
mining the probability of disconnection between any 
two nodes of a general communication network with 
failing links and nodes. This algorithm offers con­
siderable computational savings compared to a recent 
algorithm by Hansler.5 

Notation 

The following symbols are used: 

pa.!,i is the probability that node l1i operates, at 
time t, but fails at time t+ 1. 

pa,l,i,i is the probability that the link (ij) operates 
at time t but fails at time t+ 1. 

Xa,l,i,i is the probability* that node l1i can com­
municate with node l1i at time t but there is no 
communication at time t+ 1. 

di denotes the degree of node l1i. That is the 
number of linkcs onnected ot this node. 

* Xa, I, i, i should be identified as the transition probabilities 
given in equation (3). 



Minimum Cost-Reliable Computer Communication Networks 559 

denotes the set of nodes at the ends of the d i 

links having 1Ji as a common terminal node. 

To simplify the notation we suppose that the network 
has n nodes and the probability Xa,f, l,n is to be cal­
culated. 

The recursive algorithm 

Define the following sets: 

Y l = {x, y} where x means failure and y operation 
of node 1Jl. 

A = {1Ji EN / 1Ji cannot communicate with 1Jn at 
time t+l} 

B= {1JiEN/the link (i, j) fails at time t+l} 

Now the space YlXP(Nl ) XP(Nl ), where P(Nl ) 
denotes the power set of N l , is clearly the sample space 
on which the failure events for the network must be 
identified. 

Suppose that u is the probability measure on the 
sample space, 'Y the probability measure on P(Nl ) X 
P(Nl ) and p. the probability measure on P(Nl ). 

The events of failure for the network belong to one 
of the following two classes of events: 

F l = {(x, A, B)/A, BEP(Nl )} 

F2 = {(y, A, B)/AUB=Nd 

Therefore, 
Xa,f,l,n= L u[(x, A, B)]+ L u[(y, A, B)] 

Fl 

L Pa,f,io'Y[(A, B)] 

A=N-B 

=pa,f,l L 'Y[(A, B)] 
A,BEP(Nl) 

+(l-Pa,f,l) L p.(A)p.(B} 
A=N-B 

A=N-B N-B 

II (l-xa,f,i,n) II Xa,f,l,i II (l-Pa,f,l,i) 
B B N-B 

A=N-B B 

X II Xa,f,i,n(l-Pa,f,l,i) 
N-B 

The last formula is a recursive one since Xa,f,i,n is the 
probability of disconnection between 1Ji and 1Jn but in a 
simpler network. 

Comments 

Since Nl contains dl elements, the various ways we 
can set A = N - B are, in all 2d1 and, therefore the num­
ber of terms in this formula is 1 +2d1• On the other 
hand, Hansler's recursive formula uses 1 +22d1 terms. 
Therefore the computational savings of the present 
method are (1+22d1) - (1+2d1 ) = 22dl_2dl. 





I 
I 

',i
,
.[ 

'I:" 

" 

The Control Data ® Star.IOO file storage station 

by G. S. CHRISTENSEN and P. D. JONES 

Control Data Corporation 
St. Paul, Minnesota 

INTRODUCTION 

Successful experience with the Control Data® 60001 

and 70002 computer series has led to implementing im­
proved concepts3, 4, 5 of distributed computing in the 
STAR-IOO computer system. In the STAR system dif­
ferent computing functions have been physically 
separated from one another. Each 'computing function 
is performed by an independent system unit which 
possesses its own processing logic and memory. Thus 
each is performed in its own right in an optimal manner. 

STAR-100 computer6 is a high speed processor capa­
ble of producing 100 million results (from a multiply 
operation, for instance) per second in its 4 or 8 million 
byte core memory. STAR itself cannot perform data 
input/output, this is performed by input/output units 
called stations which have channel interfaces to STAR. 
A station consists primarily of a mini-computer specially 

. designed for data handling. The STAR design is thus 
simplified by not having to contain device interfaces; 
this modularity is important in the design of large 
computer systems.7 Also the processor overhead of 
driving peripheral devices is relegated to the stations 
thus freeing STAR for additional user computation. 
Experience in several hundred Control Data® 6000 
computer sites has shown it impossible to operate very 
high speed computers efficiently without distributing 
peripheral functio~s. As well as distributing the pe­
ripheral device drivers in STAR it has been found pos­
sible to perform system functions, such as file manage­
ment, in the stations. So far 9 different STAR sta­
tion types have been identified and built, these include: 
maintenance and monitoring, paging, storage, media 
(tape and disk), unit record, communication, display/ 
edit, graphic and service. These contain the same basic 

561 

hardware and software hut vary at the device controller 
and system software interface level. The service station 
is a key station in that it manages the system resources 
and provides fan-out to the second level stations. 

Operating system functions are thus distributed in a 
manner which closely follows the distribution of the 
hardware. The connecting links between the distributed 
operating system functions are controlled by a set of 
system messages and message handling is a key factor 
in efficient operation of the system. 

The choice of where each operating function should 
be located is often self-evident, although a few func­
tions are assumed to be movable from one element to 
another~ Any final decision regarding function locations 
may depend on experience with particular work loads. 
In general each operating function is located closest to 
the resource being used and may be local or remote to 
the STAR processor. This provides modularity of both 
hardware and software and such advantages as: 

• independence from other units, particularly in the 
areas of non-propagation of errors throughout the 
system and more immediate action on fault condi­
tions. 

• capability to be independently maintained. 
• easier replacement of future new hardware or 

software parts. 
• easier addition of new types of stations. 

Figure 1 illustrates the layout of a large STAR system 
showing the connections between the various stations. 

A STAR central processor with its immediate storage 
is simply another station within the system-a data 
processing station-and in no way does it have any 
extra authority. It does, however, have two stations 



562 Fall Joint Computer Conference, 1972 

Figure I-STAR system showing station connections 

fairly intimately connected, the paging station and the 
maintenance/monitoring station. The paging station, 
under control of the hardware virtual page mechanism 
and the operating system, provides temporary storage 
for programs exceeding the available core space. The 
maintenance station, besides its functions of off-line 
and on-line fault diagnosis/repair and preventive check­
ing, has the capacity to collect detailed information 
about STAR's performance. 

The data management function is performed by pro­
grams' executed within the central processor. These 
functions include merge, sort, select, scan, append, ex­
tract and insert. The data manager in turn exploits the 
storage station via message commands. This paper de­
scribes the storage station which manages the storage 
and retrieval of working and archival files. 

STATION HARDWARE 

The hardware used to implement the distributed 
computing concept in STAR is designated as various 
classes of input/output stations. Each Star channel 
terminates at a station with a common interface. The 
station (Figure 2) consists of an seu (Station Control 
Unit) and an SBU (Station Buffer Unit). 

The seu consists of a mini-computer, display/ 
keyboard, small drum and channel interfaces which exist 
with power supplies, cooling fan and operator panel in 
one cabinet. The mini-computer has an instruction set 
which caters to bit and byte manipulation. It contains 
8K (K= 1024) 8-bit bytes, expandable to 16K of 1.1 
microsecond core memory. There is a 200 nanosecond 
version of the same meory but the 1 MIP (million 
instructions per second) rate of the computer is ade­
quate for most present applications. The drum has an 
average access time of 17 milliseconds and a capacity of 
approximatly 80,000 bytes. It is used as a store for 
program overlays and also as a refresh memory for the 
display console. 

The mini-computer (or buffer controller) provides a 
single, parallel-block transfer channel with hardware 
control for high speed data transfer. Its maximum rate 
is one 16-bit word plus two parity bits per memory 
cycle, 1.1 microseconds. The buffer controller also pro­
vides up to 512 normal channel bits for lower speed 
data transfer and device and station control. These bits 
are organized into 16 input channels and 16 output 
channels with 16 bits in each channel. Their use is de­
termined by the individual peripheral devices on the 
station. The normal channel bits of the buffer controller 
provide the primary mechanism for control of the other 
station elements and the attached devices. A direct 

STATION BUFFER UN IT 

STORAGE 
INTERFACE 

BUFFER 
CONTROLLER 

Figure 2-STAR station 

STORAGE 
DEVICE 



I 
I 

I 

I 

interface of normal channel bits is provided between 
the SCU and the SBU (Figure 2). 

The SBU consists of up to 64K bytes of memory 
organized in eight interleaved banks of 8K bytes each. 
Each bank has a memory cycle of 1.1 microseconds 
with a maximum bandwidth of 14 million bytes per 
second. Storage control logic provides for 12 indepen­
dent channel accesses. The SBU is always associated with 
a controlling SCU. The general function of the SBU is 
to provide intermediate buffering of data, fan in/out 
from one STAR channel to many other station channels 
and working storage for the station. The interfaces to 
attached devices are contained in the SBU. 

The following features of the SBU and its interfaces 
are important to its application and performance as a 
storage control mechanism. 

• The high bandwidth allows simultaneous transfer 
of a number of storage devices into the SBU. The 
CDC 844 disk pack, for instance, has a transfer 
rate of approximately 1 million bytes per second 
compared with the SBU bandwidth of 14 million 
bytes per second. 

• Device control operations such as connecting, ad­
dressing, and status are accomplished directly 
from the SCU over the buffer controller normal 
channel to the SBU device interfaces. This provides 
direct, detailed control of the devices. 

• Actual data transfer between a storage device and 
SBU takes place automatically under control of 
the SBU device interface hardware. This frees the 
SCU during SBU data transfers. 

• The SCU can directly access STAR storage via 
normal channel .bits and the SBU interface. This 
mode is advantageous for message transfer and 
queue control. 

• The SBU device interfaces are capable of stacking 
(queueing) functions and data transfer specifica­
tions. This allows maximum performance of the 
devices while relieving the SCU of having to inter­
vene during brief, critical events such as crossing 
of intersector gaps. 

• The SBU device interfaces have the capability of 
chaining SBU memory areas creating a contiguous 
data stream to a storage device from several SBU 
memory areas. This is used to automatically as­
semble and disassemble sync pattern and header 
information with the data block. 

• All data is stored in fixed length blocks of 4096 
bytes. 

Storage 8tation 80ftware 

Tasks are communicated to the storage station via 
system messages. Each message selects a specific task 

Control Data ® Star-100 File Storage Station 563 

and is handled by an SCU routine referred to as a task 
overlay. The task overlay contains the control code 
necessary to accomplish the task by calling various 
station subroutines and device drivers. 

Associated with each device attached to a station is a 
device software driver in the SCU. This is a specialized 
routine which actually drives the devices through the 
SBU hardware interfaces. The other station routines 
communicate with the drivers through a driver param­
eter table and a driver-maintained status table. One 
status table exists for each device. 

In addition to the device drivers other station sub­
routines are associated with station resource manage­
ment and utility functions. Examples of these are: 

• Rent buffer space in SCU 
• Rent block in SBU 
•. Transfer SBU/SCU data 
• Transfer CPU data 
• Hash file name 

Each station contains a standard program referred to 
as the nucleus or monitor. It contains a set of simple 
diagnostic routines known as quick-look diagnostics, a 
system autoload program, driver programs for the 
microdrum and for the keyboard associated with the 
character display, programs to manage the microdrum 
overlay mechanism, and the main control and organiza­
tional program. 

The SCU microdrum holds a copy of all station soft­
ware. The SCU operates under one of four different 
systems. These systems are allocated as follows: 

1. Microdrum loader system 
2. Run system (normal case) 
3. Diagnostic system 
4. Off-line system 

The system is selected at start-up of SCU programs. 
The selection of a system causes linking of all routines 
associated with the system via scanner and overlay 
tables. When running, a given system contains the 
operating portion of the nucleus (the system selection 
and set-up routines are discarded to be called again 
from the microdrum for a new autoload) and specified 
routines fixed in core. The remaining routines are called 
when required from the microdrum. Calling a routine is 
accomplished through an overlay table which contains 
the core address of the called routine or the address of a 
routine which reads it into a core· area available for 
temporary overlay and buffers. All routines associated 
with a system are thus directly accessible yet only the 



564 Fall Joint Computer Conference, 1972 

most active routines reside dynamically in the SCU 
core memory. 

The scanner is the idle loop of the nucleus. The pri­
mary purpose of the scanner is to map normal channel 
data signals to overlay programs based on priority and 
logical selection, thereby providing a low overhead 
mechanism for handling asynchronous external events. 
The external events (such as channel flags, microdrum 
busy, or input read signals) are presented to the sc~nner 
program via one or more normal channels. ASSOCIated 
with each channel are two logical selection words, the 
EN ABLE mask, and the STATE mask .. The channel 
data is exclusive or'ed with the state mask in order to 
select the appropriate signal polarities, and then 
matched against the enable mask. Any bits that are 
now set represent selected channel events in the desired 
state. These bits are scanned from left to right and 
the first bit found set is used to enter the overlay pro­
gram associated with that bit. If all hits are zero, the 
scanner moves on to the next channel and repeats the 
procedure. One or more memory words are used to initi­
ate internal events via the scanner. In this case, the 
memory words rather 'than the channels represent the 
raw input to the scanner. In a typical station, the 
scanner cycles through two normal channels. and two 
memory words. 

A detailed error handling and maintenance system is 
provided in the stations. Abnormal conditions in the 
operation of a device cause the device driver to exit to 
an associated error handling routine. This routine 
handles retries and error logging. It operates in conjunc­
tion with a device monitor routine which is used to set 
the parameters for a device, such as number of retries, 
turning device off to system, and breakpointing in the 
driver. A maintenance information system provides an 
English translation of the driver parameter tables and 
the device status tables on the SCU display and pro­
vides operator access to control the device operation 
via the device monitor. 

Included in the maintenance system is the capability 
to run diagnostics and utilities associated with a device. 
These tests are controlled using the device driver, 
parameter table, and status tables and may be run in 
conjunction with the system operation on other station 
devices. 

'FILE SYSTEM 

The file system described here exists totally within 
the storage station and is independent of any particular 
processor station, network configuration or storage de­
vice type. Creation, maintenance, recovery, access, 
security, st,orage layout, accountancy data, and per­
formance statistics are all managed within the station. 

The station file system is implemented as a set of 
task overlays. Each overlay is associated with a specific 
system message and provides the coordination neces­
sary to accomplish the system task. using the station 
device drivers and subroutines. Each message has a 
separate overlay to process it. If the message occurs 
frequently, the overlay remains in seu core; otherwise, 
it is called in from the micro drum when it is needed. 

Active file index 

All the file messages are listed in the Storage Station 
Messages section. A file is simply a collection of stored 
bits which has a descriptor and can be operated on bya 
set ~f file functions. No file function is processed until 
the file is first opened, and the last file function must 
always be a close function. In the open message, identi­
fication of a file is by file name (File Name Section). 
For other messages, identification of a particular file 
is by its active file index, the index of the file entry in 
the active file table (Figure 3). The file index is assigned 
by the storage station and returned to STAR in re­
sponse to the open message. The advantage of this ar­
rangement is that the majority of file messages use a 
16-bit identifier rather than a variable length string of 
characters which could be quite long. By maintaining 
active-file information in core storage, access validation 
and transformation between logical (file page) and 
physical block locations is normally accomplished with 
negligible overhead and without introduction of super­
fluous input-output operations. 

The size of each active file table entry is 8 characters 
(Figure 3). Initially, one SBU block of 4096 characters 
is devoted to the active file table, allowing 512 open 
files at anyone time. This can be easily expanded if 
required. If the file is noncontiguous, read/write of file 
pages which are not in the first contiguous section re­
quire an access to the storage map in the file descriptor. 
One could trade the number of open files allowed for 
fewer open files with each entry containing the map of 
more than one file section. 

1 

u 

15 8 8 

0/1 = free/used flag 
F = description pointer 
M = access mode 
U = unit number 

NI 
16 16 BITS 

S = starting address of file on device 
N = number of blocks contiguous to S 

Figure 3-Active file table entry format 



File descriptor (catalog entry) 

Each file has a descriptor which' describes the file as 
seen by the system. The descriptor (Figure 4) consists 
of 8 sections: Header, characteristics, name, storage 
map, access map, activity map, and two free sections 
reserved for later use .. 

The set of descriptors for those files occupying a par­
ticular storage unit is itself part of a file and may be 
processed like any other file; it is called the descriptor 
file or catalog. This catalog mayor may not be on the 
same storage media as the files it describes. Normally, 
removable media contain their own catalog files, but 
these may be copied elsewhere on mounting. 

The size of an individual descriptor is variable in 
modules of 256 bytes up to a maximum of 4096 bytes. 
Initially, just one module (256 bytes) is used for each 
descriptor. 

As an example the Control Data ® 844 disk pack at 
present has the following layout. 

Blocks 0, 1 
Blocks 2,3 

Pack Label 
Free Storage Map 

Blocks 4 through 67 Descriptor Modules 
(1024) 

Blocks 68 through Data Files 
23,027 

) 

Pack 
Catalog 
File 

To facilitate processing in the SCU, the descriptor 
proper is kept reasonably small, but the sections can 
have pointers to overflow areas and these may be of 
any length. The space allocated for the catalog is also 
variable. Initially 64 blocks of 4096 characters are used 
providing 1024 files per storage unit. 

The allocation of a descriptor module to a newly 
created file is done either by the use of a free space 
map for the modules or by a hashing algorithm. To 
locate a file descriptor, the file name is hashed to locate 
a bucket in a hash table which contains entries of file 
names and pointers to their descriptors. This hash table 
is re-created (say at autoload) so that the system is not 

I tied to anyone hashing algorithm. The hash table may 
'11'1

1 

itself become quite long and is kept on the storage unit 
with the files or some associated storage device. An 

II alternate implementation simply hashes directly to the 

I",' descriptor module. If the file name does not match the 
name in that module, a search is made of the surround­
ing modules in that block. It is to be emphasized that 

II, normally the descriptor is only referenced on the open 
:1 and close functions. All read/write file pages reference 
II,' the active file table which is in SBU core. 
I 

Control Data ® Star-100 File Storage Station 565 

32 BITS 32 BITS 

RN I RB 

T I FLI RL FREE 

I PTR IRA # 2 

FREE I IRA # 3 

RN = number of records I RA # B 
RB = i~s~l~~~s file length 4 12 BITS 

T = type 64 BITS;~ 
fL = file length in bits I 
RL = ~~~:d record length in 1116 BITS 

PTR= pointer to structure HEADER 

defini tion wi thin file 2 CHARAC-

N = number of file 
sections on 
this unit 

S]. = starting 
block address 

N]. = number of 
blocks con­
tiguous to 
this address 

PTR= pointer to 
extended 
storage map 

32 BITS 

OaT 

N2 

ETC 

PTR 

TERISTICS 

3 NAME 

5 ACCESS 
MAP 

ACTIVITY 

FREE 

FREE 

#127 

L = descriptor length 
in bytes 

RA = relative address 
in words 

L]. = length local name 
in bytes 

L2 = length owner ID 
in bytes 

8 8 

MO I Mp 

I N 

L2 1M2 
U2 

ETC 

PTR 

oaT 
c = c reati on date 

and time 
N number of entries 

LU oa T 

I 
FREE 

FREE 

E = expiration date 
and "time 

LU = last update date 
and time 

N = number of opens 

~g ~~~iic a~~~::s 
~i ~:~~t~ ~~c~~;es of U1 

U]. user 1 identifier 

PTR= pointer to extended 
access map 

Figure 4-File descriptor format 

Storage map section 

The storage map (Figure 4) allows for a storage sys­
tem to be divided into 256 units, each with a capacity of 
65,536 blocks (228 bytes: approximately 268 million). 
A variation on this scheme is being implemented which 
has 32-bit field lengths for block addresses and number 
of blocks contiguous to an address. This will cater for 
larger storage systems with capacity up to 232 (approxi­
mately 4 billion) blocks or 244 (16 trillion) bytes. 

Characteristics section 

The characteristic section of the descriptor is shown 
in Figure 4; the different file types are undefined (0), 
ASCII coded delimited (1), AS CIl coded fixed (2), 
binary STAR (3), binary fixed (4), foreign delimited 
(5), foreign fixed (6), virtual memory (7), drop (8), 
labeled (9), multiple volume (10), incomplete (11), 
temporary/permanent (12), input (13), and output 
(14). 

Types 1 through 6 categorize file types according to 
their internal coding. The exact definition is not im­
portant but it should be noted that types 3 through 6 



566 Fall Joint Computer Conference, 1972 

have an associated record map which describes the 
record structure of the file. A virtual memory file has a 
virtual address associated with each file page. The drop 
file is similar to the virtual memory file, it is a frozen 
image of an executing job which has been suspended for 
some reason together with the virtual address list and 
current program status information. The labeled file is 
one that has a label (somewhat similar to the file de­
scriptor) within the file. These last three types use a 
pointer address to locate the relevant structural infor­
mation within the file. The multiple volume/unit file is 
one that is spread over a number of storage units; yet, 
it is logically one file. An incomplete file is one upon 
which, although incomplete, processing begins; such is 
the case when processing begins after only a portion of 
tape is spooled onto a disk. No doubt other file types 
will be added, but these provide sufficient categorization 
for the present. 

Example of File Name 

File name section 

Perhaps the most important thing about a file is its 
name. It is that which identifies it uniquely and which 
must be used to open the file before it can be processed. 
The name consists of two parts, a local name followed 
by an owner identifier. Each part consists of a variable 
length string of characters (the ASCII alphanumeric 
set plus -$#). The parts are separated by the ASCII 
space character. Certain characters are reserved for 
special use within file names: *, /, ., &, I, and ? The 
period character . for instance, is used to indicate some 
hierarchical structure within the name. 

The file system is not normally concerned with the 
internal structure of either the local name or owner 
identifier, who gave this name or identifier, or where it 
came from. Essentially the name is used to locate the 
descriptor. 

MATRIX J~49 

4D4154524958204A323439 {ASCII hexadecimal} 
/ I ~ notation} 

local name separator owner identifier 

Storage layout section 

The storage layout of a file varies with the particular 
storage device but the goal in each case is the same, 
that is, to organize file storage in a manner which does 
not deter high-performance of expected access requests. 
A large block of data, stored as 128 consecutive physical 
blocks on a Control Data ® 817 disk requires a little 
over a tenth of a second for transferring its half million 
bytes; stored differently, its transfer could take up to 
10 seconds. The allocation and layout of a file are 
governed by a RENT/STORE routine which can be 
replaced or modified in order to implement more elabo­
rate policies. This routine normally tries to allocate the 
desired number of blocks in a contiguous fashion; if 
this is not possible it will allocate the total space on as 
few large sections as possible. 

The map of the disk file is a vector. Each element of 
the vector is a storage location and a number indicating 
how many blocks are contiguous to the location. As 
many contiguous sections as possible are represented 
in the descriptor proper and the rest are kept in an over­
flow area. 

Access security section 

Every time an OPEN operation is requested through 
a storage station, the. access rights of the user are 

checked against the access map in the file descriptor. 
The open function has an owner identifier and a user 
identifier catenated to the local file name and termi­
nates with the ASCII record separator code. If the user 
and the owner are the same person, the user identifier 
may be omitted. If the access is not permitted, an in­
valid access response is returned to the message sender. 
For the other file messages, validity of the operation is 
checked against the mode stored with the file entry in 
the active file table. Initial file access mode is one of 
four: 

• Cannot delete 
• Cannot alter access modes 
• Cannot write 
• Cannot read 

The access modes for the different users are set or 
modified by access mode messages to the station .. The 
default option on creation of a file is that the o-wner has 
open access and the public has no access. The file system 
again is not concerned with the internal structure of the 
user identifier; it is simply a variable length string of 
characters, . and in fact, could be an agreed upon group 
name rather than an individual user identifier. 



Example of File Identifier 

MATRIX ® J249 

Space -I 
local owner 
name identifier 

If the user is the owner, then this can reduce to 

MATRIX @ J249 

Multiple stations 

A typical STAR installation might include two STAR 
processors supported by a number of storage stations 
each having different storage devices attached. Such a 
system exists and is in experimental operation. It is 
possible for a user to specify on opening a file its loca­
tion; if this is not done STAR sends messages to 
all storage stations listed in its directory. The station 
where the file exists opens the file and makes the ap­
propriate response which STAR keeps till the file is 
closed. The other stations return a "not found" re­
sponse. 

At present on "create and open" the user must specify 
the storage station . where the file is to be created but 
need not specify the device on that station unless he 
wished to do so. If a file of the same name already exists 
on the station it will be deleted if it is a "temporary" 
file and the new one will be created; otherwise, if it is a 
"permanent" file an "already exists" response will be 
returned to STAR. Files may be shared between dif­
ferent users and two STAR processors providing they 
are open for read only access. The station has no diffi­
culty returning responses and data to the correct STAR 
processor since it is identified by its zip-code· in the 
message header. 

File system extensions 

The basic file system can be extended to provide 
specific features. The basic file system and these ex­
tensions are expected to provide a very complete, stand­
alone storage system. 

• Automatic mounting-(packs cartridges, tapes, 
etc.)-Standard ASCII labels, automatic alloca­
tion of drives, and the mounting and dismounting 
with label validation. 

• Multivolume files-Allowing a file to spread itself 
over a number of units. 

@ 

@ 

Control Data ® Star-IOO File Storage Station 567 

L543 @ 
-I Record 

Separator 
user 
identifier 

@ 

• Archival file directory-One archival file directory 
for all files, on-line and off-line. 

• Structured file name and owner luser identifiers­
Structured names and identifiers linking files of a 
given class into a more complex access mechanism. 

• Shared access security-Extended access mode 
conditions. 

• File editions-Allow the user to specify file edition 
numbers or default to the latest edition. 

• Accounting and performance statistics-Recording 
of station accounting and usage statistics. 

• Experiment with distributing certain data man­
agement functions, which are now performed in 
STAR, to the stations. 

STORAGE STATION MESSAGES 

The following list gives messages which can be pro­
cessed by storage stations. The underlined parameters 
are returned with the response. 

Function 

Create and open file 

Open File 

Close File 
Close and delete file 

(temporary and perma­
nent) 

Close and delete tempo-
rary file 

Keep file 
Set file characteristics 
Set file length 
Is file open 
Read file pages 
Write file pages 
Read file descriptor 

Parameters 

File Messages 
F, M, Mo, Mp character­

istics, name' and user 
ID 

F, M, characteristics, 
name and user ID 

F, characteristics 
F 

F 

F 
F, characteristics 
RB 
F, characteristics, name 
F,N,S,B 
F,N,S,B 
F,B 



568 Fall Joint Computer Conference, 1972 

Function 

Write access list entry 
Modify owner and public 

access 
Mount (tape, pack, 

cartridge) label L 

Read N blocks from stor­
age unit 

Write N blocks from stor­
age unit 

Read N blocks from stor­
age unit with header 

Write N blocks from stor­
age unit with header 

Storage unit status 

Legend for Parameters 

Parameters 

F, M, user access key 
F, M, user access key 

L 

Test Messages 
B,N,S 

B,N,S 

B, N, S, Header 

B, N, S, Header 

F = active file index (given by storage station) 
M = access mode bit 0 set means cannot 

(used on open) delete 
bit 1 set means cannot al-

ter access modes 
bit 2 set means cannot 
write 
bit 3 set means cannot 

read 

Mo, Mp = access modes of owner and public, respec-
tively (used on creation) 

N = number of blocks/file pages to be transferred 
S = starting file page number (starts with zero) 
B=core block number, if bit 0 set B=SBU address 
User ID = user access identifier, variable length string 

of characters which ends with the record 
separator character. 

N 1 = total number of· blocks 
N 2 = number of disabled blocks 
N 3 = number of active blocks 
N 4 = number of free blocks 

L = label on pack, cartridge, tape 
RB = Length of file in blocks 

Message header format 

Preceding each set of message parameters is a header 
which has the following format. 

RESPONSE MESSAGE PRIVATE PRIVATE 
CODE LENGTH USE OF USE OF 

SENDER SENDER 

PRIVATE TO FROM MESSAGE 
USE OF ZIPCODE ZIPCODE FUNCTION 
SENDER CODE 

16 16 16 16 BITS 

Details of the message formats are not significant 
here, except to mention that it is valuable to limit the 
number of different formats used and to ensure field 
lengths are large enough to cater for future storage 
devices. The format is important, however, in respect 
that once it is established and used by a number of 
routines even small modifications to it can have wide­
spread, effects and are often time consuming and difficult 
to checkout. 

CONCLUSIONS 

The storage and file functions of a general-purpose 
computing system have been identified and separated 
to operate outside and in parallel with the central pro­
cessor in a stand-alone, local or remote, storage station. 
This station forms part of an overall plan to distribute 
specific functions associated with general-purpose com­
puting into separate computing elements or stations. 
The same basic hardware and software is used in all 
these stations to lower manufacturing costs by high 
volume production. The features and performance of 
this station have worked out well on delivered and in 
house systems using drums, large disks and disk packs 
for archival and working store on both large and small 
computers. The main reason for success has been the 
clear identification of the basic file and message func­
tions required and a careful implementation of these 
functions, utilizing both hardware and software tech­
niques on a standard STAR peripheral station. Al­
though designed to meet the needs of the ST AR-l 00 
processing unit the storage station is well suited to be 
used with any processor which matches its cha.nnf~l and 
message protocol; it is also relatively independent of 
storage device type and system configuration. 

ACKNOWLEDGMENTS 

This work was performed in the Advanced Design 
Laboratory of Control Data Corporation in St. Paul, 
Minnesota. The head of this laboratory and chief de­
signer of the CDC STAR-I00 and STAR-IB Computer 



Systems is J. E. Thornton. The success of the project is 
mainly due to his leadership and support, together with 
the hard work over a number of years of the following 
people in the Advanced Design Laboratory's peripheral 
group-No G. Horning, W. C. Hohn, D. J. Humphrey, 
L. H. Schiebe, E. V. Urness, D. A. Van Hatten, C. L. 
Berkey, D. C. McCullough and R. A. Sandness. 

REFERENCES 

1 J E THORNTON 
Design of a computer-The Control Data 6600 
Scott Foresman 1970 

2 T H ELROD 
The CDC 7600 and Scope 76 
Datamation April 1970 Vol 16 No 4 pp 80-85 

Control Data ® Star-lOO File Storage Station 569 

3 J E THORNTON 
System design and implementation 
Proceedings of Third Australian Computer Conference 1966 
pp 90-102 

4 P D JONES C J PURCELL 
Economics and resource parallelism in large scale computing 
systems 
Proceedings of Fourth Australian Computer Conference 
1969 pp 241-244 

5 P D JONES N R LINCOLN J E THORNTON 
Whither computer architecture 
Proceedings of IFIP Congress 1971 pp TA4/162-TA4/167 

6 W R GRAHAM 
The parallel and pipeline computers 
Datamation April 1970 Vol 16 No 4 pp 68-71 

7 D J WHEELER 
Assessing the complexity of computer systems 
Proceedings of IFIP Congress 1971 pp 1/164-1/168 





Protection systems and protection implementations 

by R. M. NEEDHAM 

University of Cambridge 
Cambridge, England 

INTRODUCTION 

The paper discusses the nature of systems for protection 
of information in the central memory of a computer, 
describing the potentialities and limitations of a variety 
of approaches. It is based upon work done in the course 
of a current project on protection systems at the Com­
puter Laboratory, Cambridge, and outlines a system 
which is being developed to the point of hardware 
implementation in the Laboratory. 

PROTECTION SYSTEMS AND PROTECTION 
IMPLEMENTATIONS 

For the purpose of this paper Protection is understood 
to refer to logical and physical mechanisms for control­
ling access to data in the central memory of the comput­
er. The purpose of protection systems is to insure that 
at any point in the execution of a job by means of the 
computer, only those data objects which require to be 
accessible are accessible, and that this access is only of 
the mode, for example reading only permitted, which is 
required for performance of the task in hand. The object 
of work on protection systems is to devise mechanisms 
which will afford protection to the greatest extent 
possible, and do so without excessive expense in hard­
ware, runtime, or program size. The hope is that if such 
mechanisms can be devised, then it will be very much 
easier to contain and to localize the consequences of 
hardware or software failure, and to know much more 
precisely than is the case at present which of the activi­
ties in which a computer is engaged must be suspected 
of having been spoiled by the failure, and must therefore 
be re-initiated. 

In order to get any rationale for a protection imple-
,mentation, we must set up some defined concepts in 
terms of which protection systems can be discussed. 
The first of these is that of the segment, the unit of 
information to which protection applies. A segment is 

571 

a set of words whose addresses are contiguous in a 
virtual address space, and whose protection status is at 
all times the same. Protection is thus intimately bound 
up with addressing, since our very definition of the unit 
of protection is in terms of an addressing mechanism. 
This approach allows us to specify a protection regime 
by giving a list of those segments accessible to a process 
at a particular time, together with notes as to the kind 
of access which is permitted. A somewhat minimal 
protection regime could then be described by saying 
that segment A contains data to which read-write access 
is permitted, while the words of segment B may only be 
executed as instructions. A major object of research in 
protection implementations is to propose mechanisms 
whereby any desired protection regime can be imple­
mented, with as few limitations as possible imposed by 
the engineering approach adopted. 

Protection regimes are not constant during the life of 
a process. They may change as the work proceeds, and 
in a fully general discussion they should be allowed to 
change arbitrarily. Statements would be allowed, for 
example, to the effect that certain segments were only 
accessible if the value standing in a system micro­
second clock were prime. In practice, one departs from 
full generality, and limits those circumstances which 
may give rise to a change of protection regime. A 
reasonable approximation is to say that changes of 
protection regime are associated with changes of the 
segment from which instructions are currently being 
extracted; this is not to say that such segment changes 
must necessarily give rise to changes of protection 
regime, but only that no change of protection regime 
may occur without a change in the program segment. 

The first proposals for the physical design of a pro­
cessor which took these ideas seriously were by Y ngve 
and Fabry.2 A summary of their ideas will be found in 
Wilkes.1 The essential aspect of these proposals was that 
there was no restriction on them imposed by any of the 
implementation techniques. It was thus possible to 
arrange, in principle, that a process's capability list 



572 Fall Joint Computer Conference, 1972 

always contained exactly and only what it should. 
Y ngve and Fabry adopted the same approach to change 
of protection regimes as we have, namely that it only 
occurred when there was, additionally, a change of the 
program segment. A special instruction, called ENTER, 
caused a complete replacement of the process's capa­
bility list, and could thus change the protection re­
gime of the process in an arbitrary way. 

In a capability system of the type just described there 
are two problems calling for further discussion. First, 
if a capability indicates the absolute store address of 
the segment to which it refers, there is the problem of 
updating all copies of a capability when the segment is 
shifted in memory, and in deleting all copies when, and 
only when, the segment is destroyed. An obvious 
solution is to centralize the lists of absolute capabilities, 
and replace the capability lists associated with running 
process by lists of pointers to the central list. This is 
more than a simple technological device because it 
conceptually replaces the current capability lists of a 
program by a mechanism which selects from a larger 
list. This selection function has come to seem more and 
more important to us. Secondly, the original proposals 
dealt rather clumsily with pieces' of data which were the 
property of a process, in the sense that if the process 
were deleted the data would go too, but which were only 
accessible when the right pieces of code were being 
executed. On the other hand, the proposals dealt very 
elegantly with bundles of capabilities which invariably 
became accessible when a certain piece of code was used, 
regardless of the process using it. The idea that will be 
developed is that the capability list of a process is to be 
regarded as that which defines a selection from all the 
absolute capabilities that exist; at any time in the 
history of the process some other mechanisms make 
further selections from the capabilities of the process, 
the selected capabilities being physically accessible in 
virtue of the current protection environment. Thus we 
have the idea of multiple levels of selection. 

We may now focus on the implementation of protec­
tion as the implementation of selection functions among 
capabilities, where by a capability we mean that which 
defines the physical position and size of a segment and 
the access mode allowed. Immediately there are two 
ways to proceed, which depend on the extent to which 
addressing is brought further into the protection 
implementation. One way is to proceed by means of lock 
and key systems. A lock and key system is one in which 
any segment, including here a segment containing 
capabilities, has associated with it a lock. At any stage 
in the history of a process there is associated with the 
process a key. Access to a segment is permitted if, and 
only if, the current key fits the lock of the segment. A 
lock and key system tends to separate the notions of 

addressing and of protection. In such an approach, a 
process may address any segment whatsoever; only 
those in which the key fits the lock will do other than 
give rise to violations. There is no relationship between 
the mechanisms for addressing a given word and the 
mechanisms for addressing a given word and the 
mechanisms for validating access other than that which 
is implicit in the segment being the unit of protection. 
Accordingly, it becomes feasible to arrange that a 
segment has the same name, that is to say it is addressed 
in the same manner, throughout the lifetime of the 
process or even to go further and to say that all seg­
ments are uniquely identified in the computer. This 
approach has much merit in that it avoids any renaming 
problems when communication is involved. Unfortu­
nately, it proves extremely difficult to set up lock and 
key systems which are of sufficient generality to achieve 
the desired results. Because of the great potential 
advantages of lock and key systems, the reasons why 
this is so merit some examination. 

LOCKS AND KEYS 

Consider a situation in which all distinct protection 
regimes which can ever occur are identified by name or 
number. One could then imagine a lock and key system 
in which the key consists simply of the name of the 
current protection regime and the lock associated with 
the segment consisted of a list of the names or numbers 
of all protection regimes in which the segment was 
accessible, together with the nature of the access 
permitted. It is clear that this places no restrictions at 
all on the variety of accessibility patterns which can be 
implemented. It is, however, a very expensive thing to 
consider doing; there is no convenient limitation which 
can be set on the length of the lock, and the process of 
consulting it to see whether a particular key matched 
would be extremely slow. All practical lock and key 
systems which have been proposed work by means of 
some sort of encoding scheme, the purpose of which is 
to reduce the locks and keys to a fixed and convenient 
size. Any such encoding scheme regards the lock and 
key as being bit patterns between which a certain 
relation is sought. For example the lock and key may 
be two parts of a single valid message unit in an error 
correcting code. If we take this as an example, we see 
that every lock has to have the right relationship to each 
key which is supposed to fit it. If we now take a particu­
lar lock, it is possible in virtue of the structure of the 
relationship we have constructed to list in principle, 
all of the keys which will open it; equally every key can 
be accompanied by a list of those locks which it will 
open. We can think of listing out the possible locks and 



drawing lines from each pointing to the appropriate 
keys, and also putting in lines in the inverse sense from 
the keys to their locks. We shall be able to express the 
total variety of protection regimes we are interested in 
if, and only if, we can make an assignment of locks and 
keys to the segments in the regimes in such a manner 
that invalid access is never allowed. This poses an 
extremely difficult combinatorial problem in all non­
trivial cases. It is at the least an extensive task to find 
allocations which satisfy all the constraints and, even 
if one can succeed in doing so, a small change in the 
protection regimes to be implemented may result in a 
total upset to the lock and key allocation. It appears 
that one either has to put up with the necessity for 
computing allocations of locks and keys, or alternatively 
to accept a lock and key system which will not imple­
ment all the protection regimes which might be re­
quired. One can sum up by saying that sufficiently 
powerful lock and key systems are too difficult in 
practice because of the allocation problem, and that 
lock and key systems in which one can face the alloca­
tion problem are not powerful enough. A good example 
is the plain hierarchical protection system afforded by 

b representing the locks and keys by small integers, and 
I saying that access is- permitted if, for example, the key 

is less than or equal to, the lock. This is easy to think 
about and easy to implement; unfortunately, it places 
extreme restrictions on the protection regimes. which 
can be described. If in protection regime A, something 
has to be accessible which was not accessible in protec­
tion regime B, then necessarily everything which is 
accessible in B must be accessible in A too. It is just not 
possible to deal with some situations which occur com-

I monly in practice, such as the following. Suppose there 
I is an input program Pi which has to have access to an 

input buffer Bi; suppose further that there is an output 
I program Po which has to have access to an output buffer 

Bo. It is not possible to arrange that each of these 
programs has access to its buffer but not to either of the 
others. These are simple consequences of the linear 
arrangement of privilege. 

An additional difficulty about simple lock and key 
I systems is that they do not deal satisfactorily with the 

the non-static and unpredictable nature of protection 
I regimes. Arguments which have been passed to a 
, program which runs in a particular protection regime 

may carry with them the requirement that during 
i running certain segments are accessible because they 
I contain the data passed and not because they are 
permanently associated with the called program. A 
simple hierarchic system is in no difficulty if the new 

, , protection regime is further up the hierarchy than the 
I previous one, but it is in very serious difficulty if the 
new protection regime is lower down than the previous 

Protection Systems and Protection Implementations 573 

one. The more one elaborates lock and key systems, the 
more this problem becomes a troublesome addition to 
the allocation problem mentioned before. For these 
reasons, after a great deal of investigation, we did for 
the time being abandon the use of lock and key systems 
as a means of implementing the selection we desire. 

SELECTION BY INDIRECTION 

As foreshadowed above, the obvious alternative 
means of selection for accessible segments is by the use 
of indirection tables. If all segments are accessed via 
an indirection table or via one of a set of indirection 
tables, then it is possible to constrain the selection of 
available segments in quite arbitrary ways by suitable 
construction I of the indirection tables. A consequence of 
the use of indirection tables is that addressing has 
become much more bound up with the protection 
implementation. This can be seen by looking at the 
complete specification for getting at a word of core. In 
order to specify a work, we must give three pieces of 
information: 

1. which indirection table must be used, 
2. which entry in that indirection table indicates 

the required segment, 
3. which word in that segment is wanted. 

The first two of these will be called the segment specifier, 
and the three collectively an address. 

The segment specifier of a segment depends on the 
protection regime, and so in turn does the address of a 
word. If the protection regime changes, a new set of 
indirection tables will be brought into use, and the 
addresses of words will in general change too. What 
changes is not the segment itself, nor is it the capability 
for the segment; the change is to the means of finding 
the capability. 

This point is of the greatest importance, and it is 
worth recapitulating it in a sharp form. On one side of 
the divide we have systems such as those which rely 
totally on locks and keys, where if a program attempts 
to load the accumulator with the contents of a certain 
word, then the actions it undertakes are in all circum­
stances the same, regardless of protection regime, al­
though in some protection regimes they may cause a 
violation. On the other side of the divide, we have 
systems in which protection is so bound up with address­
ing that the bit pattern to be presented in order to 
load a certain word into the accumulator differs ac­
cording to the current protection regime. The latter 
approach gives the flexibility which we have been unable 
to achieve in the former. However, if the mode of 



574 Fall Joint Computer Conference, 1972 

addressing words or segments is influenced by the 
protection environment in force, then there are compli­
cations in the compilation process that do not arise in a 
system with permanent segment addressing. Secondly, 
one gets into some difficulties with pointers from one 
segment to another. If we have a data structure which 
exists in more than one segment, some of the pointers in 
one segment will point to places in another segment. 
If the specifier of the segment changes, we are in 
difficulty. Although this does not happen very often, a 
solution must be found. The non-uniformity of treat­
ment of pointers is something which compiler writers 
dislike since the existence of the non-uniformity may 
not be evident at a convenient time in the compilation 
process. 

Bearing in mind the above points, we now look at 
methods of implementation of systems which rely upon 
indirection to perform selection. The principal choice 
we have considered is between a system with explicitly 
named capability registers, and one without. A system 
with explicitly named capability registers works in the 
following way. A number of registers are provided, 
usually about eight, each of which is able to contain a 
capability for a segment in absolute form. Typically 
this consists of a base, a limit, and an access code. A 
process is at any time equipped with one or more 
capability segments, which contain either absolute 
capabilities, or information from which absolute 
capabilities may be found or constructed. The system 
has an instruction called 'load capability register' which 
has two arguments. The first argument is the number 
of a capability register to be loaded, and the second is 
an indication of which capability is to be loaded there. 
It must indicate which capability segment to use if there 
is more than one, and which entry in the selected 
capability segment should be used. A store reference 
instruction will then be interpreted via a capability 
register. A subsidiary point is whether or not the selec­
tion of which capability register to use is part of the 
address field of the instruction or part of the function 
field. The significance of this point is whether or not the 
capability register selection can be changed by index 
modification. Take first the case where the capability 
register selection cannot be changed by index modifica­
tion. In this case a particular instruction in the program 
has it fixed for all time which register is going to be used. 
This approach imposes a rather considerable lack of 
flexibility. Some of this lack of flexibility is associated 
with any explicit capability register scheme, and will be 
mentioned in a moment. One aspect, however, is unique 
to this approach, namely that it is impossible to have a 
pointer from one segment into another. There is no 
uniform way of writing a program which will follow a 
chain searching for something, if that chain is likely to 

pass through words of more than one segment. It was 
remarked above that there are difficulties in this area 
anyway, and possibly the solution to the problem is to 
decide that intersegment pointers should be disallowed. 

Turning now to the alternative case where the capa­
bility register selector can be altered by index modifica­
tion, we see that the particular difficulty just referred 
to does not arise. Provided that the capabilities for the 
segments in which the data structure resides are loaded, 
and known to be loaded, into the correct registers 
(where 'correct' means the ones which were assumed 
when the points were set up), then inter-segment 
pointers are perfectly possible. This proviso, however, 
indicates the lack of flexibility which remains. A great 
deal of pre-allocation of capability registers has to be 
done in any system which refers to them explicitly. 
Furthermore, an instruction will only be correctly 
executed if the right capability register has been loaded. 
Unless there are sufficient capability registers, which 
may be rather a lot, there is a good deal of keeping track 
to be done to insure that at all times the correct 
capabilities are where they should be as the flow of 
control proceeds round the program. For example, it 
may be desirable to pass the address of a word around 
in a program at a time when a capability for the segment 
containing it is not necessarily loaded. There is of course 
no need for the capability to be loaded until the address 
is actually used. We find that we need, in effect, two I 

sorts of address which can be described as a particular 
address and a general address. A particular address 
consists of a capability register number and an offset. 
It is valid in all circumstances in which the capability 
register has been properly loaded. A general address 
consists of a complete segment specifier and offset; the 
segment specifier is just the second argument of a 'load 
capability register' instruction. If a piece of program, 
say a sub-routine, receives a general address, it is in a 
position to load the indicated capability into whichever 
capability register it thinks fit. However, in this case 
also we have difficulties of compilation, because the 
compiler cannot know when to use general addresses 
and when to use particular addresses. Furthermore, 
considerations of economy would suggest that we do not 
need two forms of address; of the two it is clear that the 
general one should be retained. 

THE SYSTEM: PROPOSED 

This final remark leads to the outline of the system 
we have eventually proposed. There are no explicitly 
named and explicitly loaded capability registers; instead 
the general address as defined in the last paragraph is 
interpreted directly by the hardware. The hardware 



Protection Systems and Protection Implementations 575 

Figure 1 

must internally have registers in which absolute capa­
bilities are to be found, and what it does, when pre­
sented with a general address, is to test whether the 
absolute capability corresponding to the segment 
specifier part of the general address has already been 
loaded into one of the internal registers. There are a 
variety of ways of doing this at hardware level. Weare 
now in a position where programs only use addresses 
in the form 'segment specifier, offset', and the runtime 
interpretation of the segment specifier is buried beneath 
the hardware-software interface. We must remember, 
however, that the interpretation of a segment specifier 
will still depend on the protection regime, because it 
makes use of indirection tables as a means of selection. 

I t is now time to return to a question implied about, 
namely how many indirection tables there should be 
and what they should be used for. The structure we are 
talking about is sketched in outline in Figure 1. 

In this structure, a change of protection regime will 
be implemented either by changing the contents of the 
indirection tables, or by bringing into use new indirec­
tion tables and putting out of use old ones. Some things 
are most naturally done by amending the contents of 
indirection tables. For example, a system call to give 
the process a brand new segment results in a change to 
the protection environment which is most easily made 
by extending a presently existing indirection table. The 
call has said something like 'get me a new segment of 
size n and call it Jack' where Jack is a segment specifier. 
The consequence will be that the appropriate indirection 
table entry will be set. On the other hand, when protec­
tion regimes change not by giving the . process new 
resources but by changing the accessibility of the 
resources already given, it is expedient to bring new 
(but pre-existent) tables into use and similarly to 
dispose (temporarily) of old ones. We have chosen to 
classify the segments available for a process at any time 
into four classes, implying that there are four current 

indirection tables: 

1. Segments which are available to the process 
regardless of which program is currently being 
executed; these are known as G for global. 

2. Segments which contain the code, or alterna­
tively read only data, for a current program; 
these are called P for program. 

3. Segments which, although the property of the 
process, are only accessible within the current 
program; these are called type CPo 

4. Segments which are accessible because they have 
been passed to the current program from the 
program which called it; these are called type A 
for argument. 

For example, consider a program package whose duty 
it is to perform an input/output operation, such as 
taking a string of characters away from the calling 
program, despositing it in a buffer, and subsequently 
disposing of it. The code of the package may read from 
or write to the calling program's data area, it will 
require to be passed capabilities which will be A type. 
If in the course of executing this package it is necessary 
to make calls to the generally available operating 
system facilities, the ENTER capabilities for these 
facilities will probably be capabilities of type G. If, 
however, the system calls may only be made from 
within the input/output package we are describing, 
those ENTER capabilities could be either of P type or 
of CP type. The action of an ENTER instruction will 
thus be to change three of the four indirection tables. 
The table G will not be changed, because it is always 
available. The P indirection table will be replaced by 
one which is the defining characteristic of the called 
package; everything referred to in theP table will be 
shareable between all users of this procedure. The 
existing CP table will be replaced on ENTER by one 
set up to have the required properties at the time when 
the procedure was made available to the process. 
Making a procedure available to the process thus con­
sists of equipping the process with the required ENTER 
capability and with the required indirection tables. The 
A indirection table will be replaced by one which is 
characteristic of this particular call. It is convenient to 
place A indirection tables on a special stack of standard 
format and distinguished from any stack that the 
running program may create for its own purposes. The 
special stack can also be used to store the links associ­
ated with ENTER instructions. Specifically, if an A 
type indirection table is constructed before a call, it 
will be the top few words of the stack. One or two 
special instructions are provided for moving pointers to 
capabilities from one indirection table to another, and 



576 Fall Joint Computer Conference, 1972 

one of these is specifically used for establishing entries 
in what will be a new argument type indirection table. 
It is worth noting that in the system proposed material 
other than that in global segments will only be available 
to called programs if appropriate capabilities are 
explicitly passed. There is inevitably a slight overhead 
on calls, but this is unavoidable in any system which 
does not have hierarchical protection. In hierarchical 
systems, it is usually assumed that when a call is made 
to a more privileged regime (and most calls are like this) 
everything which was previously available is still 
available. 

We are now in a position to give some account of the 
protection system as it appears when a process is 
running without any reference to problems of inter­
process communication or of coordination. At any time 
the protection regime is represented by the current 
settings of the four indirection tables. Some of the 
capabilities referred to in these indirection tables will 
be ENTER capabilities; these delineate those changes 
of protection regime which are immediately possible. 
When one of. the ENTER capabilities is exercised by 
means of the ENTER instruction, the protection regime 
changes and the P, CP, A indirection tables are all 
replaced. We thus see that an ENTER capability must 
specify, directly or indirectly, the capabilities for the 
two new indirection tables of the P and CP types, the 
A type being part of a stack as previously described. 
What an ENTER capability actually looks like in a 
process capability segment is an implementation 
decision. 

We can now look at the same questions from another 
angle, and consider how to construct a protected proce­
dure-that is, a procedure which will be entered with an 
ENTER instruction and which will run in its own 
protection regime. 

A protected procedure is characterized by its P- and 
CP- indirection tables. Accordingly, to construct one we 
must construct these tables, and insure that there are 
in the process's capability segment the correct capa­
bilities for the indirection tables to select. A specimen 
prescription for such a procedure could look something 
like this: 

"There are 4 entries in the P-table. The first must 
select a segment of program whose text-name is Peter 
and the only access needed is 'execute.' The second 
selects a translation table called Bill, and 'read' access 
is required. The third and fourth must select ENTER 
capabilities for two standard system functions. 

"There are 2 entries in the CP-table. One is for local 
workspace of the procedure, and should bea copy of 
named segment Alfred, which contains initial data 
values. It must be readable and writeable. The second 

must be a workspace segment to use as a buffer, readable 
and writable, and 1000 words long." 

A routine that interprets this prescription and sets up 
an ENTER capability for the procedure in question 
then takes the following actions. First it procures 
suitable segments in which to build the indirection 
tables, and then it sets about filling them in. In the case 
of a workspace segment, whose initial contents do not 
matter, all that is necessary is to ask the core manage­
ment routine for a segment of a suitable size and set the 
appropriate pointer in the indirection table. In the case 
of a segment whose initial contents must be set from a 
file, then the file system must be consulted in order to 
discover the segment size and disc address. There is a 
third possibility, namely that the prescription is for a 
segment already known to the process, and in this case 
the insertion of a new pointer is all that is needed. The 
two entries for standard system functions mentioned 
above would very likely fall under this case. Since the 
purpose of the routine is to equip a process with a new 
ENTER capability, it may be convenient to write it so 
that it can act recursively when the prescription itself 
calls for ENTER capabilities. The final action of the 
routine is to construct the ENTER capability which 
was originally requested, and leave a pointer to it in a 
suitable place. 

In this approach the protection procedure is regarded 
as a totally encapsulated entity which can be incorpo­
rated into the environment of a process without any 
presuppositions as to what was there already. If parts of 
the (read- or execute-only) environment were present 
already, then they will be re-used. It is open to take a 
slightly different approach and to construct protected 
procedures on the assumption that, for all processes, 
certain standard functions are available through the 
G-indirection table, this being always accessible. Doing 
this makes P-indirection tables shorter, but requires 
more conventions as to the way processes are set up. 

THE PROBLEM OF INVALID ARGUMENTS 

It is common for one or more of the arguments of a 
call to a protected procedure (or indeed any procedure) 
to be the address of a piece of store to which the proce­
dure will write. There is no protection problem if the 
store so addressed is accessible to the calling program; 
potential difficulties arise if it is not so accessible but 
would be accessible to the called program. As a concrete 
example, suppose that in a traditional computer where 
the supervisor runs in a privileged mode, all memory 
b.eing accessible, there is a system call to read n words 
from an input document to store starting at address a. 



Protection Systems and Protection Implementations 577 

I 

If a user program executes this call, giving as argument 
an address in store available to itself, there is no prob­
lem; what, however, if the address is that of store 
inaccessible to the user, but accessible to the supervisor? 
Unless precautions are taken, the supervisor may, when 
presented with an invalid argument, over-write its own 
program or important data. This problem is not new; 
there are explicit counter-measures to it in the hardware 
of the Atlas. However, the more generalized one's 
approach, the more difficult it is likely to be to deal with 
this class of difficulty. 

In a system with explicitly named capability registers, 
and in which the capability register number is in the 
function part of an instruction (i.e., it cannot be altered 
by address modification) the problem cannot arise. This 
is because any address passed as an argument will only 
be interpreted by the called program as referring to an 
authorized segment, and no possible action can mislead 
it. As soon as we move to a system in which the capa­
bility register number or the segment specifier are parts 
of the address passed, then there is the possibility of 
trouble. Difficulties of this sort arise in any system in 
which indirect references to segment names or numbers 
are possible. 

In order to guard against the danger just referred to 
a check must be made which depends on a number of 
different pieces of information being available at the 
same time. We must know: 

1. The protection regime in which the address was 
constructed; 

2. The protection regime in which the word referred 
to by th e address is accessible; 

3. Whether it is allowable to construct an address 
in the former regime which refers to a word in 
the latter. 

In the structure outlined above, where there are four 
indirection tables, a simple rule results as follows: an 
address residing in a segment of type G or A may not 
specify a word in a segment of type P or I. The diffi­
culty comes in knowing when the rule is being broken. 
As an example of a common sequence in which the 
relevant information is not all at hand at once, consider: 

Load index register from store 
Access store via index register 

'I 

Item 1 above is available in the first instruction, but 
. it is not then known that the word will be used as an 

IJI. address. Item 2 is known on the second instruction, but 
I not where the contents of the index register came from. 

Any approach, for example the use of indirect instruc-

tions, which has both pieces of information available at 
the same time will enable the problem to be solved, e.g., 

'Load accumulator indirectly from store' 

because both addresses and hence both segment types 
are know in the course of the same instruction, or 

'Validate stored address' 

which is like 'Load accumulator indirectly' except that 
it does not load the accumulator, but only checks that 
the address in store obeys the rules. A really satisfactory 
solution to the problem of invalid argument addresses 
would not place on programming style the constraints 
which are imposed by the compulsory use of indirect or 
validation instructions. Such a solution is not yet 
obviously available. 

The body of this paper has been concerned with 
protection systems within a process. Nothing has been 
said about how the process obtains its resources and 
from where. There follows a brief view on how this 
aspect of a· system may be organized. 

The time available to a process is administered by a 
superior process called its coordinator. The coordinator 
is responsible for allocating time to its junior processes, 
and for synchronizing their execution where necessary 
by managing their halting and freeing. In addition to 
being the source of time allocation, the coordinator has 
responsibility for space allocation. Finally, any process 
may act as coordinator for processes junior to itself. 

This view has consequences for protection. The 
within-process protection architecture discussed above 
aids the orderly use of the process's resources, and all 
privileges conferred on particular procedures are rela­
tive privileges within the general facilities available to 
a process. Since all facilities available to a process are 
mediated by the coordinator, the last statement implies 
that privileges are valid within the universe set up by a 
coordinator for its junior processess, this universe being 
a subset of that available to the coordinator itself. 

It is a consequence of these remarks that privileges 
enjoyed by a coordinator in virtue of its relationship to 
its superior may not be passed on to the coordinator's 
juniors. They exist in the wrong world. 

The result then is that a coordinator may pass to its 
junior processes, when setting them up or later, access 
to core segments or subsegments available to it, with or 
without further access restrictions. It may not pass an 
'ENTER' capability at all, though it may be able to 
pass the use of pieces of code from which an ENTER 
capability can be constructed for the junior. Since the 
coordinator has complete control over the actions of its 



578 Fall Joint Computer Conference, i972 

junior processes, including interfering with register 
settings during halts or after interrupts, passing an 
ENTER capability could allow the coordinator to 
perform, via a subordinate, action which would ordi­
narily be forbidden. The ENTER refers not merely to 
a piece of code but to package whose existence imple­
ments privileges granted by the coordinator's superior. 

In the above approach, there is nothing unique about 
the status of a coordinator. Any program may create 
subprocesses for which it carries out coordinator 
functions according to any queueing logic or discipline 
it may choose. Two instructions are to be provided in 
our experimental system to assist in this operation; 
'ENTER SUBPROCESS' which effects the complete 
change of protection context required by making 
current a new process capability segment and new 
indirection tables-the new capability segment being 
defined by reference to the old-and 'ENTER CO­
ORDINATOR' which reverses this action. 

CONCLUSION 

The foregoing discussion has attempted to describe the 
requirements upon a protection system for information 
in central memory, and to bring out the problems which 
arise from various approaches. The upshot is an 
abandonment for the most general protection systems 
of lock-and-key methods, and the use instead of 
methods which. rely on selection by indirection. It 

should not be forgotten, however, that if the require­
ments of a protection system are modest, then a lock­
and-key method may well be feasible. An outline was 
given of a practicable indirection technique for use in 
more general cases; again it should not be forgotten that 
others can be devised which may be more suitable in 
particular cases. 

ACKNOWLEDGMENTS 

I am much indebted to Professor M. V. Wilkes who has 
devoted a great deal of effort to improving the text of 
this paper, as well as many discussions of its content. 
The ideas have benefited from interaction with 
numerous colleagues, in particular three research 
students, J. R. Horton, C. C. Kirkham, and R. D. H. 
Walker. The work is part of a project supported by the 
Science Research Council. 

REFERENCES 

1 M V WILKES 
Time sharing computer systems 
Second Edition American Elsevier 1972 

2 R S FABRY 
Preliminary description of a supervisor organised around 
capabilities 
Quart Prog Report No 18 Section IIA Inst Comp Res 
U niv Chicago 1968 



Burroughs B1700 memory utilization 

by W. T. WILNER 

Burroughs Corporation 
Goleta, California 

INTRODUCTION 

Squeezing more information into memory is a familiar 
problem to everyone who has written a program which 
was too large to fit into memory. Program compaction is 
also important to those who work on machines with 
virtual memory (such as the B55001) ; despite the almost 
unlimited amount of storage, one wants to keep program 
working-sets2 (collections of segments needed in core at 
the same time) as small as possible to reduce both the 
number and duration of segment swaps. In general, one 
seeks to raise the information content (or reduce the 
redundancy) of the blocks of information which one is 
using. In this discussion, "information content" will 
suffice as an intuitive notion. 

One of the devices which hardware and software 
designers have provided to help with compaction is 
choice of container sizes. Machines can manipulate more 
than words: bytes, double words, and so on. Languages 
allow variables to be declared with different sizes, e.g., 
four-byte or eight-byte integers. Another category of 
compaction devices is encoding techniques. For example, 
memory addresses may be encoded literally, or as a 
"base-register-name/displacement" pair, or as an 
"indirect-reference-flag/ ref erence-table-index" pair, or 
so on. A third technique for raising information content 
is to group information according to time, that is, by 
keeping information which is likely to be needed at the 
same time in one place. For example, variable-length 
segments are more efficient than fixed-length pages, 3 

partly because segments are made to contain coherent 
subprograms, which is a way of grouping according to 
time. 

Ideally, then, a computer system very likely to 
utilize memory most efficiently would be one which 
could (a) manipulate any size bit string, (b) interpret 
any sort of encoding, and (c) administrate any segmen­
tation scheme. 

579 

UNIQUE DESIGN REQUIREMENTS 

Burroughs B1700 (described elsewhere in these Pro­
ceedings4) is the only information-processing system 
(known to the author) which almost attains these ideals. 
The B1700 is specifically designed (a) to manipulate 
fields from zero to 65,535 bits long equally adeptly 
(which is a requirement of its defined-field design), (b) to 
interpret arbitrary "soft" machine language, or S-lan­
guage, faster than a hard-wired system in the same price 
class could execute identical functions (which is a 
requirement of its generalized language interpretation 
design), and (c) to automatically move information in 
and out of memory according to any scheme (which is a 
requirement of its throughput objectives). As a result, 
the information content of fields in B1700 memory is 
exceptionally high, and memory is often utilized twice 
as efficiently as on other systems. 

COMPACTION TECHNIQUES 

A rbitrary field size 

With defined-field design, fields may be defined to be 
just the size that is necessary, however many bits that 
may be, and other, arbitrarily-defined fields may begin 
in the very next bit. One bit will do for boolean variables, 
and it may truly be any bit in memory. Character 
strings may begin on any bit address. There is no such 
thing as byte alignment, or data specification. A major 
addressing boundary, if it can be called that, occurs 
between each of 244 (over 17 trillion) bits. Every bit can 
be fully utilized. 

There are no locations and no field lengths which offer 
any processing advantage over other locations and 
lengths. Therefore, S-language designers are free to 
choose container sizes, such as for data addresses, which 



580 Fall Joint Computer Conference, 1972 

are precisely as many bits long as desired. This simple 
freedom appears to account for half of all the program 
compaction which has been realized on the B1700. 

S-language designers are further able to leave such 
things as branch address field lengths unbound until 
after compilation, when specific program details are 
known, such as the maximum number of instructions to 
be skipped by a branch instruction. It is just as easy to 
bind field lengths at run time as earlier; hence, S-lan­
guage format can profitably change from program to 
program. 

Frequency-based encoding 

Given that fields may have arbitrary sizes, S-language 
designers (and users) may employ the varying-size 
containers generated by Huffman's algorithm for 
minimum redundancy codes. I) Briefly, the technique 
encodes elements by means of strings whose length 
varies inversely with the occurrence frequency of the 
elements; i.e., the most frequent element is represented 
by one of the shortest strings, and the least frequent 
element is represented by a longest string. 

Huffman encoding constitutes one extreme form of 
representation, which may possibly stipulate a different 
length string for each element to be represented. The 
opposite extreme is uniform container size, e.g., words. 
Between these two extremes lie a range of encodings, 
which particular circumstances may merit, as will be 
illustrated later. 

As a simple illustration of frequency-based encoding, 
suppose a defined-field computer with a six-instruction 
repertoire exhibited the following frequency counts of 
instructions in a program whose size was to be 
compacted: 

Instruction 

#1 
#2-#6 

Frequency 

1000 
5@200 

Total 2000 

Using ordinary encoding techniques, a three-bit field 
would be used to represent six quantities. The program's 
2000 instructions would then be represented by 6000 
bits. If, on the other hand, we allow variable-length, 
frequency-based encoding, the most frequent instruction 
could be encoded with only one bit. The bit would 
signify either the instruction or that three more bits 
follow, carrying the encodings of the remaining five 

instructions, viz.: 

Opcode 

1 
0111 
0110 
0101 
0100 
0011 

Instruction 

#1 
#2 
#3 
#4 
#5 
#6 

Occurrence 

1000 
200 
200 
200 
200 
200 

Total Bits 

1000 
800 
800 
800 
800 
800 

5000 

One thousand bits are eliminated, increasing memory 
utilization by: 

6000 - 5000 1 01 = 16 701 
6000 X 00 /0 • /0 (1) 

A better encoding would use two bits for one of the five 
less frequent instructions, since the remaining four 
could still be encoded in four bit opcodes, viz.: 

Opcode 

1 
01 
0000-0011 

Instruction 

#1 
#2 
#3-#6 

Occurrence Total Bits 

1000 1000 
200 400 

@ 200 3200 

4600 

Fourteen hundred bits are eliminated, increasing mem­
ory utilization by 23.3 percent. Note that this encoding 
has no unused bit combinations; it can be used for 
exactly six instructions. More redundant codes have 
room for other opcodes. 

Time-based representation 

In addition to representing information in fields 
according to occurrence frequency, one may improve 
memory utilization by rearranging fields according to 
dynamic frequency. That is, fields which are needed 
most often in memory may be collected into a common 
segment, in a time-analogy to minimum spatial re­
dundancy. The B1700's interpreters are equipped to 
record program profile statistics6 which determine what 
pieces of code spend the most time being executed. By 
designing S-languages which allow arbitrary grouping of 
data or program pieces into segments, one may permit 
program representations in which most-of ten-used 
constructs appear in short, coherent segments while 
relatively unused portions reside in large, discontinuous 
(from the standpoint of flow of control) segments. Bits 
in each segment have similar time-utilization, just as the 
varying length of fields in Huffman encoding grant 
similar space-utilization to the bits in a particular field. 



Dynamic field size 

A defined-field computer must transmit a ,field length 
as well as a bit location to memory for each access since 
arbitrary field lengths are permitted. Consequently, it is 
just as convenient to have operand lengths dynamically 
changeable as fixed. Length constants must be stored 
somewhere between requests to memory, and it is no 
less efficient to keep them in addressable fields. This 
opens up the possibility of Dial-A-Precision FORTRAN, 
where the operand fields in the FORTRAN S-language 
can be adjusted on the fly to be long enough to hold a 
required precision, for example, during inner product 
calculations. This capability is planned for the B1700 
software, but is not in the initial releases. 

APPLICATION TO SPECIFIC S-LANGUAGES 

Since all high-level languages on the B 1700 are 
compiled into novel S-languages of Burroughs' own 
invention, opportunities exist in these contexts for 
improved memory utilization. S-languages for. existing 
machines, such as System/360 machine language, 
prohibit compaction because the fields are locked on to 
non-defined-field hardware formats. 

SDL S-language 

Burroughs supplies B1700 customers with a language 
and interpreter which have been designed to be most 
efficient in a compile-time environment. Named Systems 
Development Language, SDL, it has been used to 
program all B1700 compilers. SDL is constructed from 
an extendable base language which has been used, in 
augmented form, to write the B1700's Master Control 
Program (which performs supervisory functions such as 
1/0,' multiprogramming, multiprocessing, virtual mem­
ory management, etc.) and, in a different form, to write 
sorting applications. 

SDL opcodes 

Opcodes are encoded into three lengths: four, six, and 
ten bits. Of the sixteen four-bit combinations, ten name 
the most frequent instructions, five indicate that two 
more bits specify the remainder of a six-bit instruction 
field, and one signifies that six more bits are needed to 
define the operation. The design trade-off between space 
and time in opcode representations does not vary 
linearly between the extremes of Huffman encoding and 
fixed container size. One fixed field length allows 

Burroughs B1700 Memory Utilization 581 

TABLE I-Comparison of SDL Opcode Encoding 
. Against Extreme Methods 

Total Bits 
Encoding for MCP's Utilization Decoding 
Method Opcodes Improvement Penalty Redundancy 

Huffman 
SDL 4-6-10 
8-bit field 

172,346 
184,966 
301,248 

43% 
39% 
0% 

17.2% 
2.6% 
o. % 

.0059 

.0196 

.4313 

parallel decoding of all bits in the field, mInImIZIng 
time, but requiring much storage (except when all 
elements have identical occurrence frequencies, but that 
is contrary to computer behavior). Huffman codes may 
require much more decoding time, since bits may need 
to be examined serially until the length of the field 
manifests itself, but the codes can minimize storage. In 
the middle, SDL's three lengths come very close to 
minimizing storage, and also incur very little extra 
decoding time, as Table I indicates. 
Figure 1 presents the same figures graphically. The 
reason for Figure l's exponential curve is that there are 
several orders of magnitude between the frequencies of 
the most and least frequent elements in the set to be 
encoded. There is a great deal to be gained in such 
circumstances even by encoding the $ingle most frequent 
element in a shorter field than the others (as was 
illustrated also in our example). If the opposite were 
true, if all elements were uniformly frequent, then the 
trade-off curve wo:uld be linear (or nearly so, depending 
on what multiple of the encoding radix the number of 
elements is). 

Huffman enCOding"" 

57%,--+----+--~~--------------------~ 

50%+---~----r_------~r_------~--_r----_+ 

1.00 1.026 1.05 LlO 

Decoding time 
1.15 1.17 

Figure I-Performance of SDL encoding compared to extreme 
techniques 

1.20 



582 Fall Joint Computer Conference, 1972 

Redundancy 

We can compare these techniques on a less intuitive 
basis. "Information content" may be precisely defined 
in terms of the probability of a message's occurrence 
(as opposed to its meaning). Shannon's entropy 
function7 

I 

H = - L Pi log Pi (2) 

gives a measure of the average information content of I 
independent events with individual probabilities {pd. 
If we consider an SDL opcode in the MCP program as 
an event, and calculate Pi log2 Pi for all 73 opcodes, then 
we find H = 4.55, which may be- interpreted as the 
average number of bits needed for an opcode. To 
compare the encoding techniques of Table I using this 
criterion, we have: 

Average content Technique 
(bits/ opcode) 

4.58 
4.88 
6.51 

binary Huffman 
SDL 4-6-10 
8-bit field 

which shows that our chosen technique is very close to 
the minimum value of 4.55. 

The redundancy factor of an encoding technique may 
be calculated as 

optimum message length 
Redundancy = 1 - (3) 

encoded message length' 

which ranges from zero (no redundancy) to one (infinite 
redundancy). To derive the redundancy column in 
Table I, we compared the total bits in the MCP via 
each technique against 4.55 X 37,656 (the total number 
of MCP opcodes) = 171,349, which is the smallest 
number of bits that may be used under the assumption 
that opcodes are decoded independently. 

Redundancy, despite its quantifiability, is not a good 
independent design criterion. If pursued too extremely, 
there are disadvantages (such as intricate and slow 
decoders). If ignored, of course, there are extreme 
disadvantages (total system inefficiency). One must 
consider it in balance with all other design criteria, and 
attempt to reduce it without sacrificing performance in 
other areas. Most importantly, one must not sacrifice 
the unquantifiable criteria, such as ease of use, which 
appear to be most significant. It is interesting, however, 
that the B1700's S-language concept (which was 
pursued primarily to improve ease of use) has the 
desirable side effect of taking actual opcode representa-

tions out of the programmer's attention (because the 
possibility of working with machine language is 
removed), and this allows further efforts to remove 
redundancy, because opcodes no longer have to be 
human-engineered. Ease of use and high memory 
utilization are not orthogonal design criteria and in­
creasing one need not decrease the other. 

Significance of opcode compaction 

Opcodes, in SDL's case, occupy nearly one-third of 
the entire program space because the choice of S-lan­
guage significantly reduced all other kinds of fields. 
Compaction of opcodes contributed the most toward 
reducing overall SDL program size. 

SDL data addresses 

Locations of variables, or data addresses, are the 
second most populous fields, after instructions. SD L is 
a block-structured language and the SDL machine (for 
which the SDL S-language is the machine language) is a 
stack-structured processor, so data is accessed by a pair 
of integers, one giving the lexicographical level on which 
the variable was declared in the SDL program, and the 
other giving an occurrence number, or ordinal position, 
of the declared identifier in its block. The level identifies 
a (dynamically varying) region of the stack and the 
occurrence number indicates a displacement into the 
region where the variable may be found. 

In order to accommodate extremely large programs, 
the language designers decided to allow up to 1024 
variables on any lexicographical level, and up to sixteen 
nested levels. The largest data address, thus, would 
require fourteen bits, ten for displacement and four for 
level. Once the compilers and the MCP were written 
and debugged in SDL, the actual usage of bits in data 
address containers was studied, in order to apply 
frequency-based encoding techniques. Table II gives the 
usage statistics for the B1700 MCP. Using the arbitrary 
fourteen-bit container, 9174 addresses require 128,436 
bits. The usage study found that 66.1 percent of the 
occurrence numbers could be contained by a five-bit 
field and 78.4 percent of the level numbers were either 
the current level or level zero, which could be encoded 
in one bit. All together, if these shorter fields were made 
available, only 94,900 bits would be required, which is a 
26.1 percent improvement in memory utilization. By 
mutual consent of the two SDL compiler writers and the 
SDL interpreter writer, it was agreed that the S-lan­
guage would be changed to include a new data address 
format: level fields of one or four bits, occurrence 



Burroughs B1700 Memory Utilization 583 

TABLE II-Occurrence of Actual Field Lengths Required by B1700 MCP Data Addresses 

Level Field Displacemen t field size 
Size 0 1 2 3 4 

0 136 31 12 29 67 
1 478 355 397 628 762 
'2 162 143 272 283 223 
3 56 45 68 86 64 
4 0 0 0 0 0 

832 574 749 1026 1116 

Relative 
Level 

Contents 0 1 2 3 4 

0 521 416 411 501 409 
-1 234 135 178 354 567 
-2 44 23 159 136 102 
-3 13 0 1 35 29 
-4 16 0 0 0 
-5 4 0 0 0 
-6 to -15 

number fields of five or ten bits, and two prefix bits to 
indicate which of the four possibilities followed. 
Locations in SDL are thus eight, 11, 13, or 16 bits long. 

Because this scheme is so different from conventional 
techniques, it is difficult to establish the exact advantage 
in memory utilization. If we consider a conventional 
scheme which can address as many variables, it is 
reasonable to require that two bytes of address field be 
used, since it is certainly possible for a program with 
216 variables to be executed by the SDL interpreter. 
Another way of reaching the same conclusion is to 
consider the fourteen-bit maximum container; without 
defined-field design, fields must be byte-multiples (at 
least), so two bytes are needed. For 9,174 addresses of 
16 bits each, 146,784 bits are needed. Hence, the 
four-way SDL encoding offers 35.4 percent memory 
utilization. 

SD L code addresses 

Program points are addressed by a pair of integers' 
one giving a segment name and the other specifying the 
starting bit of an instruction in the segment, relative to 
the start of the segment. Program segments are stored 
separately from data segments. * As a consequence, code 

* This is so that protection can be efficiently implemented and so 
that reentrancy is free, i.e., more than one program can execute a 
segment concurrently without requiring a different representation 
from that which a one-program version would use and without 
executing any instructions specifically to administrate reentrancy. 

9 
0 

5 6 7 8 9 Total 

130 189 345 635 0 1574 
1182 1116 701 0 0 5619 
408 107 13 0 0 1611 
44 7 0 0 0 370 
0 0 0 0 0 0 

1764 1419 1059 635 0 9174 

5 6 7 8 9 Total 

342 231 108 46 0 2985 
871 689 439 205 0 3672 
454 329 167 300 0 1714 

93 146 305 41 0 663 
3 24 40 41 0 133 
1 0 0 2 0 7 

0 

addresses may be structured differently from data 
addresses. This freedom is advantageous for com­
paction, too, because usage information may be applied 
independently to each kind of field. Code address 
requirements are typically very different from data 
address requirements. Programs usually have many 
more variables than segments, so fewer bits are needed 
for segment names than for variable addresses. Seg­
ments usually contain more bits (thousands) than 
blocks contain variables (less than a hundred), so more 
bits are needed for displacement fields than for occur­
rence number fields. 

SDL designers wanted to allow over a billion bits for 
programs, in up to 1024 segments of up to one million 
bits each. At the same time, they surmised that many 
references to the first 32 segments might better be 
encoded in five-bit segment names, and references to the 
first 4096 bits and the first 65,536 bits might be more 
efficiently encoded in 12- and 16-bit fields, respectively. 
These shorter options were included in the preliminary 
S-language design which was used during MCP and 
compiler construction and check-out. 

Prior to release, actual usage was studied to evaluate 
the appropriateness of the design choices. * A sample of 

* On the B1700, S-language design may be changed at any time. 
Programmers see only higher-level language which is independent 
of S-language format. Hardware sees only microcode, which is 
indifferent to S-language format. Many S-language revisions can, 
in fact, be implemented simply by changing some literal fields in 
the interpreter and compiler. 



584 Fall Joint Computer Conference, 1972 

TABLE III-Occurrence of Actual Field Lengths Required for B1700 MCP Code Addresses 

Segment Displacement field size 
Field Size 0-2 3 4 5 6 7 8 

0 4 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
2 14 0 0 0 0 0 2 
3 0 0 0 0 6 0 0 
4 7 0 0 0 0 0 0 
5 4 0 0 0 0 3 140 
6 4 2 0 2 1 4 13 
7 5 0 0 0 2 18 5 
8 6 0 0 0 0 4 4 

44 2 0 2 9 29 164 

2,090 code addresses from the B1700 MCP corroborated 
the design team's choices, including that of a null 
segment field, for references within the same segment. 
Table III gives the occurrence of the actual field require­
ments for the code address sample. Actually, a fraction 
of 1 percent improvement in memory utilization could 
be achieved by changing from a five-bit segment field 
to a six-bit field, but if future SDL programs turn out 
to be smaller than present Burroughs compilers, the 
usage statistics will eventually prefer the present fields, 
so no change was made. SDL code addresses, then, 
have the following format: 

field 
description 

3 bits 0,5 or 
10 bits 

displacement 

0,12, 16 or 
20 bits 

Of the eight permitted variations, the most frequent is 
15 bits long; three description bits, no segment field, and 
12 displacement bits. Except for the null address (only 
three bits long), this is the shortest option, so it is to be 
expected that a proper frequency-based encoding of code 
addresses would make this the most commonly used 
format. 

Comparing this schem~ against conventional hard­
ware is no less puzzling than it was for data addresses. 
Perhaps we may consider that the SDL machine can 
directly address 230 (over one billion) bits of instruction 
storage. An equally capable byte-oriented machine needs 
to address 227 bytes directly, so four bytes are needed. 
The SDL representation uses 74,303 bits for 3,767 
addresses in the B1700 MCP, whereas the byte-oriented 
machine would need 120,544 bits (ignoring the extra 
capacity that four bytes allows). In terms of memory 

9 

0 
0 
4 
7 

16 
19 
47 
39 
23 

155 

10 11 12 13 14 15 Total 

0 153 1 39 33 102 332 
0 0 1 0 5 1 7 
0 2 1 0 0 0 28 
5 9 6 9 0 0 42 

42 12 42 28 0 0 147 
32 36 66 25 5 0 309 

110 37 80 166 36 0 502 
78 132 147 168 9 0 603 
12 5 40 26 0 0 120 

268 376 389 461 88 103 2090 

utilization, the ability to define eight different code 
address formats yields a 38.4 percent advantage for the 
B1700. 

SDL profile statistics 

While an SDL program is running, the SDL interpre­
ter records each segment transition in an array which is 
automatically allocated to each program. This monitor­
ing, performed by microcode, adds less than 7.4: percent 
to the running time. At the end of the run, SDL code is 
interpreted which prints the number of times each 
segment was entered, a compiler-estimated traversal 
time for each segment, and . the product of the two, 
giving an indication of which segments used the most 
execution time. SDL programmers can also indicate at 
compile-time which sections of their program should be 
monitored closely, down to each conditional expression, 
so that exact frequency counts can be obtained for each 
bit of code in the program. Subsequent monitoring 
involves additional code, but the amount is always less 
than a 1 percent increase. Assuming segment and 
procedure frequency counts have been utilized to focus 
one's attention on c;mly a few procedures, execution 
overhead for conditional expression monitoring is under 
72 percent in most cases. Thus, the B1700 can indicate 
to programmers what the time-utilization of their 
program sections is, at very low cost. By grouping 
similarly utilized sections into segments so that segment 
transitions are lessened, temporal memory utilization 
can be increased. 

Other S-languages 

Only SDL designers were able to apply accurate usage 
statistics to their design because the entire world's 



I 

I
': 
1.1 

supply of SDL programs was available to them. 
COBOL, FORTRAN, BASIC, and RPG (the initial set 
of languages for the B1700) S-language designers 
collectively extracted usage statistics from over nine 
million bits of sample programs, but can only guess at 
their verity. 

COBOL S-language 

Opcodes are represented by three- or nine-bit fields; 
the seven most frequent instructions are encoded into 
seven of the eight three-bit codes, and the eighth is an 
escape code which indicates that six more instruction 
bits follow. Operands are prefixed by a single bit which 
indicates literal operands or variables. Literals consist of 
a type field (two bits), a length field (three or eleven 
bits), and the literal string itself. Operands are indicated 
by a string of fields which give segment and displace­
ment location, length, type, character code semantics, 
and subscript information. Frequent operand descrip­
tions do not appear in-line; they are placed into a table 
by the compiler and their table index is used in-line. 
COBOL S-language even includes a sub-S-Ianguage 
which defines editing operations. This implies that the 
COBOL interpreter contains a sub-interpreter which 
handles the editing program strings. These program 
strings, like operand descriptions, may appear either 
in-line or tabulated. 

COBOL, more than any other language on the 
B1700, has taken advantage of the ability to leave object 
code format undefined until after the compiler has seen 
a program. Segment descriptions, displacements within 
segments, variable-length data's size fields, operand 
descriptors, data addresses, and branch addresses are 
all stored in fields whose size is made just large enough 
to hold whatever maximum value is needed for the 
particular program. This capability appears to reduce 
COBOL object program sizes by 46 percent; that is, if 
the length of these containers were fixed for all pro­
grams, the average program size would be 85 percent 
larger. Of course, the amount of compaction is so large 
because the chosen S-language provides many opportu­
nities to eliminate wasted space. 

The overall appropriateness for COBOL's S-language 
is difficult to assess. One faces the same evaluation 
problem as trying to say how much better one machine 
design is than another at implementing COBOL. So far, 
the only secure comparisons which we have obtained 
pertain to overall throughput and resource require­
ments. From a set of twenty ANSI COBOL programs 
of diverse application and varying size, we have 
concluded that COBOL programs tend to occupy 70 

Burroughs B1700 Memory Utilization 585 

percent less memory on the B1700 than they do on a 
System/360 model 30. Such a drastic reduction in 
memory also improves running speed, which averages 
around 60 percent faster than the 360/30. The B1700, 
when interpreting its COBOL S-machine, even seems to 
out-do the B3500 system, whose hardware was designed 
to execute and compile COBOL programs. Program 
storage requirements are 60 percent less, and execution 
times are comparable. 

RPG S-language 

In order to reduce the number of interpreters active 
at anyone time on single-processorB1700s, the initial 
release of RPG uses the same S-language as COBOL. 
From a set of 31 RPG programs used for benchmarks, 
we observed that program storage is typically 50 percent 
of System/3 size (although one program with a pre­
ponderance of character strings in its representation was 
only 25 percent smaller, due to the fact that eight bits 
are used on both systems to represent characters). 
Execution speed is between 25 percent and 50 percent 
faster than System/3, due to the conciseness of the 
instruction stream and S-language advantage. COBOL 
S-instructions are interpreted at an average rate which 
is six times slower than System/3's average instruction 
rate (36 usec. vs. 6 usec.). To achieve 50 percent faster 
running time, each S-instruction must, on the average, 
accomplish twelve times more work than each System/3 
machine instruction. Obviously, size alone cannot 
adequately measure program compaction. 

FORTRAN S-language 

FORTRAN also uses an opcode format of three or 
nine bits in each field, with seven short ops and one 
escape code. Data and code addresses have a common 
format, usually 24 bits long: field description bits (six) 
which control interpretation of the rest of the address 
and of the operand as well; a segment field (ten bits) 
which either names a segment or a place where a 
segment name can be found; a displacement field 
(eight bits) which locates operands within a segment; 
and possibly more fields, depending on context. 

Summarizing seven moderately-sized jobs, 
FORTRAN programs tend to occupy 50 percent of the 
space needed on a System/360, and 40 percent of the 
space needed on a B3500. (Note that these figures and 
those for COBOL imply that the B3500 is better at 
representing COBOL programs than a 360 and not as 
good at representing FORTRAN programs, which is 
well-known.) 



586 Fall Joint Computer Conference, 1972 

DISCUSSION 

Inherent limitations 

Although choice of S-language format has been 
completely free on the B1700, there are implied restric­
tions due to the semantics of the higher-level languages 
for which S-languages have been invented. Contempo­
rary languages, and FORTRAN especially, reflect the 
kind of hardware which their designers knew existed: 
sequential, word-oriented processors. Defined-field de­
sign offers significantly different machinery, and lan­
guages have yet to be defined which unconsciously 
assume defined-field capabilities, namely, that data and 
programs may be represented in any format whatever. 
Good as the B1700's memory utilization is, it tends to 
be better for programming languages which have a large 
number and variety of data and program formats. 

Diminishing returns 

Modifying interpreters to accommodate S-language 
refinements has a definite cost, including reprogram­
ming affected portions of compilers and recompiling 
source programs. Our experience indicates that after 
identifying and improving seven or eight redundant 
aspects of a language, information content is relatively 
uniform among various S-language fields. Further re­
finements may not be worthwhile. This also implies that 
only first-order usage statistics need be collected, which 
keeps analysis costs down. 

User optimization 

When several alternative encodings seem equally 
attractive and their design trade-offs are well drawn, 
their invocation may be placed under user control. Each 
programmer knows individually whether his local 
system is time- or space-rich at any given hour, so he can 
give simple indications to a compiler about what 
options should be exercised. In COBOL, for instance, all 
data addresses can be forced either into the operand 
table to minimize program storage, or in-line to speed up 
execution by eliminating the table indirection. Since the 
interpreter is already capable of decoding both forms, 

there is no compile-time or execution-time overhead 
associated with this degree of user optimization. 

CONCLUSION 

Defined-field design permits the definition of S-lan­
guages which are more efficient at memory utilization 
than contemporary machine structure. Because access­
ing and manipulation of arbitrarily-sized bit strings is 
handled al;ltomatically by B1700 hardware, various 
encodings may be selected solely on their inherent merit, 
with respect to program storage and decoding time; 
their suitability to the B1700 is irrelevant because the 
hardware is uniformly adept at manipulating all sizes of 
fields. One is free to choose problem representations 
which equalize the information content of fields in 
memory. Experience with compaction techniques, such 
as variable-length, frequency-based encodings, indicate 
that memory requirements can be reduced from 25 
percent to 75 percent, compared to byte-oriented 
systems. 

BIBLIOGRAPHY 

1 Burroughs B5500 information processing systems reference 
manual 
Burroughs Corporation Business Machines Group Sales 
Technical Services Systems Documentation Detroit 
Michigan 1964 

2 P J DENNING 
The working-set model for program behavior 
Comm ACM 11 5 May 1968 p 323ff 

3 E G COFFMAN JR T A RYAN 
A study of storage partitioning using a mathematical model 
of locality 
Comm ACM 15 3 March 1972 

4 W T WILNER 
Design of the Burroughs B1700 
Proc FJCC72 Vol 41 

5 D A HUFFMAN 
A method for the construction of minimum redundancy codes 
Proc IRE 40 September 1952 pp 1098-1101 

6 D EKNUTH 
An empirical study of FORTRAN programs 
Software-Practice and Experience 11971 pp 105-133 

7 C E SHANNON W WEAVER 
The mathematical theory of communication 
The University of Illinois Press Urbana Illinois 1949 



Rotating storage devices as partially associative memories 

by N. MINSKY 

University of Minnesota 
Minneapolis, Minnesota 

INTRODUCTION 

"Associativity" is a highly desirable property of 
memory d~vices. Unfortunately, it does not seem to fit 
very well into the structure of contemporary random­
access memories. A realization of associativity on such 
memories is always involved with high density of logic, 
and in today's technology is bound to be very expensive. 
Virtually all existing implementations of associative 
memories are accordingly on a very small scale and are 
typically used for special purposes such as the support 
of "virtual memory" schemes. From this situation one 
can get the impression that large scale associative 
memories are impractical. Fortunately, however, it 
turns out that rotating memories, unlike random access 
memories, are very natural hosts for at least a limited 
degree of associative addressing. 

This paper points to several latent potentialities of 
rotating memories, and describes a method for utilizing 
them for a realization of "partial associativity" (a 
term which is defined below) . 

The method described here is by no means the only 
possible way for realizing associativity on cylinder 
memories. Several related proposals were published 
quite recently: by Slotnick and Parker,l·2 by Coulouris 
Evans and Mitchell3 and by Gertz.4 Other possibilities 
were considered by the author.5 •6 At present it is not 
clear to the author which of all the possible methods is 
preferable, and under which circumstances. This paper 
should be treated, therefore, as an illustration of what 
can be done rather than as a definite proposal. 

PARTIALLY ASSOCIATIVE MEMORY-A 
DEFINITION 

In this section we will define the term "partially 
associative memory" (PAM), by specifying the primi­
tive structure of the information to be stored on it, and 
its operational characteristics. 

587 

(a) The primitive in! ormation items stored on a 
PAM are pairs of the form: 

item = (n, d) 

The components nand d will be called the name-part 
of the item and its data-part respectively. As we will 
see below, the items stored on the PAM can be addressed 
only through their name-part, which is the reason for 
including the word "partial" in the name given to 
the memory. 

In the proposed realization of P Al\1, the name-part 
will be considerably smaller than the data-part. We will 
almost always have 

length (n) ;5 length (d) /10. 

While this is quite a severe restriction it still leaves place 
for a wide range of applications. 

(b) The operational characteristics of the PAM can be 
defined as a pair (P, J) where: 

(b. 1 ) P is a finite set of primitive predicates (Pl, 
P2, ... ,Pk) defined over the name-part of the 
items. The following are examples of predicates 
which are likely to be included in P. 
(1) For a given pattern of bits b, and a given 

maskm: 
n.AND.m=b. 

Here ".AND." is a masking operator and n 
stands again for the name-part of an item. 

(2) For a given mask m, and given integers 
num1,num2 

num1 ~n.AND.m~num2. 
(3). A composite expression, like: 

(n.AND.ml=b) 
/\ (num1~n.AND.m2~num2). 

(b.2) I is the set of primitive instructions that the 
PAM can carry out. The following instructions 
are considered as being essential. to every PAM: 
(1) Store an item (n, d). 

(N ote that no address is specified; the item 



588 Fall Joint Computer Conference, 1972 

data 
space I \ \ 

~ .... _ .... - - - - - - ;, - - - - - - - ~ .... 
"',. .... , ; \ \ ........... 

"\ , 
/ \ 

/ \ \ 

," \ \ , 
\ 

\ 

\ , 
\ 

\ 

\ 

\ 

\ 

\ 
\ 

"-

" , 
" 

Figure 1-The partition of the cylinder storage space, and the 
wayan item is stored on it 

has to be stored in an arbitrary empty 
memory slot.) 

(2) For a given predic'ate pEP, retrieve an item 
which satisfies p (n) . 

(3) For a given pEP, retrieve the set of items 
satisfying p (n ) . 

(4) For a given pEP delete the set of items 
which satisfies p (n) . 

A specific PAM may have more primitive instruc­
tions on top of these four, but we consider the efficient 
execution of the primitives defined above, as a necessary 
and sufficient condition for a memory to be a useful 
PAM. 

THE SUITABILITY OF "CYLINDER 
MEMORIES" FOR PARTIALLY 
ASSOCIATIVE ADDRESSING 

We will be concerned in this paper with cylinder­
memories, either in the form of drums, or as the "cylinder 
part" of disks. Although the conventional structure of 
such memories is well-known, we will describe it here 
schematically, mainly in order to introduce notations 
which will be used in the rest of the paper, (cf. Figure 1). 

The storage space of a cylinder-memory contains a 

set of fixed length* addressable units called pages. The 
pages are grouped into N + 1 tracks numbered from 0 to 
N, and S sectors numbered from 0 to S -1. The pages 
are addressed by their track and sector indices (i, j). 
We will use the phrase "to access a page" for the act 
of reading it or writing on it. 

A set of read/write heads, one head per track, is 
moving** together above this surface from left to right. 
But only one channel is serving all the heads, so that 
just one page can be accessed at a time. 

We introduce the following notation: 

T is the "revolution" time of the heads. 
tg is the amount of time required to pass over an 

intersector gap. 
ts = T / S is the amount of time required to pass 

over a page plus one intersector gap. 

The activity of the memory is supervised by a special 
processor called controller. In order to access a randomly 
given page (i, j), the controller first selects the head 
associated with track number i, (the head selection, 
being an electronic operation, is in general much shorter 
than tg ). Then, the controller waits until the head gets 
to the addressed page. During this "rotational delay" 
the read/write heads are passing above the cylinder 
while the reading mechanism is essentially looking for 
the addressed page, which is identified by clock pulses 
or by some pattern of bits. 

Our proposal for a realization of associative ad­
dressing is essentially based upon an exploitation of this 
unavoidable delay. Instead of spending this time in 
looking for a given address, we are proposing to use it for a 
search for a given content. 

However, with the single reading mechanism, cur­
rently available to a cylinder, it would take a long time 
to search its whole storage space. In principle it is 
possible to build a pattern matching mechanism for 
each head, as was proposed by Slotnick and Parker.1 •2 

Such an arrangement will indeed enable full associative 
addressing, but it is bound to be very expensive. 
Having in mind standard low-cost devices we will try to 
achieve a less ambitious goal, namely the realization of 
"partial associative memory" as it was defined above. 

Essentially, the method for achieving partial asso­
ciativity is very simple: Suppose that the items to be 
stored on our memory satisfy the relation 

length (name-part) ~ length ( data-part) / N, 

* The page length is not always fixed in practice but we will 
assume this for the sake of simplicity. 
** In practice the heads are fixed in space and the cylindrical 
surface rotates. It is, however, easier for us to talk about the 
head as the moving part. 



I 
I 

Rotating Storage Devices as Partially Associative Memories 589 

then we can group all the name parts into a single track 
which can be scanned with a single reading mechanism 
in T seconds. We will accordingly partition the storage 
of the cylinder as follows (see also Figure 1): The 
cylinder is (logically) divided into two parts, to be 
called data space and control space. The data space 
consists of N tracks (track 1 through track N), while 
the control space is just one track (track number 0) to 
be called also control track. The pages of the control 
track will be called control pages (CP's); a specific 
control page (0, i) will be denoted by CP i . We further 
partition the data space into equal sized cells to be 
called data cells (DC's). A data cell may be of any size 
depending upon the application; for the sake of sim­
plicity, however, we assume in this paper that each CD 
is a page, to be also called data page (DP). The control 
space is similarly partitioned into fixed size control cells 
(CC's) so that the total number of control cells is equal 
to the number of data cells, which means that 

length(CC) =length(DC)/N. 

We now associate a unique CC with each DC as 
illustrated in Figure 1: The control cells in CP i are 
associated with the data cells in column i+o*, while 0 is 
a small integer which depends upon the application, as 
will be described later. (In Figure 1, 0 is assumed to be 
1). We will use the term memory slot for a pair (CC, DC) 
associated with each other. 

Suppose now that the items (n, d) are stored by 
recording n on a CC and d on its associated DC. Given 
then a predicate p we can retrieve an item satisfying 
p (n) simply by reading continuously the control track, 
computing p on each CC. If a CC containing an n 
which satisfies p (n ) is found, then we switch to its 
associated DC to read the d part of the item. The 
predicate p must be simple enough so that its com­
putation can be carried out in time for the associated 
DC to be accessed at. the same revolution; (this point 
will be further discussed later) . 

Although the above organization of information on 
the cylinder permits an efficient associative retrieval of 
an item, it still does not turn the device into a PAM, 
since most of the primitives of a PAM cannot be per­
formed efficiently, as will now be demonstrated by 
considering two such primitives. We will see that the 
difficulties are due to limitations of the conventional 
architecture of cylinder devices, limitations which are 
not inherent to such memories and can be removed 
quite easily. 

Consider first the act of storing a new item (n, d). 

* Additions performed on the sector index are assumed to be 
modulo S throughout this paper. 

writing head 

Figure 2-An illustration of the fast correction capability pro­
vided by separating between the reading and writing heads. 
Suppose that the heads are moving from left to right relative to 
the track, keeping the distance d between them constant. Cor­
rection of a page is performed as follows: The content of the page 
is read into the buffer by the reading head, corrected by the 
processorll". Then, when the writing head gets to the page, the 

corrected information is written on it. 

This operation has three steps: 

(1) 

(2) 

(3) 

An empty slot must be· found. (We will assume 
that an empty slot is identified by a zero CC.) 
The control page containing the zero CC must 
be modified by inserting n into it. 
d must be written on the DC associated with 
the CC. 

When we are ready to perform step 2, after identifying 
an empty CC, the read/write head is not above the 
control page any more. We have to wait until it gets 
there again in order to record the corrected information. 
Hence, it takes more than T seconds to store an item, 
which does not seem acceptable. 

Essentially, our problem is the inability to update a 
sector on conventional rotating devices in less than T 
seconds. This is clearly due to the fact that the same 
physical head is used for both reading and writing. The 
problem can in principle be solved by separating be­
tween the two heads, as illustrated in Figure 2. 

Note that fast updating capability is very useful even 
for conventionally addressed memories. It is, however, 
crucial for the control track in the above proposed 
access method, since, as we will yet show, virtually all 
the primitive operations of a PAM require frequent 
modification of control cells. 

There IS yet another inadequacy of conventional 
cylinder-memories as hosts for a PAM. This is revealed 
by the following description of set retrieval. 

Suppose that there are several items satisfying a 
predicate p (n ). A useful PAM must be able to retrieve 



590 Fall Joint Computer Conference, 1972 

all of them efficiently. But suppose that two of the d 
parts of these items happened to be written in sectors j 
and j+1. To be specific, suppose that the association 
between CC's and DC's is as in Figure 1. Now, the CC 
of the first item is sensed while the heads are above 
sector j -1; if the controller is instructed to read the 
associated DC, then the CC pointing to the second 
relevant item cannot be sensed, and we will have to 
wait for another revolution in order to retrieve the 
second item. The problem here is that we can use only 
one head at a time. Apparently, we need the ability to 
access the data space and the control space in parallel, 
in order to be able to retrieve sets "by content" 
efficiently. 

In the next section we describe in detail a realization 
of a cylinder PAM which incorporates the above 
suggested modifications. 

AN ORGANIZATION OF CYLINDER 
MEl\10RIES AS PAM'S 

The main structural characteristics of the memory 

A schematic description of the proposed memory 
organization is given in Figure 3. The main novel 

~_-+-_co_nt_ro_l _In_pu_t_Cl_lan_n>,-el_-,wr~:~ head (COR) 

Control Buffer 

Controller 

Main Memory 

\ 

read head 
(ClR) 

\ I I 

~ I 
Storage Space 

control 

track 

Data 
Tracks 

Figure 3-An illustration of the proposed memory organization 
(note that the cylinder storage space is illustrated in a planar 

form, for simplicity) 

features in it are the following: 

(a) We are using the partition of the storage space 
into control-cells and data-cells, which was intro­
duced above. (The specific method for asso­
ciating a CC to a DC is yet to be determined.) 

(b) The read/write head normally associated with 
the control track is separated into two heads: the 
control input head (CIH) which reads from the 
control track, and the control output head (CO H) 
which writes on it. (See also Figure 2.) 

(c) The two heads associated with the control track 
have to function in parallel to each other, and 
to one of the data heads. There are accordingly 
three parallel channels connecting the controller 
to the device: two unidirectional channels and a 
bidirectional one. 

(d) Apart from whatever buffer space is required for 
the normal data transfer, we need fairly large 
buffer space for manipulating the control track. 
The size of this control buffer will be determined 
later. 

(e) To supervise the activity of the PAM we need a 
fairly sophisticated controller which must sup­
port five parallel activities. We will accordingly 
describe it as being a complex of five independent 
"virtual processors"* working in parallel but 
interacting with each other. They are listed 
below: 

(1) 

(2) 

(3) 

(4) 

(5) 

The control input channel which reads the 
control track, via the, CIH, into the control 
buffer. 
The control output channel which writes 
information from the control buffer into the 
control track (using the COH). 
The data channel which controls the data 
heads and transmits information from one 
of them (at a time) into a data buffer in the 
controller, and back. 
The memory channel which transfers in­
formation into the main (target) memory. 
The'monitor which supervises. the activity 
of the memory. (By the phrase "memory" 
we mean the whole complex: storage space, 
heads, channels, buffers, etc.) 

The dynamic behavior of the memory 

The dynamic behavior of the memory is illustrated by 
the flow-chart in Figure 4. The five columns in the 

* We use the term "virtual" because it should be possible to 
realize several of them by a single actual processor. 



Rotating Storage Devices as Partially Associative Memories 591 

Monitor 
Control Input Control Out- Data Ch. Memory Ch. 

Ch. (CHl) put Ch. (CH2) (CH3) (CII4) 

- - - - - - - - - - -1 

data of 
CPj' back 
into it. 

Figure 4-The dynamic behavior of the controller 
The five columns represent the five parallel activities of the 
controller. There is no significance, from the point of view of 
timing, to the relative location of the boxes in the various columns, 

see for that Figure 5 

diagram represent the five processors mentioned in the 
previous section. The activity of the various boxes in 
Figure 4 depends upon the specific 1/0 instruction 
being served by the memory; the flow of control, how­
ever, is general. We will now describe the activity of the 
memory using a specific 1/0 instruction as an example. 
(Throughout this subsection we will ignore most of the 
issues involved with the need to synchronize the various 
parallel activities of the memory; they will be treated 
later in the paper.) 

Suppose that the memory is instructed to store a 
sequence of items 

(nl' dl ), (~, rh) ... (nk, dk). 

The following steps must be performed for each item 
(ni, d i ) : 

(a) An empty memory slot must be found. (We will 
assume that an empty slot is identified by a zero 
control cell.) 

(b) di has to be written on the part of the empty 
slot. 

(c) ni has to be written on the control part of the 
slot. 

The execution of this task begins by the monitor 
instructing the CIH to read a page from the control 
track (box a.l in Figure 4). The control page so accessed 
is the one which happens to be nearest to the CIH at 
this moment; we assume it to be CP j. The actual input 
process is represented by box b.I. 

Box a.l is executed just once per instruction; the 
monitor then loops between boxes a.2 and a.IO, reading 
the control track, analyzing its information, updating it 
and activating the data heads and the memory channel 
until the 1/0 instruction is satisfied. 

Box a.2 begins to analyze the data extracted from 
CP j (we will see later that at this moment, some, but 
not all of CP/s contents is transferred into the control 
buffer). In general, the purpose of the analysis is to 
verify a given predicate p on every CC of CP j. p 
depends upon the instruction being served; in this case 
it is simply a search for a zero CC, which identifies an 
empty memory slot. 

The monitor may not be able to complete the analysis 
of CP/s data by the time that the CIH gets close to 
the next sector in the track. In that case the analysis 
has to be interrupted in order to reactivate the CIH to 
continue by reading CP j +1 (cf. boxes a.3 and b.2). 

When the analysis of CP j is completed (in box aA), 
the monitor is in position to decide whether an item has 
to be transferred into, or out of the main memory. In 
our case, the current item (ni' di ) has to be recorded on 
the slot identified by a zero CC, if one was found. This 
is done in several steps: First, ni is written into the 
empty CC space of the control buffer containing the 
copy of CP j (boxes a.5 and c.l). This should not take 
more than a few microseconds as the name-part of an 
item is relatively small and the operation does not 
involve the cylinder itself. Secondly, the monitor ac­
tivates the appropriate data head (boxes a.6, d.a) to 
access the data page associated with the empty CC 
found in CP j ; we will denote this data page by DP j • 

The association between data cells and control cells has 
to guarantee that at this moment the data head will be 
fairly close to DPj ; we will return later to this point. 
When the data head gets to the page DPj, both the 
memory channel and the data channel connecting the 
controller with the cylinder are activated (boxes d.2 
and e.2). 

If any additional modification to the content of CP j 
is required, it will be done by box a. 7. In our case no such 
modification is necessary but it may be required in 
various "marking operations" as will be shown. If the 



592 Fall Joint Computer Conference, 1972 

buffer containing the content of CP j was modified, 
either by box a.5 or by a.7, the modified buffer must be 
written back into CPj modifying the page itself (boxes 
a.S and c.l). Obviously, the COH must be in position 
to do that, which is a requirement on the physical 
separation between the two heads. 

If the 1/0 instruction is fulfilled (box a.9), the con­
troller idles; otherwise it goes back to box a.2 to begin 
analyzing CPi+l'S information which by now is partly 
in the buffer. (Box a.lO represents the fact that now the 
next control page will be analyzed.) 

We should keep in mind that the above description is 
only an example. Actually the memory must be able to 
carry out a variety of I/Y> instructions based upon a set 
of predicates. The actual activity of most boxes in 
Figure 4 is therefore a function of the instruction being 
served, and there should be a way to select the de­
sirable algorithm each time. 

One can infer from the discussion above that the 
controller which supervises all this activity should be 
fairly powerful, preferably programmable, processor. 
This processor must be able to perform simple com­
putations very quickly, to support several parallel 
activities and to choose at run time between several 
alternative procedures. The price of such a mini­
computer is nevertheless only a small fraction of the 
price of a large disk or drum. In fact there is a growing 
trend in the industry* to change the conventional 
special purpose controller to a processor which has 
essentially the characteristics required here. 

Synchronization of the parallel activities of the PAM 

In the discussion above we neglected the need to 
synchronize the various parallel activities of the con­
troller with each other and with the rotation of the 
cylinder. Such a synchronization imposes constraints 
which will now be discussed. 

(a) The controller cycle (boxes a.2 through a.lO) 
must be executed in less than t8 = T / S seconds, 
since it has to be applied to each of the S pages 
of the control track. This obviously restricts the 
complexity of the primitives of our P A1Vf, for a 
given controller and cylinder. With the present 
speed of logic, however, we should have ample 
time at least for primitives of the type of simple 
pattern matching. 

(b) The data pages associated with CP j can be 
accessed not sooner than 01 seconds after the 
reading of CP j is terminated, where 01 is defined 

* Control Data Corporation, for example, now has such a con­
troller.7 

as the time required to execute boxes a.3 through 
a.6 plus the "head switching" time (box d.l). 
This delay clearly depends upon the specific 1/0 
instruction; However, for a given memory 
system, with its finite set of primitives we can 
define: 

The delay ~1 may be realized by an appropriate 
association between the control cells and data 
cells. There are two cases to be considered: 
(1) If ~1 < tg (tg was defined as the intersector 

gap time), then it is enough to associate the 
CC's in CPj with the data column j+l 
(namely the pages (i, j + 1) for 1 ~ i ~ N) . 

(2) If ~l>tg, we may use several techniques: We 
can associate the data sector j+2 with 
CP j or we can place the data sectors and 
the control pages in different angular posi­
tions. (Alternatively, the same effect may 
be achieved by allowing a non-zero angle 
between the data heads and the head 
reading from the control track.) 

( c ) The actual updating of CP j can begin only 02 
seconds after the reading from it was terminated. 
Here, 02 is the execution time of boxes a.3 through 
a.S in Figure 4. We can again define for a specific 
memory: 

The delay built into the memory must be greater 
than or equal to ~2. Such a delay may be realized 
by an appropriate physical spacing between the 
read head and write head associated with the 
control track, so that the write head gets to 
every page, 82 seconds (or more) after the read 
head leaves it. 

In the case of disks there is a problem involved 
with this delay: a fixed linear distance between 
the heads amounts to different time delays when 
the heads are accessing different cylinders. This, 
however, does not necessarily mean that the 
distance between the heads must be physically 
readjusted for each cylinder. It would be enough 
to guarantee that all the delays are greater than 
or equal to ~2. The different delays can be 
buffered by the control buffer whose length, as 
we will see below, is a function of the delay. 

( d ) Note that during the part of the controller-cycle 
serving CPj, we have the whole copy of CPj 

residing in the control buffer while in addition 
the content of CP i+l already flows into it. This 
situation exists for about ~2 seconds, (during the 
execution of boxes a.4 through a.S). At the end 



Rotating Storage Devices as Partially Associative Memories 593 

~ne 

ell 3 

~l 

of this period the occupied buffer space IS 

roughly: 
(~/ts+1) • (page size) 

(neglecting the intersector gap time). We do 
not need more buffer space than that, since after 
concluding the execution of box a.8, information 
begins to flow out of the buffer back into CP j 
(box c.1) at the same rate in which it flows in,! 
from CP HI. We thus have a rough estimate of 
the required buffer space. In the case of disks, 
if g2 is the maximum of 52 over all the cylinders, 
then the required buffer space is: 

(52/t8+ 1) • (page size). 

An illustration of the time relationship of the 
various activities of the memory is provided by 
the time-diagram in Figure 5. It is easy to infer 
from this diagram, as well as from Figure 4, that 
the size of the delays 81 and ~ would generally be 
smaller, and in any case not much bigger, 
than t8' 

It may be instructive to present at this point 
an example of an actual situation. We will con­
sider the popular CDC 841 disk file (which is 
virtually identical to IBM 2314). Every cylinder 
of this disk is constructed from 20 tracks each 
with 14 pages. The size of every page is 3840·bits. 
The revolution time Tis 25ms. 

In this disk we will have 19 control cells per 
control page; the size of each CC is about 190 
bits. The controller cycle ts is about 1.8 ms. which 
should allow a fair amount of computation to be 

rt .!hI. _-='--_ 

, , 
- , , 

:~ __ 61_-f -'1-1 accessing DP, accessing DP1+1 

I " 
I _ : : 
I 6 f, Wt"itingCP

j :-t __ 2 __ t_~ -"'f' ----
I I I , 
I I I I 

I' , 

writing CPJlt 

reading CP
j
+

2 readingCP j : :readi1 CPj+l 

Z~~~~e~ontrol // if: .. 

"
4'-,'5':6 ,! ,-a L,O 

./~ 
Honitor 1"" II 2-3 I < r ~ fl." ~ ;{4-S ... 

r 
I Controller cycle 

-(-- - - - - - - ts _____ -t-

Figure 5-Illustration of the time correlation of the various 
parallel activities of the memory 

The numbers above the "monitor line" represent the boxes 
of Figure 4 which are active at a specific moment. The dotted 
lines represent the activation of the various channels by the 

monitor 

performed on each CC. As to the· size of the 
control buffer, suppose that ~ = t8/2 which is 
equivalent to saying that the distance between 
the read head and the write head must be at 
least 1.5 times the length of a page. Now, the 
radius of the outermost cylinder of the 841 disk 
file is "-'6.5 inches, while the radius of the inner­
most cylinder is "-'4.5 inches. If the two separated 
heads are mounted on a fixed angle fork, which 
has to move from cylinder to cylinder, then the 
biggest delay ~ would be 

52~ (6.5/4.5) . ~~0.75·t8' 

Which means that the size of the control buffer 
should be: 

(52/ts+1)· (page size) ~6750 bits. 

THE PERFORMANCE OF THE PROPOSED 
"PARTIALLY ASSOCIATIVE lVIEl\10RY" 

We will try now to justify the name "partially 
associative memory" for the proposed device, by 
describing its performance in carrying out the opera­
tions which were defined as essential primitives of a 
PAM. In order to compare the performance of our 
P Al\1 with that of a conventional rotating memory we 
will assume an item in the conventional case to be of 
page size. 

Retrieval of a single item 

Instead of the average T/2+tB seconds on conven­
tional cylinder memories, it takes on the average 
T/2+2·t8 +81* seconds to retrieve an item from our 
PAM. Needless to say, this extra inefficiency is more 
than compensated for by the fact that the retrieval is 
"by content." 

Storing a single item 

This operation turns out to be almost always more 
efficient than its equivalent for conventional cylinder­
memories. The store operation for both types of 
memories has two parts 

(a) Getting to the point where the item has to be 
written; 

(b) The actual writing process. 

* Here, and in the rest of this section we neglect the inter-sector 
gap time t g• 



594 Fall Joint Computer Conference, 1972 

On conventional cylinders, the store operation takes 
T /2+ts seconds on the average: T /2 to get to the 
desired address and ts forthe actual writing. 

To store an item on our PAM, we do not have to wait 
until the heads get to a prespecified sector; we can write 
on the first empty memory slot encountered. The time 
delay d involved with that, obviously depends upon the 
distribution of empty slots on the cylinder, and it is in 
general considerably smaller than T /2. For the case 
that there are e empty slots distributed uniformly, on 
the cylinder, the expected delay d ( e ) was computed 
elsewhere.6 Here we will bring some numerical results 
for illustration. If S = 10 then we have: 

e 
expectedd (e) in 

units of ts 

1 
4.5 

5 
1.2 

10 
0.49 

15 
0.24 

20 
0.13 

These results mean that if the cylinder is not heavily 
loaded we have a very good chance of finding an empty 
slot in the first sector encountered. 

On the other hand, the second part of the store opera­
tion takes longer than its conventional counterpart. 
Once the CIH gets to the control sector containing an 
empty CO, it takes 2·ts+52 seconds to complete the 
store operation. This is more than the standard ts 
seconds, but the much shorter rotational delay would 
more than compensate for it, in most cases. 

Storing a set of items 

This operation was already described in detail. The 
time required to carry it out depends again upon the 
distribution of empty slots on the cylinder surface. 
This time is calculated elsewhere6 for the case that the 
empty slots are distributed uniformly. 

Retrieval of unordered sets 

Let A (p) be the set of items defined by the simple 
predicate pEP. Namely, A (p) is the set of items stored 
on the PAM, which satisfy p (n) . 

Let M be the maximal number of pages containing 
items from A (p), which belong to a single data sector. 

For the sake of retrieval of such sets (and also for 
other purposes) we allocate a single bit in each CC for 
system use; it will be called mark-bit. We will use the 
terms: to mark and unmark an item, for making its 
mark bit 1 and 0 respectively. In addition we will use 
the word marked as a primitive predicate which is 
"true" for marked items. 

The following is an algorithm which retrieves the set 
A (p) in M revolutions of the cylinder. The retrieval 

process has two phases: 

Phase 1: During the first revolution we look for items 
satisfying p (n ). As many of them as possible will 
actually be retrieved and their mark bit will be set to 0 
(note that not more than one item per sector can be so 
retrieved). All the other items satisfying pen) will be 
marked. Let R be the number of items so marked. R 
would obviously be zero if M = 1; in this case the 
retrieval is accomplished in one revolution. If, however, 
R ~O we continue with Phase 2. 

Phase 2: Now we are looking for items which satisfy 
the predicate: 

pen) /\marked 

trying to retrieve them. (Again, we can retrieve only one 
per sector.) Each such item, if retrieved, is unmarked 
and R is reduced by one. The retrieval process is 
terminated when R becomes zero. 

A few remarks are in order: 

(a) The marking of items does not take any extra 
time; this is due to the efficient correction 
capability of the control space provided by the 
head separation. 

(b) The algorithm can be carried out only if the 
memory can handle predicates of the form: 

p (n) /\ marked. 

Note, however, that if we can guarantee that 
items which do not belong to A (p) are un­
marked, then in phase two we can simply look 
for marked items. 

(c) The efficiency of set retrieval obviously depends 
upon the distribution of the set on the cylinder 
surface. This means that although we do not 
have to know the address of an item stored on a 
P AIVI in order to retrieve it, we should keep some 
control on the distribution of sets of items. The 
efficiency of this operation for randomly dis­
tributed sets is calculated elsewhere.6 

Deletion 

To delete an item, it is enough to erase its control 
cell. Given a simple predicate p we can therefore delete 
the set A (p) in T+ts seconds regardless of its dis­
tribution on the cylinder. This efficiency is again due to 
the head separation. 

Other associative l/P operations, such as the retrieval 
of sets defined by composite predicates are discussed 
elsewhere.5,6 



Rotating Storage Devices as Partially Associative Memories 595 

Some odd applications of the proposed memory 

Although a comprehensive study of the applications 
of the proposed memory is not within the scope of this 
paper, we will mention here two of its less obvious 
usages. The usages to be discussed here depend more on 
the effectively instantaneous modification capability 
created by the head separation, than on the associative 
addressing. 

(a) Synchronization of parallel processes which access 
the same information, is a common problem in 
data-base management. In particular, if two 
processes PI and P2 are capable of modifying 
the same item i, they must be prevented from 
doing that at the same time. Otherwise, the 
following undesirable sequence of events may 
occur: 

PI reads item i. 
P2 reads item i. 
PI replaces i with modified information. 
P2 replaces i with modified information. 

In the context of the proposed PAlVI, such 
processes can be synchronized by means of 
"semaphores" (cf. Dijkstra8). Every bit in the 
control cell can serve as a semaphore since it can 
be set and reset instantaneously. 

(b) The second useful application of the "instanta­
neous modification capability" is that it provides 
us with a very simple and cheap way for main­
taining various "usage statistics." Suppose that 
we are interested in the number of retrievals of 
each item in the memory. Suppose in addition 
that we can afford to allocate a suitable count 
field in each CC. All we have to do then is to 
increment by one the count field of every item 
when retrieved. This capability may be quite 
useful for data-base administration. 

CONCLUSION 

As pointed out in the introduction, the detailed descrip­
tion of an organization of rotating associative memory 
was not intended to imply that it is the only, or even 
the best way for realizing associativity on rotating 
devices. The basic ide~s presented in this paper can be 
put together in several different ways as it is shown 
elsewhere.5 ,6 One of the possible variations is worth 
mentioning here: The control information can be stored 
on a relatively slow random-access memory, external to 
the rotating device. Such an organization does not require 
any change in the device itself. 

Space limitations do not allow us to include any dis­
cussion of the applications of the proposed memory. 
Such a discussion is particularly necessary because of 
two reasons: 

(a) Because of the current unavailability of large 
scale associative memories, there is almost no 
published study of their use. (There are, how­
ever, several papers which discuss the use of 
simulated associative memories in data-base 
environment.9 ) 

(b) The proposed memory is quite restricted; it is 
only "partially associative" and it is not really 
large, from the point of view of "data base" type 
applications. Therefore, the ways for utilizing 
such memories are not obvious. 

Elsewhere6 we consider some applications of the 
proposed PAM, but a comprehensive study of the 
subject is yet to be done. 

ACKNOWLEDGMENT 

It is my pleasure to thank Dr. Peter Patton and Dr. 
Larry Kinney for reading drafts of this paper and for 
their useful comments and suggestions. 

REFERENCES 

1 D L SLOTNICK 
Logic per track devices 
Advances in Computers Academic Press 1970 

2 J L PARKER 
A logic per track retrieval system 
IFIP Congress 1971 

3 G F COULOURIS J M EVANS R W MITCHELL 
Towards content-addressing in data bases 
The Computer Journal Vol 15 No 2 1972 

4 J L GERTZ 
Storage reallocation in hierarchical memories 
Third Symposium on Operating Systems Principles 
October 1971 

5 N MINSKY 
Rotating storage devices as "partially associative memories" 
University of Minnesota Computer Sciences Department 
Technical Report 72-4 April 1972 

6 N MINSKY 
On associative addressing in cylinder memories 
To be published 

7 A non formal description of CDC /844 disk system 
8 E W DIJKSTRA 

Cooperating sequential processes 
Programming Languages F Genuys (ed) Academic Press 
1968 

9 J A FELDMAN 
A n algol-based associative language 
Communications of the ACM August 1969 





The page fault frequency replacement algorithm* 

by WESLEY W. CHU and HOLGER OPDERBECK 

University of California 
Los Angeles, California 

INTRODUCTION 

Dynamic memory management is an important advance 
in memory allocation especially in virtual memory and 
multiprogramming systems. In this paper we consider 
the case of paged memory systems: that is, the physical 
and logical address space of these systems is partitioned 
into equal size blocks of contiguous addresses. The 
paged memory system has been used by many computer 
systems. However, the basic memory management 
problem of deciding which pages should be kept in the 
main memory to allow efficient operation without 
wasting space is still not. sufficiently understood and 
has been of considerable interest. Obviously, pages 
should only be removed from the main memory if 
there is a very low probability that they will be used in 
the near future. The difficulty lies in trying to deter­
mine which pages to remove, without incurring difficult 
implementation problems at the same time. 

Many replacement algorithms have been proposed 
and studied in the past, such as Random, First-in 
First out, and Stack Replacement Algorithms! [for 
example, Least Recently Used (LRU)]. These replace­
ment algorithms are usually operated with a fixed size 
memory allocation. For such a fixed size memory 
replacement algorithm we need to have prior knowledge 
about program behavior. For example, in the LR U case, 
we need to have an estimate for the number of page 

I frames which have to be allocated for each individual 
program. Further, program behavior is usually data 
dependent and changes during execution. An efficient 
replacement algorithm should therefore automatically 

I adapt to the dynamically changing memory require­
ments. A recent study by Coffman and Ryan2 shows 

I; that such dynamic storage partitioning provides sub­
stantial increases in storage utilization over fixed 
partitioning. The working set model of program be-

* This research was supported by the U.S. Office of Naval 
Research, Mathematical and Information Sciences Division, 
Contract Number NOO014-69-A-0200-4027, NR 048-129. 

597 

havior3 takes into account the varying memory require­
ments during execution. With respect to this model, we 
call the replacement algorithm, which keeps exactly 
those pages in main memory that have been accessed 
during the last T references, the Working Set Replace­
ment Algorithm. The performance of the Working Set 
Algorithm still depends on the choice of the working 
set parameter T and program characteristics (e.g., 
locality).4 Further, the Working Set Algorithm appears 
expensive to implement. Therefore we were motivated 
to develop an adaptive replacement algorithm which is 
largely independent of program behavior and input data 
and is simple to implement. We shall use the page fault 
frequency (the frequency of those instances at which an 
executing program requires a page that is not in main 
memory) as an adaptive parameter to control the 
decision process of the replacement algorithm. Since the 
page fault frequency reflects the actual memory require­
ments of a program at execution time, the Page Fault 
Frequency (PFF) Algorithm can be applied to arbitrary 
programs without prior knowledge about program 
behavior. 

The performance of replacement algorithms is 
usually compared in terms of efficiency and space-time 
product. Because of the complex nature of program 
behavior, we used simulation techniques to measure the 
efficiency and the space-time product for various pro­
grams. From these simulations we were able to compare 
the performance of the LRU and Working Set Replace­
ment Algorithms. Next we describe the PFF Algorithm 
and compare its performance with the LRU and Work­
ing Set Replacement Algorithms. Finally, we discuss the 
advantages of this new replacement algorithm when 
employed in a multiprogramming environment and the 
implementation of the PFF Replacement Algorithm. 

PERFORMANCE OF LRU AND WORKING 
SET REPLACEMENT ALGORITHMS 

Because of the complex nature of program behavior, 
analytical estimation of such parameters as page fault 



598 Fall Joint Computer Conference, 1972 

10-2 r--.....,.---,----,.....--~----,,...---........ --..... 

> 
U 
Z 

~ 10-4 
o 
w 
a: 
u.. 

10 

... 
\ 
""'\ 

\ , 
\ . 
, I' ' .. \ 

\ """, V META7 

\ " V 
V'\ 

20 

\ 

'-'" 
FORTRAN 

30 40 50 

STACK DISTANCE 

\ 
\ , , , , , 
\ , 
\ 

60 

Figure 1-Stack distance frequency for the four 
measured programs 

a) FORTRAN and META7 

70 

frequency and the average inter-page-fault-time (aver­
age process running time between page faults) becomes 
very difficult. Yet this information is important in the 
planning of an efficient replacement algorithm that 
optimizes system performance. Therefore we employ 
measurement techniques for such estimations. This 
technique has been used previously to measure dynamic 
program behavior5 and also to measure the performance 
of the Belady Optimal Replacement Algorithm,6 the 
LRU Replacement Algorithm/·s and the Working Set 
Replacement Algorithm.4 

For this purpose an interpreter for the UCLA 
SIGMA-7 time-sharing system has been developed. 
This interpreter is capable of executing SIGMA-7 
object programs by handling the latter as data and 
reproducing a program's reference string. This sequence . ' 
In turn, can then be used as input to programs which 
simulate various types of replacement algorithms. For 
convenience in presentation, we let the time required 

10-2 r---,----.----,---~----,,...----......---

\ 
\ 
\ 
\ 
\ 
\ 

~~Ii 

> u z 
w 5 10-4 

w 
-a: 

u.. 

.. , , , , 
'I; " 

\" " " , . , 
~ .. , . 

~.I\ " , I , 
J , 

I 
I 
I 
yDcDL 

FORTCOMP I 
I 
I 
I 
I 
I 
I 
I 

10-6 ~_----L __ .LJ... __ ....J... __ ...L..-I'--_'--_---L __ ....J 

10 20 30 40 50 60 70 

STACK DISTANCE 

b) FORTCOMP and DCDL 

for a thousand page references correspond to one 
millisecond (msec). 

Four different programs of various characteristics 
were interpretively executed. A FORTRAN Program 
(FORTRAN) and a FORTRAN compiler (FORT­
COMP) were chosen as representatives for programs 
with small localities. A META7 compiler and a DCDL 
compiler represent programs with large localities. 
META 7 translates programs written in MET A 7 to the 

TABLE I-Characteristics of Measured Programs 

FORTRAN 
FORTCOMP 
DCDL 
META7 

SIZE NUMBER OF 
PAGE 

REFERENCES 
STATIC 80 DYNAMIC ro 

24 
24 
44 
84 

38 
39 
71 

165 

4,870,000 
3,810,000 
3,010,000 
2,590,000 



assembly language of the SIGMA-7. The DCDL 
(Digital Control and Design Language) is written in 
META7. It translates specifications of digital hardware 
and microprogram control sequences into machine 
code. To illustrate the behavior of these programs, 
Figures 1a and 1b display the stack distance frequencies 
as defined in Reference 1. The frequent occurrence of 
large stack distances (20 and more) for META7 and 
DCDL indicates that the localities for these programs 
are larger than the localities of FORTRAN and 
FORTCOMP. 

Table I shows some characteristic properties of these 
programs. The column 'size' is divided into two parts. 
'Static' refers to the number of pages, 80, necessary to 
store the program as an executable file on a disk where 
one page consists of 512 32-bit words. 'Dynamic' 
indicates the number of different pages, To, actually 
referenced while processing the given input data. There 
are two reasons why To is not equal to 80: first, not all the 
pages which make up the program may be referenced 
while processing a particular set of input data; second, 
a number of data pages is created and accessed during 
execution to provide for working storage space, buffer 
areas, etc. 

The number To is of special interest because it is equal 
to the minimal number of page faults which will be 
incurred by every replacement algorithm based on 
demand paging. Actually, To page faults will occur even 
if not a single page is replaced. In this case, all page 
faults are caused by the very first reference to a page. 

For a given page reference string wand a given 
replacement algorithm with its parameter, the page 
fault frequency few) is defined as the ratio of the number 
of page faults during processing w to the total number 
of references in w. 

where 

T 
few) = -

t 

T = total number of page faults 

t = total number of page references 

For a finite t, since TZTo>O, few) is always greater 
than O. The average inter-page-fault-time is t/T page 
references. 

If no pages are replaced, the smallest page fault 
frequency is fo(w) =ro/t which depends on ro and t. In 
general, fo (w) is different for different programs and 
could be different even for the same program when 
processed with different sets of input data. For this 
reason, it is awkward to use few) as a measure to 
compare the performance of a replacement algorithm 

Page Fault Frequency Replacement Algorithm 599 

when applied to different reference strings. We there­
fore define a normalized page fault frequency, fn(w), as 

The normalized page fault frequency considers only 
those page faults which are caused by references to 
pages which have been accessed before but which were 
replaced later. Clearly, if no pages are replaced, fn(w) 
is O. 

The efficiency E for a program execution is defined as 
the ratio of total virtual processing time (processing 
time without page-wait times) to the total real pro­
cessing time (total virtual processing time plus total 
page-wait times) ; that is, 

where 

total virtual processing time 
E = total real processing time 

1 

l+f(w)·R' 

T m = access time of main memory 

Ts = access time of secondary memory 

(1) 

R is called the speed ratio of a particular combination 
of secondary and main memory. We assume T m to be 
the time of one page reference (10-3 msec). The maxi­
mum efficiency which can be achieved if no pages are 
replaced is 

Eo again depends on To and t and is therefore in 
general different for each reference string. For this 
reason, we define the normalized efficiency En which 
corresponds to the normalized page fault frequency 
fn(w), as 

and use this as a measure to compare the performance of 
various replacement algorithms. Note that En always 
reaches its maximum of 100 percent if no page is 
replaced that will be referenced again, and that En is 
independent of ro. 

Figures 2 and 3 display the normalized efficiency· and 
the average inter-page-fault-time as a function of 
memory space allocation for the LRU Algorithm with 
R = 10,000. * For a given memory space we notice that 

* These curves can be derived directly from the stack distance 
frequencies in Figure 1 (see Reference 1). 



600 Fall Joint Computer Conference, 1972 

90 

80 

70 
DCOL 

?f!. 
>-' 
u 60 z 
w 
U 
~ 
LL 
W 50 
a 
w 
N 
:::i « 

40 :!!: 
a: 
0 z 

30 

20 

10 

NUMBER OF ALLOCATED PAGE FRAMES 

Figure 2-Normalized efficiency of the LRU algorithm 

different programs have different normalized efficiencies 
and different average inter-page-fault-times. Further, 
programs with small localities tend to yield better 
performance than programs with large localities; The 
average inter-page-fault-time increases as the assigned 
memory space increases and reaches its maximum, 
tiro, as the memory space reaches a certain size. At this 
memory size the normalized efficiency reaches 100 
percent. Further increase in memory space does not 
increase the average inter-page-fault-time and efficiency. 
The fact that all four curves in Figures 2 and 3 have 
their steepest slope occurring at different memory sizes 
reflects the different memory needs for each program. 
Thus, for a given process that uses the LR U replace­
ment algorithm, one of the most difficult tasks is to 
determine the size of the memory which is to be allo­
cated for each process. Assigning too large a number of 
page frames for a process results in inefficient utilization 
of memory space, while assigning too small a number of 
page frames yields too many page faults, resulting in 
inefficient operation. A procedure which gives the same 

amount of main memory to every process will almost 
surely result in either inefficiencies or waste of storage. 
In addition, the estimate of the memory needs of a 
process should be fairly accurate because only a few 
pages less than actually necessary means, in many cases, 
a large decrease in the average inter-page-fault-time. 
The determination of the amount of required memory is 
further complicated by the fact that it is usually data 
dependent and may vary during execution. 

In contrast with the LRU Algorithm, the Working 
Set Replacement Algorithm requires a variable sized 
storage space for each process. This variable storage 
space provides the capability to adapt to dynamic 
changes in program behavior. The working set W (t, T) 
at a given time t is the set of distinct pages referenced 
in the process (or virtual) time interval (t-T+1, t), 
that is, the set of pages accessed during the last T 

references where T is called the working set parameter. 
The working set size w(t, T) is the number of pages in 
W (t, T). The basic replacement policy is to keep in the 
main memory those pages which have been referenced 

u 
w 
en 
:!!: 100 
w' 
:!!: 
i= FORTCOMP 
~ 
..J 
::l « 
LL 

W 
Cl « 
0.. 
r:i: 
w 
I-
~ 
w 
Cl « 10 
a: 
w 
> « 

10 20 30 40 50 60 70 

NUMBER OF ALLOCATED PAGE FRAMES 

Figure 3-Average inter-page-fault-time of the LRU algorithm 



during the last T msec. T is an important parameter 
which affects the performance of the Working Set 
Algorithm. 

In general, the Working Set Algorithm can be con­
sidered as an LRU Algorithm with variable size 
memory allocation. There is, however, a crucial differ­
ence. Using an LRU Algorithm, pages are always re­
placed when a page fault occurs. This does not apply to 
the Working Set Algorithm. Here, page frames are freed 
whenever they have not been accessed during the last T 

msec. A strict implementation would require the setting 
of a flag at this point; that is, an indication that the 
corresponding page frame can be used for a different 
page of any process. Another problem is to detect the 
exact time when a page has not been referenced during 
the last T msec. Hence, it appears to be rather expensive 
to implement the Working Set Algorithm. 

In the simulation of the Working Set Algorithm we 
assume that exactly the working set is kept in main 

~ 

>' 
(,) 
z 
w 

-." -- .----
FORTCOMP ~ ,. ,. _, --=-::.-_---

~." .....:"" 
90 / ~ FORTRAN 

/ 

80 

70 

I 
I 
I 
I 

I 

U 60 
u:: 
u.. 
w 
o 
w 
~ 50 
<t 
:iE 
a:: 
o z 

40 

R = 10,000 

30 

20 

10~------~----~-----L--__ ~ ______ L-__ --J 
80 120 160 

WORKING SET PARAMETER T, MSEC 

(1 MSEC = 1000 PAGE REFERENCES) 

200 

Figure 4-Normalized efficiency of the working set algorithm 

Page Fault Frequency Replacement Algorithm 601 

90r-----.-----~----~----~~ __ ~----__ 

c.J 
w 
(J) 

80 

70 

:iE 60 
w' 
:iE 
i= 
..:. 
...J 
:::> 50 
<t 
u.. 
W 
(!) 
<t 
Q. 

ci:. 40 
w 
f-
~ 
w 
(!) 

~ 30 
w 
> <t 

20 

10 

40 80 120 160 

WORKING SET PARAMETER T, MSEC 

(1 MSEC = 1000 PAGE REFERENCES) 

200 

Figure 5-Average inter-page-fault-time of the working 
set algorithm 

memory. This means that a page fault is recorded 
whenever a page is accessed which is not included in 
the current working set. However, in systems using the 
working set strategy it may happen that a page leaves 
the working set and returns later without leaving main 
memory in the meantime. Thus, the actual page fault 
frequency during execution can be slightly lower than 
the page fault frequency we observed during simulation. 
This, of course, is true for every replacement algorithm 
which frees page frames without allocating them 
immediately to another page. 

Figures 4 and 5 display the normalized efficiency and 
the average inter-page-fault-time as a function of· T 

for the four programs when the Working Set Replace­
ment Algorithm is employed. * Both the average inter-

* For more measurement data on the Working Set Replacement 
Algorithm and their applications, interested readers should refer 
to Reference 4. 



602 Fall Joint Computer Conference, 1972 

page-fault-time and the normalized efficiency increases 
rapidly as T increases for the range of T less than 80 
msec. This suggests that in implementing a Working 
Set Replacement Algorithm for these four measured 
programs, we should choose a parameter T of at least 
80 msec. For T = 200 msec, the normalized efficiency for 
all four programs is greater than 85 percent. We also 
note that different programs achieve different efficien­
cies. For a given T, the programs with small localities 
usually give better performance than the programs with 
large localities. This occurs because T may not be large 
enough to keep the favored pages in the main memory to 
assure a high efficiency and high average inter-page­
fault-time. 

As defined in (1), program efficiency is the ratio of 
total virtual processing time to the total real processing 
time and provides us with information on how fast the 
process will run. From an economic point of view, an­
other parameter of interest is cost. Therefore, we shall 
also include cost of storage as a measure to compare 
various replacement algorithms. One of the criteria is 
the space-time product which can be considered as being 
proportional to the cost of storage. Belady and Kuehner9 

define the space-time product C during the real time 
interval (0, t) as 

c= It S(z) dz 
o 

(2) 

where S(z) is the amount of storage occupied by the 
process at time z. The real time occupancy of informa­
tion in main memory can be much longer than the actual 
processing time. This occurs because of multiple pro­
cesses running in parallel and because of page-wait 
times. Since our study is concerned with the application 
of replacement algorithms to individual programs, only 
page-wait times have been considered. 

If we consider the execution of a program as a discrete 
process, the integral in (2) can be replaced by a sum 
which consists of two parts. The first part is the space­
time product, due to the actual processing, while the 
second part is due to the total page-wait time. Thus, 
the space-time product C can be re-written as 

t r 

C= L SiTm+ L Sti+l o R-Tm (3) 
i=l i=l 

where t is the total number of references;· r is the total 
number of page faults; Si is the number of allocated 
Pl1ge frames prior to the ith reference (i is called the 
number of the reference); ti is the number of the 
reference which causes the ith page fault (since we do 
not preload any pages, tl = 1) ; and StHl is therefore the 
number of page frames which are allocated during the 
ith page-wait time. 

~ z o o 
w 
en 
w 
e" « a.. , .. : 
o 
:::> o o 
a: 
a.. 
w 
:E 
i7 
w 

~ 
a.. 
en 

900 -- R=10,OOO 

---- R=O 

800 

700 

600 

500 

400 

300 

200 

100 

10 20 30 40 50 60 

NUMBER OF ALLOCATED PAGE FRAMES 

Figure 6-Space-time product of the LRU algorithm 

Since Li':l Sti+1- T m and Li':l SiT m are independent 
of R, C is a linear function of R. If we know C for R = ° 
and C for another R (0 < R < 00 ), then we can compute 
Li:l Sti+l" T m from (3), and thus C for any R for 
0< R < 00. For example, the space-time products of 
R=O (the dashed lines) and R=10,000 for META7 
with the LRU Algorithm are shown in Figure 6. The 
space-time product for R = 5,000 can be obtained easily 
from a linear interpretation of the curve R = ° and 
R= 10,000. Hence the space-time product presented in 
this paper can also be extrapolated to other values of 
R(O<R< 00). 

Figure 6 displays the space-time product as a function 
of the allocated memory space for the LR U Replace­
ment Algorithm with R = 10,000. Figure 7 displays the 
space-time product as a function of T for the Working 
Set Replacement Algorithm with R = 10,000. 

Comparing Figure 6 with Figure 2, we observe two 
interesting properties. First, the minimum space-time 
product is below the number of page frames necessary 
to achieve maximal efficiency. This means that minimal 
space-time product and maximal efficiency can be 



450 

400 

350 

CIl 
0 300 z 
0 
u 
w 
CIl 
w 
e" 
<! 250 a.. 
t-' 
u 
::> 
0 
0 
a: 200 a.. 
w 
2 
i= 
W 
u 150 <! 
a.. 
CIl 

100 

50 

40 80 

-- R=10,000 

---- R=O 

120 

META7 

k
META7 ----­... ,.".~-----

DCDL~ 

160 200 

WORKING SET PARAMETER T, MSEC 

(1 MSEC = 1000 PAGE REFERENCES) 

Figure 7-Space-time product of the working set algorithm 

contradictory. This is because, when the number of 
allocated page frames reaches the point that yields the 
minimal space-time product, an additional page frame 
may decrease the total number of page faults (that is, 
increase the efficiency) and thereby possibly decrease 
the space-time product due to page-wait times [second 
term in (3)]. However, this decrease is not off-set by 
the increase in the space-time product due to actual 
processing [first term in (3)]. 

Second, in terms of the space-time product it is much 
more disastrous not to allocate enough pages to a pro­
cess than to allocate too many. For instance, in the 
META 7 case, if 70 pages of memory space are allocated 
instead of the optimal number of 55 pages, the space­
time product increases from 247 to 306 pageseconds. 
But if only 40 pages are assigned to the same process, 
the space-time product increases to 700 pageseconds. 
Comparing Figure 7 with Figure 4, we observe similar 
characteristics except that the Working Set Replace­
ment Algorithm has a much better and less sensitive 
(with respect to T) space-time product than does LRU. 

Page Fault Frequency Replacement Algorithm 603 

From the above study we know that the major dis­
advantage of the LRU Replacement Algorithm is that 
it is not at all clear how many pages have to be allocated 
for different programs in order to assure efficient run­
ning without wasting space. In addition, this number is 
usually data dependent and may vary during execution. 
The Working Set Replacement Algorithm constitutes a 
possible solution to this problem. In this case, the 
amount of main memory which has to be allocated is 
automatically determined by the number of pages 
referenced during the last T msec. 

Since all of the measurements were done with the 
SIGMA-7 time-sharing system, the results presented 
here are somehow characterized by this very system. 
However, the conclusions are likely to be applicable to 
other paging systems. The reason for this is that pro­
gram behavior is mainly determined by programming 
characteristics as for example, looping, modularity of 
code, and data layout. These characteristics are rela­
tively independent of, for instance, word length or 
instruction set, and are common to all major computer 
systems. This assumption is supported by the fact that 
the results of the LRU Algorithm simulations for the 
SIGMA-7 are very similar to those for other computer 
systems (see Joseph's results for the ATLAS-computer,S 
and Coffman and Varian's results for the IBM 360/507). 

From the above measurement results, we know that a 
replacement algorithm that is to achieve a small space­
time product, has to adapt itself to the memory require­
ments at execution time. Therefore, the number of page 
frames assigned to a process must not be a constant, 
but must vary according to program demand during 
execution. Lastly, the implementation of the replace­
ment algorithm should be simple and of low cost. With 
these as our objectives, in the next section we introduce 
a new replacement algorithm that has these properties. 

THE PAGE FAULT FREQUENCY 
REPLACEMENT ALGORITHM 

An "ideal" replacement algorithm should be in­
dependent of prior knowledge about program behavior; 
instead, all of the information needed to assure efficient 
memory allocation should be gathered during program 
execution. Conceptually, the Working Set Algorithm 
accomplishes this by keeping a table with an entry for 
each page which indicates when the corresponding page 
has been referenced last. This information enables the 
memory scheduler to decide when a page frame can 
be freed. 

The Page Fault Frequency Algorithm uses the 
measured page fault frequency as the basic parameter 
for the memory allocation decision process. We assume 



604 Fall Joint Computer Conference, 1972 

that a high page fault frequency indicates that a process 
is running inefficiently because it is short of page frames. 
A low page fault frequency, on the other hand, indicates 
that a further increase in the number of allocated page 
frames will not considerably improve the efficiency and, 
in fact, might result in waste of memory space. There­
fore, to improve system performance (e.g., space-time 
product) one or more page frames could be freed. 

The basic policy of the PFF Algorithm is: whenever 
the page fault frequency rises above a given c,dtical 
page fault frequency level P, all referenced pages which 
were not in the main memory, therefore causing page 
faults, are brought into the main memory without 
replacing any pages. This results in an increase in the 
number of allocated page frames which usually reduces 
the page fault frequency. On the other hand, once the 
page fault frequency falls below P, page frames may be 
freed. The same operation will be repeated whenever the 
page fault frequency rises above P again. We shall 
designate P, measured in number of page faults per 
msec (1 msec = 1,000 page references) as the PFF­
parameter. P may be expressed as P= l/T, where Tis 
the critical inter-page-fault-time. We shall use the 
inversion of the inter-page-fault-time as a running 
estimate of the page fault frequency. That is, at the 
time of a page fault, if the inter-page-fault-time is less 
than or equal to T, then we increase the number of 
page frames by one and no pages in the main memory 
are replaced. For example, P = 1/50 means that if one 
or more page faults (excluding the current one) occurred 
during the last 50 msec, the memory scheduler will add 
one page frame to the allocated memory at the time of 
a page fault. As an initial condition it is assumed that 
a page fault occurred at time O. This allows a process to 
start collecting its pages at the beginning of processing. 
Note that this "increase decision" is based only on the 
number of page faults which occurred during the last 
T msec (virtual time) and is not based on the total 
number of page faults which occurred since the pro­
cessing began. Thus the PFF Replacement Algorithm 
provides very fast response to a sudden increase in 
memory requirements. 

Let us now describe the "decrease decision" rules of 
the PFF Algorithm: (1) page frames in the main 
memory are only freed at the time of a page fault, 
(2) only those page frames are freed which have not 
been referenced since the last page fault occurred, and 
(3) page frames are freed only if the page fault fre­
quency lies below the critical level P. More precisely, 
let tk denote the time at which the kth page fault 
occurred. The page fault frequency lies below the 
critical level P at time tk+l if and only if tk < tk+l - T, 
where T = 1/ P. In this case, all page frames which have 
not been accessed in the time interval (tk, tk+l) are 

;;e. 
>" 
(.) 
z 
w 
0 
u: 
LA. 
W 

0 
w 
N 
::::i 
<t 
:E 
a: 
0 
Z 

90 

80 

70 

60 

50 

40 

30 

20 

FORTCOMP 

R = 10000 

PFF-PARAMETER p. PAGE FAUL TS/MSEC 

(1 MSEC = 1000 PAGE REFERENCES) 

Figure 8-Normalized efficiency of the PFF algorithm 

freed. If tk ~ tk+l- T, then no page frame is freed since 
the page fault frequency lies above P. We note that T 
is somewhat similar to the working set parameter T. 

However there is an important difference. While T 

indicates when a page should be freed, T represents 
only a lower limit. Furthermore, in contrast to the 
Working Set Algorithm,* page frames in the main 
memory are only freed at the time of a page fault. 
Therefore, the time at which a page frame is freed 
depends not only on T but also on the page fault fre­
quency. This policy provides the PFF Replacement 
Algorithm with an extra adaptive capability which 
makes its performance less dependent on program 
characteristics than is the case with the Working Set 
Algorithm. The PFF Replacement Algorithm may 
therefore be considered as a Working Set Algorithm 
with variable T, where the value of T is determined by 

* This is, of course, only true for the strict implementation of the 
Working Set Algorithm which has been simulated. 



0 
w 
en 
::!!: 
w' 
::!!: 
i= 
.: 
..J 
:> 
~ 
u. 
Lit 
l' 
~ 
~ 

ci: 
w 
fo-
~ 
w 
l' 
~ 
a:: 
w 
> 
~ 

80 

70 

60 

50 

40 

30 

20 

10 

DCDL 

LMETA7 

1/40 1/80 1/120 1/160 

PFF-PARAMETER P, PAGE FAUL TS/MSEC 
(1 MSEC = 1000 PAGE REFERENCES) 

1/200 

Figure 9-Average inter-page-fault-time of the PFF algorithm 

the page fault frequency and the lower limit of T is 
T=l/P. The PFF Algorithm may also be viewed as a 
LRU Replacement Algorithm with variable size memory 
allocation where the size is determined by T and the 
inter-page-fault-times. 

Figures 8 and 9 show the normalized efficiency and 
the average inter-page-fault-time for the PFF Replace­
ment Algorithm for which P ranges from 1/10 to 1/200 
page faults/msec. Figure 8 reveals two interesting 
properties of the PFF Algorithm: (1) For P < 1/100, the 
normalized efficiency is larger than 90 percent for the 
four measured programs. This implies that high effi­
ciency can be achieved by the PFF Replacement 
Algorithm by using the same page fault frequency 
parameter for all four· programs regardless of their size 
and characteristics. (2) for FORTCOMP and FOR­
TRAN the normalized efficiency is virtually independent 

Page Fault Frequency Replacement Algorithm 605 

of P. The same is true for DCDL if P is less than 1/40 
and for META7 if P is less than 1/120 page faults/msec. 

Figure 10 displays the space-time product for the 
PFF Replacement Algorithm. Again we can observe 
that the performance of the PFF Algorithm is almost 
independent of the choice of P for P < 1/50. For the 
four measured programs, the space-time products are 
almost constant over a wide range of values of P. The 
performance of the PFF Replacement Algorithm is 
therefore relatively insensitive to P. This is a very 
appealing feature of the PFF Algorithm since it alle­
viates the task of selecting a parameter P for imple­
mentation. 

In Figure 11, the number of allocated page frames is 
displayed as a function of virtual processing time. As 
can be seen, the memory requirements for the four 
programs are quite different, and the number of allo­
cated pages varies during execution, particularly for 
META7 and FORTRAN. This clearly demonstrates 
the adaptive capability of the PFF Algorithm. The area 

450r-----.-----.-----.-----~----~--~ 

en 
o 

400 

350 

z 300 o 
o w 
en w 
l' 

~ 250 
fo-' 
o 
:> 
o o 

-- R=10,OOO 
--- R=O 

~200~ = >! \. META7 

~ _ L DCDL _.1---
~ 150 
~ _----,LDCDL en _ ... -

,-~---------- ---------
100 

50 

,,' 
~-~~:;::-----~::~R:~ 

PFF-PARAMETER P, PAGE FAUL TS/MSEC 
(1 MSEC = 1000 PAGE REFERENCES) 

Figure lQ-Space-time product of the PFF algorithm 



606 Fall Joint Computer Conference, 1972 

: : 
60 : : 

~ : .. ·······:···:.J"H ~ META7 

50 _; •• 

I:~ : 
P = 1/50 PAGE FAUl TSIMSEC 

~ ::1------'"\.-------1----, 
40 •• '- • L_ 

~ DCDl: 1 

1 :: n I 
30 : : : 1 

: : :: 1 
1 

20 ._._. 

10 

.-. .Jl.i-~r-.~ 
'" I • 
"': I ~ : 1 FORTCOMP 

: 1 
: I 
: I 

VIRTUAL PROCESSING TIME,SEC 

(1 SEC = 1000 000 PAGE REFERENCES) 

Figure ll-Dynamic changes in memory allocation of the 
PFF algorithm 

below the four curves corresponds to the space-time 
product due to actual processing time. For simplicity 
in representation, only major changes in the number of 
allocated page frames are indicated in Figure 1l. 
Nevertheless, the figure shows clearly that the majority 
of page faults which resulted from changes in program 
locality occurred during relatively short time intervals. 

COMPARISON WITH THE LRU AND 
WORKING SET REPLACEMENT 
ALGORITHMS 

In order to compare different replacement algorithms, 
it is not enough to compare their measured efficiency, 
since every replacement algorithm will yield a high 
efficiency if the number of replacements is very small. 
This can be achieved by providing a large amount of 
memory. A better criterion for evaluating the per­
formance of a replacement algorithm is the amount of 
main memory required to achieve a high efficiency 
level. For this reason the space-time product is a more 
valid measure for comparison. 

Let us use the performance of a specific PFF Al­
gorithm with P = 1/100 page faults/msec to compare it 
with the LR U Replacement Algorithm for various 
numbers of allocated page frames. Figure 12 shows that 
the space-time products of the PFF Algorithm for all 
four programs are lower than the minimum space-time 
products achievable by the LRU Replacement Al­
gorithm. This implies that the performance of the PFF 
Algorithm is better than that of the best LR U Algorithm. 

The above results reveal the inefficiency involved in 

the fixed-size memory allocation. In such systems good 
performance can only be achieved if we allocate a 
number of page frames which is close to the optimal 
number that minimizes the space-time product. But 
even if we knew this optimal number, the performance 
of the PFF Algorithm would still be superior. This is 
especially true in those cases where the memory require­
ments vary drastically during execution (e.g., META 7) . 
If the memory requirements are relatively constant 
(e.g., FORTCOMP), then the performance of the 
LR U Algorithm is similar to that of the PFF Algorithm, 
provided that the optimal number of page frames is 
known a priori. 

Figure 13 shows a comparison of the performance of 
the Working Set and PFF Algorithms. The space-time 
product is plotted for the working-set parameter T and 
PFF-parameter P. For large values of T, the space-time 
product of the Working Set Algorithm is usually lower 
than the space-time product of the PFF Algorithm for 

~ 
z o 
(.) 
w 
en 
w 
C!l « c.. 
1-' 
(.) 
::l 
o o 
a: 
c.. 
w 
:E 
i= 
W 
~ 
3s 

450 

400 

350 

300 

250 

200 

150 , 

100 

50 

10 

FORTRAN 

FORTCOMP 

FORTRAN 

----\--
FORTCOMP 

-LRU 
---- PFF 

P = 1/100 PAGE FAUL TS/MSEC 
R = 10000 

30 40 50 60 

NUMBER OF ALLOCATED PAGE FRAMES 

Figure 12-Performance comparison between the LRU 
and PFF algorithms 



en 
Q 
Z 
0 
(.) 
w 
en w 
CJ 
c( 
L 
~. 

(.) 
:::I 
Q 
0 
a:: 
L 
W 
::E 
j:: 
iii 
~ 
a.. en 

400 

350 

300 

250 

200 

150 

100 

50 

_ WORKING SET ALGORITHM 

- - - PFF ALGORITHM 

R = 10000 

, 
META7 ~ ", 

,~' META7 ----

-::T:;M:7---
WORKING SET PARAMETER T, MSEC 

40 80 120 160 200 

1/40 1/80 1/120 1/160 1/200 

PFF-PARAMETER P, PAGE FAUL TS/MSEC 

(1 MSEC= 1000 PAGE REFERENCES) 

Figure l3-Performance comparison between the working set 
and PFF algorithms 

corresponding values of P. Within the range of P and T 

of interest, the space-time product of the PFF Algorithm 
is less sensitive to P than the space-time product of the 
Working Set Algorithm is to T. A similar statement can 
be made with respect to the normalized efficiency and 
the average inter-page-fault-time (see Figures 4, 8 and 
5, 9). Since the space-time product of the PFF AI~ 
gorithm is relatively insensitive to the PFF -parameter 
P, we do not have to know an "optimal PFF~parameter" 
to come close to optimal performance. Further, the 
minimum space-time product of the Working Set 
Algorithm is comparable to that of the PFF Algorithm. 
The normalized efficiency and the average inter-page­
fault-time of the PFF Algorithm are greater than the 
normalized efficiency and average inter-page-fault-time 
of the Working Set Algorithm for all corresponding 
values of P and T. This shows that the performance of 
the PFF Algorithm is comparable to the performance of 
the Working Set Algorithm. 

Page Fault Frequency Replacement Algorithm 607 

APPLICATION OF THE PFF ALGORITHM IN 
A MULTIPROGRAMMING ENVIRONMENT 

Variable-sized memory allocation algorithms such as 
the Working Set Algorithm and the PFF Algorithm are 
useful in a multiprogramming environment where the 
main memory is shared by several programs. In this 
case the total amount of main memory not occupied by 
the resident supervisor can be considered as a pool of 
available page frames. These page frames are allocated 
to processes and returned to the pool according to the 
dynamically changing memory requirements of each 
individual process. 

In the previous sections, we have used simulation 
techniques to study the performance of different 
replacement algorithms. It has always been assumed 
that there is enough main memory available so that a 
process can extend its memory space whenever needed. 
Any implementation of these variable-sized replace­
ment algorithms, of course, must consider the possi­
bility that the pool of available page frames is empty. 
The probability of this event is determined by the 
degree of multiprogramming and the type and size of 
the programs currently in the main memory. However, 
these variables can, to a large extent, be controlled by 
the process scheduling mechanism. Therefore, memory 
management is closely related to process scheduling in 
multiprogramming and time-sharing systems. 

In order to reduce CPU idle time due to excessive 
page swapping, each process must be provided with 
enough main memory to keep the page fault frequency 
low. In a multiprogramming environment, it is crucial 
that this is accomplished without waste of memory 
space. The PFF Replacement Algorithm provides the 
supervisor with a means of achieving this effect which 
assures the same high efficiency level for programs of 
completely different types and sizes. In addition, the 
decrease policy of the PFF Algorithm continually 
tries to free those page frames which are no longer used 
by the process which enable processes to be run effi­
ciently without wasting memory space. 

The PFF Algorithm can also be very helpful for 
process scheduling since it gives the supervisor in­
formation about the required number of page frames 
for each process during execution. Once a process is 
removed from the main memory this information can 
be used to schedule this process for the next time 
quantum. In general, a process will be put on the 
processor queue only if there are enough available page 
frames in the pool. The information about the memory 
space of each process can also be used to decide which 
process has to be removed from the main memory if 
the page frame pool becomes empty. 

There are many ways for the supervisor to make use 



608 Fall Joint Computer Conference, 1972 

of the information about program behavior provided 
by the PFF Algorithm. Further investigations might 
yield other interesting applications. 

IMPLEMENTATION OF THE PFF 
REPLACEMENT ALGORITHM 

The implementation of the PFF Algorithm is very 
simple. We need only a clock in the CPU to measu~e 
the time between page faults of every process. ThIs 
clock measures the process (or virtual) time of each 
process. The current process time is recorded in the 
process' stateword. The page table entry can be used to 
determine which pages are residing in the main memory. 
For those paging systems that have a USE-BIT fea­
ture this feature can be used to determine those pages 
whi~h have been referenced during the time interval 
since the last page fault occurred. Whenever a page fault 
occurs the USE-BITs are reset and the supervisor 
deter~ines whether the process is operating below the 
critical page fault frequency level P. For this purpose 
the time of the last page fault has to be stored. If the 
last page fault occurred more than T=I/P msec ago, 
the USE-BITs are used to determine which pages have 
to be removed from the main memory. 

Let us now consider the overhead of the above 
mentioned operations. We know that: 

1. The overhead is proportional to the number of 
page faults. Since the PFF Algorithm assures a 
low page fault frequency, the overhead is very 
low. 

2. Due to sudden changes of program localities the 
virtual processing time between page faults is 
very short in many cases (see Figure 11). When­
ever the time between page faults is less than 
T = II P, no page frames are freed and therefore 
there is no overhead involved in the "decrease 
decision" in these cases. 

From the above implementation discussion we know 
that the PFF Algorithm is much easier to implement, 
and requires less overhead to operate than both the 
LRU and Working Set Algorithms. 

SUMMARY 

A new type of replacement algorithm based on page 
fault frequency (PFF) is developed in this paper. This 
PFF Replacement Algorithm allocates memory ac­
cording to the dynamically changing memory require­
ments of each process. It does not require prior knowl­
edge of program behavior and can be applied to 

programs of different types and sizes. The PFF Algo­
rithm uses the measured page fault frequency as the 
basic parameter for the memory allocation decision 
process. A high page fault frequency is considered 
to be an indication that a process needs more memory 
space to run efficiently. Thus whenever a page fault 
occurs the amount of allocated memory is increased 
if the page fault frequency lies above a given critical 
level P. P is called the PFF-parameter. The number 
of allocated page frames may be decreased if the page 
of allocated page frames may be decreased if the page 
fault frequency falls below this level P. In this case 
only those page frames are freed which have not 
been accessed between successive page faults. The 
PFF Replacement Algorithm adapts to dynamic 
changes in program behavior during execution. As a 
result, this algorithm is largely independent of in­
dividual program behavior and input data. 

Measurement results from simulation of the PFF 
Algorithm for four different pro~ams reveal that t~e 
performance (in terms of space-tIme product) of thIS 
algorithm is better than the performa~ce of the ?est 
LRU Replacement Algorithm (for whICh the optImal 
memory space is known a priori), and is comparable to 
the Working Set Replacement Algorithm. Further, t~e 
performance is relatively insensitive to changes In 
the PFF-parameter P. 

The implementation of the PFF Replacement Al­
gorithm is simple and less complicated than that. of 
LRU and far less complicated than that of the Working 
Set Replacement Algorithm. It does not re.quire . any 
additional hardware. Using the PFF AlgOrIthm In a 
multiprogramming environment, the supervisor has 
control over the efficiency and memory requirements of 
all processes. Based on this informati~n, the supervisor 
can perform efficient process scheduhng and memory 
allocation. From this study, we conclude that the PFF 
Replacement Algorithm should have hig~ potential.for 
use in future virtual memory and multIprogrammIng 
systems. 

REFERENCES 

1 R L MATTSON J GECSEI D R SLUTZ 
L TRAIGER 
Evaluation techniques for storage hierarchies 
IBM Systems Journal 9 2 pp 78-1171970 

2 E G COFFMAN T A RYAN 
A study of storage partitioning using a mathematical model 
of locality 
Communications of the ACM 153 pp 185-190 Mar~h 1972 

3 P J DENNING 
The working-set model for program behavior 
Communications of the ACM 11 5 pp 323-333 May 1968 

4 W W CHU N OLIVER H OPDERBECK 
Measurement data on the working set. replacement algorithm 



and their applications 
Proceedings of the MRI International Symposium XXII 
Polytechnic Institute of Brooklyn April 1972 

5 G H FINE C W JACKSON P V McISAAC 
Dynamic program behavior under paging 
Proceedings of the 21st National Conference of the ACM 
pp 223-228 1966 

6 LA BELADY 
A study of replacement algorithms for virtual storage computers 
IBM Systems Journal 5 2 pp 78-101 1966 

Page Fault Frequency Replacement Algorithm 609 

7 E G COFFMAN L C VARIAN 
Further experimental data on the behavior of programs in a 
paging environment 
Communications of the ACM 11 7 pp 471-474 July 1968 

8 M JOSEPH 
An analysis of paging and program behavior 
Computer Journal 13 1 pp 48-54 February 1970 

9 L A BELADY C J KUEHNER 
Dynamic space sharing in computer systems 
Communications of the ACM 12 5 pp 282-288 May 1969 





Experiments with program locality* 

by JEFFREY R. SPIRN** and PETER J. DENNING*** 

Princeton University 
Princeton, New Jersey 

INTRODUCTION 

For many years, there has been interest in "program 
locality" as a phenomenon to be considered in storage 
allocation. This notion arises from the empirical 
observation that it is possible to run a program effi­
ciently with only some fraction of its total instruction 
and data code in main storage at any given time. That 
virtual memory systems can be made to run at all 
demonstrates that program locality can be used to 
advantage; and though it is certainly possible to write 
a program which violates the principles of locality, it 
seems one must go out of one's way to do so. 

lf a program is favoring a subset of its information 
at some particular time, we should very much like to 
know the identity of that subset. The set of favored 
pagest of information at a given time will be called the 
locality at that time. Using this information, we may 
answer such questions as "What behavior can be 
expected of the program in the near future?" or "How 
much storage should be allocated to the program at this 
time?" For some classes of programs the best we can do 
is estimate this locality, whereas for others we may be 
able to measure it exactly. The utility of this measure­
ment is demonstrated by the fact that, for several 
models of program behavior, the policy "keep the 
current locality in memory" can be proved to be an 
optimal memory management policy. These models 
include the independent reference model,1 the locality 
model1

2,3 and the least-recently-used (LRU) stack 

* Work reported herein was supported in part by NSF Grant 
GJ-30126 and NASA Grant NGR-31-001-170. 
** Present address: Division of Engineering, Brown University, 
Providence, Rhode Island 02912. 
*** Present address: Department Computer Sciences, Purdue 
University, Lafayette, Indiana 47906 
t We assume pages are all of the same size, containing at least 
one word each. Most of our results extend in a straightforward 
manner to systems in which the block size is variable, so that 
the assumption of paging is mostly a matter of convenience. 

611 

modeI.4 ,5,6 For other locality processes, this policy 
appears to be nearly optimap,ll 

The means of measuring the locality, and the ac­
curacy of the measurement, depend on one's definition 
of "locality." The definitions that have appeared so far 
in the literature can be classified into two categories: 
the intrinsic locality models, and the extrinsic ones. 

Intrinsic models for locality assume that memory 
references emit from a program according to some 
(abstract) structure internal to the program itself. 
The locality in effect at a given time is a function of the 
internal state of the program at that time. Since the 
state of the program may not be known, it is usually 
not possible uniquely to. determine the locality by 
examining the memory reference sequence of· the pro­
gram. Some examples of this type of locality model are 
page reference distribution functions,7 ,8 the independent 
reference model,I the locality model,2,3 and the LRU 
stack mode1.4 ,5 Another example can be found in 
Reference 6, where, for p > 0, it is assumed that there 
exists a sequence of sets of pages W p (l), W p (2), ... , 
Wp(t), ... , such that Wp(t) is the smallest set of 
pages containing the reference at time t with probability 
at least p. 

Extrinsic models do not rely on any assumptions of 
internal program state. They define locality in terms of 
observable properties of the memory reference sequence 
of the program. Three examples of extrinsic locality 
are: (1) Given a sequence of time intervals, the "locality 
sequence" L 1L 2 • •• Li . . . is defined so that Li is the 
set of pages referenced in the ith interval; (2) Given an 
integer k~l, define a sequence of time intervals so that 
each locality Li in the locality sequence L1L2 ... Li ... 
contains exactly k pages-i.e., exactly k distinct pages 
are referenced in the ith interval; and (3) A "working 
set" W (t, T) is defined to be the set of distinct pages 
referenced among the last T references, and is a measure 
of the locality at time t.9 ,1O,1l 

Intrinsic models are useful primarily for analysis and 
simulation. They are limited by the accuracy to which 



612 Fall Joint Computer Conference, 1972 

they simulate real programs. Due to the practical 
difficulty of measuring or estimating the locality, they 
may have little use in storage allocation. Extrinsic 
models are evidently more practical, since they define a 
measurement procedure; yet they are obviously limited 
by the extent to which the measurement taken reflects 
what the program is really doing. Such models are less 
suited for use in modeling, but they can be used con­
veniently to allocate memory. 

Although there are many models for defining the 
concept of locality, little experimental verification of 
their accuracy has been undertaken. The working set 
model is perhaps the only exception.12.13.14 Unless a 
given model can be shown to approximate closely the 
behavior of real programs, any analytic results obtained 
using the model are only of theoretical or academic 
interest. Accordingly, we have chosen in this paper to 
emphasize experiments which· test the ability of extrinsic 
measurements to estimate current intrinsic localities and 
predict future (intrinsic) localities, and the ability of 
intrinsic models to simulate real world behavior. 

Let us summarize the terminology that we shall be 
using for the various meanings of locality. If, as dis­
cussed above, a program's memory reference string is 
divided into (not necessarily equal) time intervals, the 
( extrinsic) observed locality Li is defined to be the set of 
pages referenced in the ith interval. Since it may be 
difficult to determine the internal state of a program 
according to an intrinsic model, we usually in practice 
use the observed locality in the immediate past (such 
as the working set W (t, T)) as an estimate for the 
current intrinsic locality; this use is termed an estimated 
locality. If we assume something about the program's 
internal structure, we may be able to predict, on the 
basis of the current (estimated) locality, the most 
likely references in a future interval; this is termed the 
(intrinsic) predicted locality. 

For some intrinsic models, the estimated locality can 
quite accurately (or even perfectly) determine the 
current intrinsic locality. Such models are clearly of 
special interest, and we shall discuss two of them. A 
third, the independent reference· model, is in general 
not as well measured by the working set, but is pre­
sented for comparison. 

Throughout this paper, it will be assumed that 
demand paging is being used and that a paging algorithm 
is optimal if it minimizes the expected probability of a 
page-fault in a given size memory. 

MODELS FOR INTRINSIC LOCALITY 

Consider an n-page program whose pages constitute 
the set N = {I, 2, ... , n}. A reference string rlr2 ... r t • •• 

is the sequence of members of N generated by the 
program for given input data, where reference rt is the 
number of the page containing the address referenced 
at time t (time being measured in terms of the number 
of memory references made by the program). Suppose 
a reference string has been divided up into intervals, 
and Li is the observed locality in the ith interval. With 
respect to the given sequence of intervals, the reference 
string is considered to satisfy the properties of locality 
if:10 

1. For almost all i, Li is a proper subset of N; 
2. For almost all i, Li and Li+l tend to have many 

pages in common; and 
3. The observed localities Li and L i+i tend to 

~ become uncorrelated as j becomes large. 

A program reference string is considered to have a high 
degree of locality if Li is a small subset of N (statement 
1), Li and L i+l differ by at most one page (statement 
2), and the value of j for which Li and L i+i become 
uncorrelated is small compared to the length of the 
reference string. 

A very general model for locality, displaying proper­
ties 1~3 intrinsically has been defined in Reference 3. 
It defines a sequence 

(Ll, tl ) (L2, ~) ... (Li, ti) . . . (1) 

in which Li is the ith intrinsic locality and ti the holding 
time in L i; the Li are members of a specified set £ of 
localities associated with the program, and are subsets 
of N. During its stay in L i , the program generates some 
sequence of references r ilr i2 ••• r iti' over the pages of 
Li only. The mechanism for generating the references 
from Li is unspecified and may be arbitrary. The 
current locality L t at time t is that Li for which 
tl + · · . +ti-l < t::::; tl + ... +ti. A probability structure 
can be imposed by specifying a transition matrix 
[peL, L') ] among localities Land L' of £, and a set of 
holding time distributions hL(t) for each L of £ 

In the following sections we shall discuss some special 
cases of this general model. These cases are of practical 
interest to the extent that. our experiments indicate 
agreement between localities predicted by these cases 
and the localities actually observed by using the working 
set model. 

The very simple locality model (VSLM) 

This model assumes a fixed size locality-i.€., the 
localities Li in (1) are all of the same size l, where 
1:::; l < n. At any given. time t, the probability of refer­
encing an interior page (a member of L t ) is I-X; and 



the probability of referencing an exterior page (one· not 
in L t ) and making a transition is X. All l interior pages 
are referenced independently and with equal proba­
bility (l/l) . All n-l exterior pages are referenced 
independently and with equal probability (1/ (n-l). 
When an interior page is referenced at time t+1, no 
change in locality occurs-i.e., Lt+1 = Lt. When an 
exterior page is referenced, a change in locality occurs, 
but to a demand-paging neighbor only-i.e., L t+l = 
L t+rt+1-Y where y is chosen at random from Lt. The 
unconditional probability of referencing an interior 
page is at least as large as that of referencing an exterior 
page, i.e., 

(I-X) > ~ 
l - n-l' 

(2) 

which is equivalent to the condition X5: (n-l)/n. This 
model has two important parameters-the locality size 
l and the transition probability X-and will sometimes 
be called the two-parameter model. Note that the mean 
holding time in a locality is l/X. For this model, the 
storage allocation rule "keep the current locality in 
memory" has been proved optimal. 3 

I t can ,easily be shown that for programs which fit this 
model, it is impossible to determine absolutely the 
current intrinsic locality from observations on the 
generated reference string. We shall consider next the 
accuracy with which we can estimate the locality by an 
extrinsic model, namely, the working set. 

As mentioned, the working set W (t, T) is the set of 
distinct pages referenced among the references 
rt-T+l' .. rt. If we desire to use the working set to 
estimate the locality, we must specify T, the window 
size. The choice of T must satisfy two criteria: (1) it 
must be large enough so that all pages within the locality 
are referenced with high probability, and (2) it must 
be small enough so that the likelihood of more than one 
locality transition within the window is low (for several 
transitions would introduce error). Although it is not 
obvious that a suitable T can be found, it is the case 
that for reasonable parameters of the VSLM, not only 
does a T exist, but its value is not especially critical. 
For the VSLM, condition 2 will hold whenever T 5: l/X, 
and our experiments verify that such values of T 
typically exist. 

We shall consider the working set to be a good 
estimate of a VSLM locality when two criteria are 
satisfied: (a) the average working set size is approxi­
mately equal to l, the locality size, and (b) the average 
missing-page probability when the working set is kept 
in memory is approximately X, the probability of 
referencing outside. the locality. Plots of working set 
sizes and missing-page probabilities for various values 
of n, l, and X show that,3 for small X (.01 or less), a 

Experiments with Program Locality 613 

value of T on the order of 5 or 10 times the locality size 
will do an excellent job of achieving criteria (a) and 
(b) above, irrespective. of nand l. Furtherm~re, for 
small values of X, the values of the working set SIze and 
missing-page probability level off and are nearly con­
stant in a large neighborhood of T, indicating that the 
choice of T is not too critical for these values of X. 

For large values of X (in excess of 0.05), the working 
set apparently does not provide as good an estimate of 
the locality. In this case, the working set size and 
missing page probabilities do not tend to level off at 
the values of l and X, respectively. Furthermore, the 
value of window size needed to get the missing-page 
probability equal to X gives a working set size as much 
as 20 percent too large. 

The simple LRU stack model (SLR U M) 

This model is based on the metnory contention stack 
generated by the LRU (least-recently-used) page 
replacement algorithm.s This stack is simply a priority 
ordering on all pages of a program according to. the time 
of their most recent usage. Thus, the first position 
(top) of the stack is the current reference, the second 
position is the next most recently used page, and so. o~. 
When the page in stack position i is referenced, It IS 
moved to the top, and all the pages which were in 
positions 1 ... i-I are pushed down one position. 
Specifically, if set) = (Xl, •.. , Xn) -is the stack at time t 
and the page at position i is referenced, the stack at 
time t+1 is s(t+l) = (Xi, Xl, •.• ,Xi-I, Xi+l, •.• , Xn). 

To create the simple LRU Stack Model, we assign to 
each position of the stack a fixed, independent proba­
bility. We will denote these probabilities al, . .. , an, 
where n is the number of pages in the program (and 
thus the number of stack positions) and al + ... +an = 1. 
The ai are termed stack distance probabilities with i 
being the distance (from the top of the stack). At any 
given time stack position i will be chosen with proba­
bility ai; if it is chosen, the page in that position becomes 
the current reference and is brought to the top of the 
stack, as above. 

If we make suitable restrictions on the ai, we can 
cause this model to exhibit locality. In Reference 3, 
the requirement is made that the ai be mono­
tonically non-increasing as one goes down the stack 
(al~"~ ~an)*. If, under this restriction the stack is 
divided at any point, the pages in the stack positions 
above the division are all more probable than those 
below the division. Specifically, if the stack at time 
tis set) = (Xl, ... , xn ), we can define a locality of size l 

*This requirement can be weakended slightly to min {al . . . am} ~ 
max {am+l, •.• ,an} for LRU paging in a memory of size m f3]. 



614 Fall Joint Computer Conference, 1972 

(for any l, 1 ~l<n) to be the pages {Xl, ... ,xd. By 
dividing the stack at successive distances, a hierarchy 
of localities may be defined. This hierarchy represents a 
full ordering of localities, in that any given locality 
contains all of those smaller than it. 

Note that the SLRUM is a slight generalization of 
the VSLM. At any given time, the probability of a 
locality transition is 

X=al+l+·· ·+an 

since a transition occurs if and only if the distance 
exceeds l. Moreover, when a new locality is entered, it 
is the demand paging neighbor of the former locality. 

It can be shown that, if mt is the amount of memory 
allocated at time t, the optimal storage allocation rule 
for reference strings generated by this model is: "keep 
the top mt elements of the stack set) in memory, for all 
t."3 It follows in particular that, if mt is the size of the 
working-set W (t, T), the working-set policy is optimal 
for this model (note that W (t, T) then contains pre­
cisely the top mt elements of s(t». If mt is fixed, it 
follows that the LR U paging algorithm is optimal for 
this model. 

It is worth re-emphasizing that the working set 
Wet, T) and the observed LRU stack (i.e., the one 
maintained by the LRU paging algorithm) both 
measure exactly the locality according to the SLR UM. 
For this intrinsic model, therefore, extrinsic measures 
provide an exact measure of locality. 

The independent reference model (IRM) 

. In this model, the page references rlr2 ... r t . . . are 
assumed to be independent trials under some fixed 
probability distribution {Cl, ... , cn }. In other words, 
the probability of referencing page i at time t is given by 
the stationary probability 

Pr[rt=iJ=ci (3) 

Note that consecutive page references are taken ac­
cording to these probabilities without regard to the 
previous references made by the model. 

We may form a priority list for this model by ranking 
the pages according to decreasing probability-i.e., 
there is a fixed priority list (1,2, ... , n) where 
cl2::C2~··· ~Cn. Given a value of l, define a locality of 
this model to consist of pages L(l) = {I, 2, ... , l-l} 
and that page x which was most recently fetched into 
memory (note that l~x5:n), so that a locality is of the 
form L(l) +x. The rule "keep the pages of L(m) in 
memory at all times," for memory size m pages, is 
known to be optimal for the IRM.l As in the VSLM 
and the SLRUM, transitions occur between demand-

paging neighbors only. Unlike these other two models, 
however, the transition probability varies in time, 
being Cl+··· +cn-cx whenever the locality is L(l) +x. 
The important difference between the IRM and the two 
previous models is, the localities of the IRM are 
essentially static in content whereas those of the VSLM 
and the SLR UM are changing in content. We shall see 
that, because of this difference, the IRM produces poor 
fits to actual programs. 

CRITERIA FOR EXPERIMENTATION 

It is obvious that if one were to try to correlate the 
reference strings produced by a model with the observed 
reference string of some given program, one would have 
very low success: Direct correlation is much too strin­
gent a requirement to place on a model. A more reason­
able, though indirect, way is to correlate interreference 
densities; that is, the time between consecutive refer­
ences to the same page. However, even this method is 
likely to be inconclusive (at least over relatively short 
reference strings), since experimentation shows that 
the interreference densities of real programs tend to be 
quite irregular in shape, many zeros being interspersed 
between non-zero probabilities. 

We were interested primarily in testing whether or 
not the reference strings generated by a given model 
induce the same paging behavior as those generated by 
a real program. Thus, we did not care about fitting 
strings of references within a locality, since these will be 
transparent to the paging system, assuming the locality 
is retained in memory. We were concerned, however, 
with locality transition behavior. Moreover, since we 
wanted to use the working set to estimate the locality, 
we desired the model to have similar working set 
behavior, at least on the average. 

Taking these factors into account, we decided to try 
to fit two types of curves. The first is the average 
working set size weT), which gives the average working 
set size in an interval as a function of the window size 
T. The other is the average missing-page probability 
q(T) as a function of the window size T, when exactly 
the working set is kept in memory at all times. It has 
been proved that the latter curve is (essentially) the 
derivative of the former,lo and thus we are in fact 
fitting the model to the working set size curve and its 
derivative. 

N ow, consider the probability of a given page's not 
being in the working set under window size T: this can 
be shown equivalent to the probability of the inter­
reference interval for the given page being greater than 
T.1O Thus, the missing page probability q(T) corre­
sponds to the complementary cumulative overall 



interreference probability distribution. In this way, a 
close fit by a model to the observed missing page 
probability curve guarantees a close fit to the observed 
overall interreference distribution, even though the fit to 
the observed density will, as commented earlier, tend to 
be quite poor. 

Of course, this method of model fitting has its dis­
advantages. Its primary limitation is that both the 
curves w (T) and q (T) are averages measured over an 
interval. If the interval is too large, any non-stationary 
behavior will tend to be masked on the average. For this 
reason, most measurements were taken over what we 
consider to be a suitably small interval (short compared 
to the lifetime of the program), in most cases 20K 
references (about 10,000 instructions). This necessitated 
taking several measurements in various parts of a given 
program's reference string. For comparison, measure­
ments over a larger interval, 300K references long, 
were also taken. 

We decided for these experiments to ignore the dis­
tinction between instruction and data references. 
Modern computers tend to make great use of such 
operations as register-to-register instructions, indirect 
references, and multiple data reference instructions 
(such as LM and STM on the 360). The more a pro­
gram makes use of these operations, the less true the 
tendency for instruction and data references to alter­
nate. We decided not to make detailed studies of how 
instruction and data references are in fact mixed in 
practical reference strings, as this question was second­
ary to our interest in locality behavior. Moreover, 
most modern systems do not make any serious attempts 
to distinguish "instruction working sets" from "data 
working sets" in their storage allocation procedures. 
Nonetheless, the effects of such a distinction may be 
significant, and constitute a worthwhile project for 
future research. 

Experiments with Program Locality 615 

For each reference string segment tested, the ob­
served (OBS) working set curve, independent reference 
probabilities {cd, and LRU stack distance probabilities 
{ ai} were measured. A single-pass algorithm for meas­
uring the working set curve is given in Reference 10. 
The independent reference and LRU stack probabilities 
were determined by counting references to each page 
and to each stack position, respectively. The value used 
for n, the size of the total program's page set, was the 
total number of distinct pages actually referenced in 
the reference string segment being studied. Pages 
which were never referenced in the interval of measure­
ment were not counted in the value of n. This was done 
mostly for convenience, and should have little or no 
effect on the results. 

Also included for comparison was an attempt to fit 
the working set curve to the following exponential 
function 

w{T) =n(l-e-BT) B>O 

where B is a parameter. This will be termed the ex­
ponential model (EXP). 

Using the measured values for the independent 
reference and LR U stack probabilities, the working set 
curves for these two models were computed. (Algorithms 
for computing the working set curves of the various 
models are given in Reference 3.) For the locality model, 
the parameters l and A were chosen to give the lowest 
mean-squared relative error for the set of window sizes 
10, 20, 30, ... , 1000, against the observed weT) curve. 
The same procedure was repeated for the exponential 
model to determine a value of the parameter B. 

DESCRIPTION OF RESULTS 

Programs on two machines were tested for fits with 
the various models. The PAL assembler on the Digital 

CHART I-Description of Programs Measured 

Page Size 
Ref. Str. No. Machine (words) Description Refs. Skipped Refs. Measured 

0 PDP-8 128 Assembler, Pass 1 0 20K 
1 PDP-8 128 Assembler, Pass 1 lOOK 20K 
2 360 256 FORTRAN (G) COMPILER lK 20K 
3 360 256 FORTRAN (G) COMPILER 200K 20K 
4 360 256 Small FORTRAN job. One main loop. lK 20K 
5 360 256 Small FORTRAN job. One main loop. lOOK 20K 
6 360 256 Small FORTRAN job. One main loop. lK 300K 
7 360 256 Medium FORTRAN job. Several Subrou- lK 20K 

tines. 
8 360 256 Medium FORTRAN job. Several Subrou- lOOK 20K 

tines. 
9 360 256 Medium FORTRAN job. Several Subrou- lK 300K 

tines. 



616 Fall Joint Computer Conference, 1972 

CHART 2-Values of Parameters 

ReLStr. Total VSLM EXP 
No. pages refd. l h B 

0 11 4 .0025 .0013 
1 12 4 .0027 .0015 
2 35 5 .014 .00080 
3 38 7 .022 .0012 
4 20 3 .030 .0025 
5 20 4 .020 .0020 
6 20 4 .021 .0021 
7 22 4 .024 .0020 
8 20 3 .029 .0024 
9 31 4 .014 .00085 

Equipment PDP-8 was run using a. page size of 128 
words, the standard page size for the machine. Several 
IBM 360 programs were run, including two FORTRAN 
jobs and the FORTRAN (G level) compiler itself. The 
360 page size was chosen arbitrarily to be 256 words. 
Chart 1 gives a description of each program. The 
"reference string number" refers to a reference string 
segment from each program. In particular, we expressed 
the reference string in the form rlr2 ••• rkrk+l ••• rk+z ••. , 

where k is the number of "references skipped" and x the 
number of "references measured." In other words, 
rk+l ••• rk+z is the reference string segment over which 
we attempted to fit the models. 

Curve fit results 

Chart 2 gives the values of various measured or best­
fit parameters. It is important to note that the best-fit 

18 
d 

~ f 
""-fi! I 

ci I 

f 
I 

:il f 
o I 

IRII .. ~ __ ~_. 

L-J-I-o_=--oo -2:;!:-.tI.;;;;-CO -;;r-30.;;:;-CO -;J;-QO ncoc -ssto_oooc -~60_~OC-7t71J_Ococ-;-:!lI!_Ococ-::;:oo·~.oo 
wiNDell SIZE (XIOJ ) 

Figure 1-Working set size (Ref. St. 2) 

~ f 
o:i f 

I 

I 
I 

ci I 
I 

f 
[i! I 

ci : 

~ I 

cj t 
I 

IRII 

o-;_--+--_-+--_-t--__ -+--___ + _______ + _____ -j--___ + ___ _ 
:U::.:::' '\'",:,:;;: !o;:.~,::: -;':J:--.:';:' 1:':.'.:';:- :Ji:::.:;.-'· :rH":~::: 

Figure 2-Working set size (Ref. St. 4) 

VSLM locality size l was typically under 20 percent 
of the program size n, that the locality transition 
probability X was typically in the range 0.01 to 0.03, 
and that the locality transition time l/X was typically 
in the range 30 to 100 references. Reference strings 0 
and 1 were exceptions, having much lower transition 
probability X than the others, this being due un­
doubtedly to the severely limited amount of memory on 
the PDP-8 (4K words). 

Chart 3 gives the results of the working set curve 

--, 
I 

IRM 

Figure 3-Working set size (Ref. St. 6) 



Experiments with Program Locality 617 

CHART 3-Fits to mean working set size curve 

. Ref. Str. VSLM EXP 
No. avg. error worst error avg. error worst error 

0 7.5% 56% 37% 99% 
1 6.2 49 38 99 
2 6.0 49 32 97 
3 11 58 32 96 
4 5.3 30 20 95 
5 10 53 26 96 
6 9.9 54 25 96 
7 8.0 51 24 96 
8 6.5 29 22 95 
9 10 56 31 97 

fittings for the various models, and Chart 4 gives the 
corresponding results for the missing page probability 
curve. Two error measures are listed for each fit: 
"average relative error" over the curve, and the "worst 
case relative error." Except for the IRM, the worst 
errors occurred for very small values of T (less than 
10); for the IRM, the worst errors occurred for the 
largest values of T (above 500). All errors are shown as 
per cent of the observed value. The "average relative 
error" is only an approximate value: it is found by 
taking the square root of the previously mentioned mean 
squared relative error (it can be shown that this repre­
sents an upper bound to the true average of the absolute 
values of the errors). The worst case error is the largest 
relative error considered over all integer window sizes 
in the range 1 to 1000. 

It seems apparent from the data that the SLRUM 
performs the best over all in approximating the two 
curves, with the VSLM a close second. The fits of these 
two models are usually very good on the working set 
curve. The errors in fitting the missing page probability 
curve are larger, even unacceptably large in some cases. 

IRM SLRUM 
avg. error worst error avg. error worst error 

84% 97% 28 % 33 % 
97 106 19 24 

161 208 20 29 
109 146 6.5 8.2 
95 246 2.6 7.7 
77 200 2.3 7.9 
86 210 2.6 8.1 
98 225 2.8 7.9 
85 207 2.9 8.9 

162 291 8.3 9.4 

However, it can at least be said that even for this curve, 
these two models perform much better than either of 
the others, again with the SLRUM slightly superior. 
We can conclude from this that the models are better 
for predicting a program's memory demands than for 
predicting its page-fault probability; further refine­
ments to the models are required to achieve the latter 
goal; 

Because of its static treatment of locality, the 
independent reference model is the worst model of the 
four. It consistently overestimates the working set size, 
usually by a factor of 2 or 3. 

Figures 1-3 show typical working set curves, and 
Figures 4-6 show typical missing page probability 
curves. All six figures show the observed (measured) 
curve OBS, and the results of attempting to fit each 
model; (EXP was omitted to aid in readability). 
Figures 7-9 show typical stack distance probabilities; 
all such curves show that the monotonically non­
increasing assumption of the ai tends to be valid for the 
majority of values of i. (Note the logarithmic vertical 
axis on these figures) . 

CHART 4-Fits to Missing Page Probability Curve 

Ref. Str. VSLM EXP IRM SLRUM 
No. avg. error worst error avg. error worst error avg. error worst error avg. error worst error 

0 30% 228% 266% 407% 77% 376% 84 % 197% 
1 36 190 301 413 167 419 85 181 
2 29 132 93 127 133 426 27 118 
3 82 131 157 207 70 210 5.1 26 
4 32 94- 40 90 103 479 16 48 
5 85 157 119 224 74 417 19 43 
6 72 153 100 192 81 435 18 38 
7 37 158 62 110 93 450 9.5 37 
8 30 92 48 91 89 420 10 37 
9 57 190 117 195 102 609 14 40 



618 

., 
t;;-

Fall Joint Computer Conference, 1972 

\ 
> , 

\ 

Hr' +----+----t-----t----+----f------l-----,,+---4--_+___:__ 
o.cn 10.00 1D.OO li.U.O~ 5D.;::'::: st'.en 

"INO~'" Sllt:!XIO' I 

Figure 4-Missing page probability (Ref. St. 2) 

Several other statistics of interest appear in Chart 5. 
qr is the sum of the n-llowest measured independent 
reference probabilities; it gives an indication of the 
performance which could be expected if the program 
were in fact an IRM program allocated l pages of 
memory. qw is the missing page probability for the 
working set with window size T w, where T w is chosen to 
make the average working set size equal to l. Thus, 
qr and qw apply to the same average memory size. Notice 

, \ 
,- \ 

\ , 
\ 

1(:1:1(1 +.a-c --+---+----+---.+-uo-.ec--+sO;Jc-:c .. O,-O --::+~--::'c:-=----::!::-::::-±900:-::_00::------:-: 
,HNOOioi SllE. 

Figure 5-Missing page probability (Ref. St. 4) 

tel' 

\ 
\ . \ 
\ 

\ 
\ , 
\ 

iO-l.In~.o=-c ----:<::-:::---::2!:::-oo.=-6~----:3~OO-=.oo-±~OO--:-.DJ--+SO-o.c-~i:J -501-0_-8:::-7-+-0D-.C:~--+----+-----"!OQ;::.x 
"IND~W SllE: 

Figure 6-Missing page probability (Ref. St. 6) 

that qr is typically an order of magnitude greater than 
qw, showing much more dramatically how pronounced 
are the dynamic effects of locality: The assumption of 
static locality would have led us to predict missing page 
probabilities in the order of qr whereas in fact they were 
in the order of qw. This re-emphasizes the poor per­
formance introduced by a model assuming a static 
locality. 

It is also notable that in every case, Tw < I/'A, where 

Figure 7-Distance distribution (Ref. St. 2) 



II}" is the expected interval between locality transitions 
in the VSLM. Thus, it is unlikely that more than one 
such transition will occur in this size window, so that 
the working set will be a good estimator of the VSLM 
locality for all tested programs. 

EXTENSIONS TO THE SLRUM 

Attempts have been made to improve the SLRUM 
by increasing the complexity of the process by which 
stack distances are generated. Shedler and Tung,S for 
example, analyze a stack with a Markov process sub­
stituted for the ai. To our knowledge, no attempts have 
been made to validate any extensions to the SLRUM, 
other than that which we shall describe below. 

Ref. Str. No. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

CHART 5-Additional Statistics 

q! qw Tw 1rS 

.14 . 0088 75 O . 

.09 .024 45 O. 

.33 .035 34 .038 

.36 .071 40 .11 

.69 .071 15 .015 

.48 .042 36 .015 

.49 .041 36 .015 

.54 .046 31 .0084 

.63 .070 15 .0040 

.57 .030 43 .0056 

hs 

10.6 
12.7 
5.5 
5.7 
5.7 
4.2 
4.0 
4.0 

A very simple attempt was made to improve the 
performance of the LRU stack model. It was imagined 
that stack distances would be selected, as before, ac­
cording to the ai, and the ai would be biased toward 
short stack distances. Occasionally, however, a new set 
of probabilities, the bi , would take effect for a short 
time; these would be biased toward long stack distances. 
The distribution {ai} corresponds to the intuitive 
concept of "drifting slowly among neighboring locali­
ties," whereas the distribution { bi } to the notion 
"jumping suddenly to very different localities," or 
"scrambling up the entire stack." The choice between 
{ ai} and {b i } would be determined by a 2-state Markov 
chain. 

As has been suggested earlier, there is a distance 
string d1d2 ••• d t ••• associated with the program's 
reference string rlr2 . .. r t • •• being measured. Given 
the distance string, our problem was to determine which 
distances should be considered data points for the {ad 
distribution and which for the {b i } distribution. Some­
what arbitrarily, we decided to count the distances 
toward the {b i } distribution whenever the majority of 
the last four successive distances exceeded four (four 

Experiments with Program Locality 619 

Figure 8-Distance distribution (Ref. St. 4) 

was chosen since it represented a typical VSLM locality 
size); distances would continue to be counted toward 
the {b i } -distribution until four successive distances were 
all at most four, in which case distances would be 
counted toward the {ail-distribution. The measured 
value for the steady state probability 7('8 of the {b i } 

(or "stack scrambling") state is shown in Chart 5; 
7('8 is an indication of the fraction of time the program 
spent making large jumps between localities. Except 

'0-5-1---1------<1-------+---+----+----+----+---+---+--
G.02 :':IOC 1O.0Q 20.00 

S rqCK DIS r 

Figure 9-Distance distribution (Ref. St. 6) 



620 Fall Joint Computer Conference, 1972 

for reference string 3, all the programs seemed to spend 
under 4 percent of their time jumping localities-Le., 
they seemed to spend in excess of 96 percent of their 
time obeying the properties of locality. 

Chart 5 also shows the mean holding time hs in the 
{b i } -state. In all cases, hs was at least as large as the 
VSLM locality size l, suggesting that, when scrambling 
is over, the resulting locality is likely to be disjoint from 
the original locality. 

As might be anticipated, however, the working set 
size and missing page probability curves generated by 
this extended model were in all cases indistinguishable 
from those produced by the SLRUM. This is because 
the transitions between the {ai} and the {bi } -states 
occur independently of the process which generates 
stack distances. Apparently, it is necessary to make the 
stack-scrambling process correlated directly with the 
stack distance generating process, perhaps by generating 
distances directly from a Markov chain. Shedler and 
Tung's approach represents one possible solution, 5 

though as yet unvalidated. 

CONCLUSIONS 

We have attempted here to validate experimentally 
several intrinsic models for the concept of program 
locality. We have done this with particular regard to 
the use of the working set as an estimator of the 
(intrinsic) locality. We have tried to take examples of 
both system software (a compiler and an assembler) 
and user programs, and have attempted to fit each of 
the models to the observed behavior of each given 
program. 

Fitting was attempted to the measured working set 
size and missing page probability curves. In this way, 
reasonable approximations to the paging behavior of 
the actual programs could be obtained, without having 
to consider other details of the programs of less im­
portance in paging. 

Two models appear to produce good approximations 
to real world behavior: the two-parameter simple 
locality model and (especially) the LR U stack model. 
The independent reference model, because of its static 
concept of locality, does very poorly. 

The working set is a good estimator of the simple 
two-parameter model's locality, provided the locality 
does not change too rapidly; we observed no case in 
which the locality was changing too rapidly for the 
working-set to be a good estimator. The working set 
exactly measures the locality in the case of the LR U 
stack model and is thus nearly optimal for programs 
whose behavior can be closely approximated by this 
model. 

The principal conclusions to be drawn from this 
work are: 

1. There exist non-trivial cases in which the 
working-set memory management policy is 
optimal, and evidence suggesting it will perform 
quite well when reference strings are generated 
by locality processes other than the ones studied 
here. 

2. The concept of a "locality size" is not sharply 
defined, as in the case of the simple two-param­
eter model; it is instead a graduated concept, as 
in the LR U -stack model. 

3. The locality at any given time receives the vast 
majority of references, is small compared to the 
program size, and is constantly changing in 
membership. 

4. There is a tendency for transitions to occur 
between neighboring locali ties for the vast 
majority of the time, transitions among disjoint 
localities being relatively infrequent. 

Stack models appear to hold great promise of being 
good models for program behavior, especially as we 
gain a better understanding of the processes by which 
stack distances are generated. 

ACKNOWLEDGMENTS 

We are grateful to J. J. Horning and K. Sevcik of the 
University of Toronto for many useful ideas and 
insights relating to intrinsic and extrinsic concepts of 
ocality. 

REFERENCES 

1 A V AHO P J DENNING J D ULLMAN 
Principles of optimal page replacement 
JACM 18 1 January 1971 pp 80-93 

2 P J DENNING J E SAVAGE J R SPIRN 
Some thoughts about locality in program behavior 
Proc Brooklyn Polytechnic Institute Symposium April 1972 
3~---

Models for locality in program behavior 
Princeton University Department of Electrical Engineering 
Computer Science Technical Report TR-I07 April 1972 

4 P H ODEN G S SHEDLER 
A model of memory contention in a paging machine 
IBM Research Report RC-3053 September 1970 

5 G S SHEDLER C TUNG 
Locality in page reference strings 
IBM Research Report RJ-932 October 1971 

6 E G COFFMAN JR T A RYAN JR 
A study of storage partitioning using a mathematical model 
of locality 
Comm ACM 15 3 March 1972 pp 185-190 



7 J E SHEMER G SHIPPEY 
Statistical analysis of paged and segmented computer systems 
IEEE Trans Comp EC-15 6 December 1966 pp 855-863 

8 J E SHEMER S C CUPTA 
On the design of Bayesian storage allocation algorithms for 
paging and segmentation 
IEEE Trans Comp C-18 7 July 1969 pp 644-651 

9 P J DENNING 
The working set model for program behavior 
Comm ACM 11 5 May 1968 pp 323-333 

10 P J DENNING S C SCHWARTZ 
Properties of the working set model 
Comm ACM 153 March 1972 pp 191-198 

11 P J DENNING 
On modeling program behavior 

Experiments with Program Locality 621 

Proc AFIPS Conf Vol 40 Spring Joint Computer Conference 
1972 

12 J RODRIGUEZ-ROSELL 
Experimental data on how program behavior affects the choice 
of scheduler parameters 
Proc 3rd ACM Symposium on Operating Systems Principles 
October 1971 

13 W DOHERTY 
Scheduling TSSj360 for responsiveness 
Proc AFIPS Conf Vol 37 Fall Joint Computer Conference 
1970 pp 97-112 

14 W W CHU N OLIVER H OPDERBECK 
Measurement data on the working set replacement algorithm 
and their applications 
Proceeding of the Polytechnic Inst of Brooklyn Symposium 
on Computer-Communications and Teletraffic April 1972 





TASSY-One approach to individualized test construction 

by THOMAS L. BLASKOVICS and JAMES A. KUTSCH, JR. 

West V irginia University 
Morgantown, West Virginia 

During the past ten years universities and the com­
puting industry have seen the development of a new 
mode of teaching called Computer Aided-or As­
sisted-Instruction (C.A.I.). This new field, emerged 
as an attempt to meet and deal with the growing 
criticism and frustration of students, employers, 
legislators, and faculties, which stemmed from our 
inability to prepare students adequately. 

Several very creative C.A.I. projects were directed 
toward providing a whole new system of instruction. 
However, to date, the success of C.A.I. has been 
limited, at best. PLANIT, PLATO, LYRIC, COPI, 
COURSEWRITER, and others have not been able to 
meet the needs of the teaching community. The prob­
lems reported by the major projects are only in part 
bounded by the technology of the computer. 

At West Virginia University, we watched the develop­
ment of these systems with great interest and concern, 
because we, like other universities, were faced with the 
same problems. We carefully examined several of the 
better-publicized systems with an eye toward imple­
menting one of them to meet our instructional needs. As 
we analyzed the systems we discovered that C.A.I. 
systems: 

1. Were too machine-dependent to allow a feasible 
implementation without scrapping our existing 
hardware (an IBM 360/75). 

2. Were too expensive in terms of Core require­
ments. 

3. Made (what appeared to be) unreasonable 
demands upon the instructor in terms of intimate 
knowledge of programming and/ or computer 
technology. 

4. Were "not yet available but would be soon" 
even though the projected date had slipped by 
several times. 

We also found that the present C.A.I. systems Were 

623 

too monolithic. The decision to change a course or set 
of courses to a C.A.I. approach requires a "go-for­
broke" commitment. We found that users did not like 
the non-incremental requirement of C.A.I. This was 
not too surprising to us when we considered that most 
of the end users who we were concerned about had 
little or no experience with computers. 

Because of the many know factors in C.A.I. systems 
and the type of commitment required, many potential 
users we surveyed were reluctant to commit themselves 
and their resources to a C.A.I. effort. 

As we were considering the major C.A.I. systems, we 
were also engaged in trying to determine what our 
students felt to be their own needs with regard to a 
college education. Along with study of student needs, 
we tried to discover the needs of the faculty with respect 
to their problems in teaching. The results of our study 
suggested that two problems existed. Students indicated 
that a major source of frustration (and possibly 
aggression) toward the University stemmed from a lack 
of feedback from the "establishment" regarding indi­
vidual progress. A second, and only slightly less 
important, frustration was stated to be the lack of 
relevance of course material. Interestingly enough, the 
students felt that given the feedback, they would be 
able to deal with the problem of relevance themselves. 
Student evaluations of professors indicated that where 
amount of feedback was high, and good, relevance was 
not a problem. The faculty, by and large, agreed with 
the students feedback was a problem; howeyer, they 
saw relevance as being more critical to the learning 
process. The faculty also indicated that they did not 
have an easy means to provide feedback. 

In analyzing our findings,. it appeared to us that one 
reason for the limited success of C.A.I. in other univer­
sities was possibly that it might. have been the wrong 
solution for the problem facing the university at the 
present time. 

One of the claims of C.A.I. is that it allows the 
instructor to individualize: to tailor the instructional 



624 Fall Joint Computer Conference, 1972 

experience to the student through a series of incremental 
feedback statements. This seemed to imply that the 
instructor would be spending more time with the­
student. Our observation of ongoing C.A.I. systems 
indicated that, once the horrendous task of program­
ming ,had been accomplished, the instructor retreated 
to his office or lab either to write new programs, to 
collapse, or to become more deeply involved in his own 
research again. The net effect of C.A.I. was to make the 
student more dependent for help upon the machine, or 
if he were available, upon a graduate assistant. In some 
cases, the instructor developed a bad case of "Blinking 
Light Syndrome" and spent his time diddling with the 
machine. 

Since C.A.I. seemed fraught with problems, we 
decided to look more closely at the problems of feed­
back. We made an assumption (tentatively) that the 
instructor was able to teach the material. Analysis of 
the instructor's time indicated that he spent a large 
portion of time developing, administering, and scoring 
exam questions, keeping track of what his teaching 
assistants were doing, worrying about the security of 
his files-and precious little time actually teaching. 
In most classes, the most feedback that students 
received were scores on one or two maj or exams and the 
final. In almost all cases we observed, the feedback was 
delayed until as much as two to three weeks following 
the respective tests. The students had virtually no 
opportunity to analyze their performance, or to learn 
where their deficiencies might be. It appeared that the 
feedback system we were currently using could not be 
seen', by any stretch of the imagination, as' a learning 
experience. (In some cases it was viewed by the students 
simply as a means of satisfying the sado-masochistic 
tendencies of the faculty.) 

In an analysis of one undergraduate course of 325 
students, we found that the teaching assistants spent 
better than 10 percent of their time in purely mechanical 
activities, such as distributing, proctoring, and scoring 
tests. In addition, a course manager spent approxi­
mately 50 percent of her time doing clerical work 
necessary to keep the student's grades up-to-date, etc. 
Initially, we felt that the time commitments were rather 
high; until we realized that the assistants and course 
manager had almost total responsibility for 2,275 hours 
of testing in one semester. 1 

Further consideration of the function of efficient 
feedback suggested utility for both students and 
instructor. For the former, it provides (1) a test score, 
(2) a diagnostic evaluation of material learned (and/or 
not learned), and (3) (hopefully) some prescription to 
remediate his problem. 

In 1971, Baker presented the state of the art in 
Com.puter Based Instructional Management Systems 

(CBIMS). He suggested that the instructor is not only 
a teacher, but also the manager of a rather complex 
system of activities designed to help the student learn 
something. 1 

He indicated that "a major facet of this managerial 
task is composed of the mechanical tasks of scoring 
homework, test papers, and keeping track of what 
instructional materials a student has used." Our 
discussions with faculty and teaching assistants tended 
to support the notions put forth by Baker. 

Each of the systems Baker reviewed was designed to 
provide for the four major functions of any CBIM 
system, namely: test scoring, diagnosing, prescribing, 
and reporting. However, the actual operation of the 
systems seemed to be very awkward, and required that 
the student participate on some fixed schedule. Another 
difficulty that we observed was that the present CBIM 
systems seemed to double the work of the faculty 
member in that he had to develop essentially two sets 
of testing material-one set for the diagnostic function 
and another for the examination function.2 

It appeared to us that if a system with interactive 
capabilities could be developed, it might resolve much 
of the awkwardness and restrictiveness we had ob­
served. With regard to tpe second problem, having to 
maintain double sets of items, we asked the faculty why 
not let the students use the real thing for both diagnosis 
and evaluation. The rationale for this approach was that 
most professors have, over time, established large item 
pools from which they draw, in some more or less 
random manner, to make up any quiz. In addition to 
their own item pools, many instructors use items sug­
gested from the instructor's manual or handbook that 
accompanies the text being used that particular se­
mester. Additional verification of this approach to 
test-design was accomplished by looking at the exam 
files in the fraternity and sorority houses at our campus. 

Because of all of the above considerations, we decided 
to develop an automatic Testing And Scoring System 
(TASSY). 

We felt that TASSY should have the following 
specifications: 

(1) it should be easy to use by both the student and 
the instructor; 

(2) it should allow for immediate feedback to the 
student; 

(3) it should allow the instructor, on demand, to 
review the progress of a student; 

(4) it should allow the student to individualize his 
request for proficiency; 

(5) it should have a high degree of security; 



(6) it should meet at least the minimum needs of the 
registrar for recording grades; 

(7) it should allow the student the option of taking 
an exam for diagnostic purposes or for grade 
purposes; 

(8) it should maintain a record of each student's 
individual performance for instructor analysis 
of items. 

TASSY'S PROGRAMMING STRUCTURE 

TASSY takes the form of a main driving program 
with several small sub-routines. This structure was 
necessary because of the constraints of the Conversa­
tional Programming System (CPS) with West Virginia 
University's IBM 360-75. There is a limitation of four 
pages (each of four thousand bytes) placed on any CPS 
program. However, through the use of external proce­
dures, a much greater effective program size can be 
attained (provided that not more than six thousand 
bytes are in the work space at any time). 

The driving program consists of the "welcome" and 
"exit" lines as well as the calls for all the sub-routines. 

When a student enters TASSY, he is first asked if he 
would like to see some operating instructions for the 
system. If he replies yes, an instruction sub-routine 
"HELP" is called. Next, a password routine, "PASS", 
is called. Here, it is determined whether he is permitted 
entry to the system. If the password is recognized as 
that of an instructor, the user has an option of seeing 
special operating instructions from "MORE HELP" 
(restricted to only instructor mode). The instructor then 
has the option of "UPDATE" or "DUMP" (described 
later). 

If the password is recognized as that of a student, a 
call to sub-routine "GENER" is issued (also described 
later). 

A third alternative is that the password is recognized 
as a master password, allowing access to control mode. 
From this mode, a system manager has the option of 
"UPDATE", "DUMP", "GENER", or "WHO". The 
system manager has access to any course. 

When a user (student, instructor, or system manager) 
is finished, control is returned to the driving progra~ 
where a "good-bye" line is printed. Then the system IS 
ready for the next user. 

ROUTINE "PASS" 

The password routine has the main . purpose of 
determining whether a given user is authorized to be in 
the system, and, if so, in what mode. A student pass-

TASSY 625 

word is given by the proctor to a student when he 
enters the testing center. This password varies sys­
tematically each hour of the day, and can be reset by 
the system manager each day or week as necessary. 

An instructor's password consists of any combination 
of up to six letters, numbers, or special characters and 
is chosen by the instructor. If an instructor's password 
is recognized, a further check is made on the name 
entered by the user. After passing both checks, control 
is returned to the driving program, passing back a code 
to indicate that this user is authorized for instructor's 
mode. Also, the number of the course in which this 
instructor belongs is returned. 

If the master password is found, a code is returned to 
the driving program to indicate that this user is the 
system manager and is authorized for anything. 

All passwords, including the instructor's and the 
master password can be altered at any time by the 
system manager. 

An added feature of the password check is the activity 
file (WHO). A record is written to this field when an 
instructor's password is found or when a user is not 
permitted entry in any mode, i.e., when he has entered 
an invalid password. This record contains the password 
used the first and last name and ID number as entered 
by the user, and the date and time of his entry into the 
password procedure. 

It was decided not to record valid student entries for 
two reasons. First, the number of entries would be great, 
and second, they are recorded as a part of "GENER". 

ROUTINE "GENER" 

This routine is called to generate, print, score, and 
record a student's examination. It is probably one of 
the most important components of TASSY. 

Upon entering the routine the student is asked the 
course section and quiz number he desires (his name , , .. 
and ID number have been passed from the drIVIng 
program). .. 

From the course number, the approprIate questIOn 
file is opened. Then, from a control record in the file, 
and from the entered quiz number, the type and number 
of the items to be given is determined. These items are 
generated from the file at random (except tha~ there has 
to be the prescribed number of each type deSIgnated by 
the control record). 

One rather interesting problem developed in choosing 
the algorithm for random generating of questions. The 
records are stored in the file in the order of entry. Along 
with each record is the attribute of the given question. 
From the control record, the desired attributes for a 
given quiz, and the number of each which should be 
generated, is obtained. In an early version of the system, 



626 Fall Joint Computer Conference, 1972 

a random number between one and the number of 
questions in the file was generated by the built in 
function in CPS. The corresponding record was then 
read, and a check was made to determine if the record 
was of the correct attribute. If not, the number of this 
record was saved in a vector of 'used' items. If the item 
had the correct attribute it was printed as described 

Enter the course number of the desired course 
demo 
Which section? (two digits) 
..Q.1 
What quiz do you want? (1 through 9) 
1-
Enter yes to activate the verification option 
~es 

You will now be given the requested test. 

Good luck. 

Question 1: 
Elapsed time: .083 minutes 

below, and its number was also saved. As each new item 
number was generated, it was compared against the 
growing list of used items. This procedure prevents 
duplication of items on a given test. As the test pro­
ceeded from the attribute being used to the next as 
defined in the control record, the vector of used items 
was cleared for use by the next attribute. 

(4 digits) 

THE DIFFERENCE IN VAPOR PRESSURE BETWEEN SOIL AND ATMOSPHERE IS EQUILIBRATED BY PLANTS THROUGH: 
1: ROOT HAIRS 
2: OSMOSIS 
3: TRANS PI RATI ON 
I~: TRANS LOCATI ON 
5: TURGOR 

Your answer please: 
.1 
Verify: 3? 

Correct 

Question 2: 
Elapsed time: .566 minutes 
GRANULAR ENDOPLASMIC RETICULUM CAN BE FOUND IN 

1: ONLY PLANT CELLS 
2: CELLS ACTIVE IN PROTEIN SYNTHESIS 
3: CELLS WHICH ARE ABOUT TO DIVIDE 
4: ALL OF THE AROVE 
5: NONE OF THE ABOVE 

Your answer please: 
~ 
Verify: 4? 

Sorry, the correct response is 2 

End of exam. Please wait while results are compiled 

You have responded correctly to lout of 

Breakdown of score 
Attribute A 1 right out of a possible 
Attribute T 0 right out of a possible 

Mode? 
~top 

2 questions or 50.000 percent. 

1 or 100.000 percent 
1 or 0.000 percent 

Thank you for your Interest in our computerized testing service. Please come back again. 

Figure 1 



TASSY 627 

The following students have recently taken exaMS: 

N A t1 E ID SECT QUIZ DATE TYPE 1 TYPE 2 TYPE 3 TOTAL CHAMBERS JEAN 236603486 01 3 07/21/72 3 80.no 0 0.00 0 0.00 80.00 CHAMBERS JEAN 236603486 n1 
JELL! NEK 

2 07/21/72 2 90.no 0 0.00 0 0.00 qO.OO 
HalL! S 232760653 n2 5 07/21/72 5 

JELL! NEK 
70.no 0 0.00 0 0.00 70.00 

HOlliS 232760653 02 5 07/21/72 5 90.00 0 0.00 0 0.00 90.00 HEADE TONI 234785045 02 4 07/21/72 4 65.no 0 0.00 0 0.00 65.00 MEADE TONI 2347115045 02 4 07/21/72 4 
VARGO 

70.00 0 0.00 0 0.00 70.00 
JERRY 174381354 01 4 07/21/72 4 75.00 0 0.00 0 0.00 75.00 MANN KAY 23 11361515 02 4 07/21/72 4 80.00 0 0.00 0 0.00 80.00 

Figure 2 

As is apparent, if, during generation of items for a 
given attribute, an item of some other attribute were 
selected, it would be ignored and its record number 
would be stored so that this unusable record would not 
be selected again. It was thought that the machine time 
used in searching the "used" vector would be less than 
the I/O time required to keep selecting an unusable 
record (the records, in this case, must be read before 
usability can be determined). 

What was not realized was that the item vector would 
grow as fast as it did. As an experiment, the algorithm 
was changed in a way that the records are read, the 
test of attribute is made, then the vector is scanned to 
see if this item has already been used in this test. In 
this way, many more records are read from the file, but, 
much fewer comparisons are made in the "used" vector. 

The later of the two methods proved much more 
satisfactory. In the earlier method, when more than 
fifteen items of the same attribute were generated, real 
time between items ran 45 seconds, or more, while 

I! s t 

Enter the number of the item to be listed 
number=.!!.5 
ITEM 0045 COURSE 10 1220 SECTION nl 
ATTRIBUTE M CORRECT RESPONSE C 

the time separation between items in the first part of 
the quiz (items one through eight) was minimal (on the 
order of two to six seconds). 

In the latter method, the separation time was much 
more uniform from the beginning of a quiz through 
twenty items or more and was on the order of two to 
eight seconds. Needless to say, the latter method has 
been used since the day that the time differential was 
noted. 

(It is thought that locating various attributes in 
different physical locations in the file may be a useful 
way of decreasing item generation time even more than 
what has been attained by the above change.) 

As the items are generated, they are printed on the 
terminal one by one and a reply is requested. Upon 
entry of this reply, the student is told immediately 
whether he is correct. If the response is incorrect, the 
correct answer is given. 

As the test is being given, a record is kept of each 
question, and, by question type, of the number correct 

Mitosis and meiosis are consirlererl to be dynamic processes because; 
a. The events are rliscontinous and discrete that occur randomly 
b. The events are discontinous anri discrete that occur in a system~tlc sequence 
c. The events are continlous and discrete that occur in a systeMatic sequence 
d.The events are contlnious and discrete that occur randomly 
e. none of the above 

~~ode? list, insert, define, or stop 
lis t 

Enter the nUMber of the IteM to be listed 
number=.§.7 
ITEM 0067 COURSE 10 1220 SECTION 01 
ATTRIBUTE E CORRECT RESPONSE A 
\'Ihich of the following evolutionary characteristics of Plananla is not important in its use as an experimental animal. 
Its: 
a. small size 
b. ability to be trained 
c. regenerative powers 
d. beginnings of a brain 
e. none of the above 

Mode? list, insert, riefine, or stop 
~top 

Figure 3 



628 Fall Joint Computer Conference, 1972 

update 
Course number? 
demo 
SectIon number? (two digits) 
.n,1 

Mode? list, Insert, define, or stop 
insert 

Item number? (four digIts) 
.n,012 
Attribute? (one character> 
.9. 
Correct response? (one character) 
.i. 
Question and answers? 
What is the correct date for the FALL Joint Computer Conference?~ 
1. July 4~ 
2. December 25~ 
.i.. December 5~ 
ll. Feb.31~ 

2. None of the above~~ 
RECORD 0012 successfully entered 

Mode? list, insert, define, or stop 
list 

Enter the number of the item to be lIsted 
number=12 
ITEM 0012 COURSE 10 demo SECriON 
ATTRIBUTE Q CORREC T RESPONSE 3 

01 

What is the correct date for the FALL Joint Computer Conference? 
1. July 4 
2. December 25 
3. December 5 
4. Feb. 31 
5. None of the above 

Mode? list, Insert, define, or stop 
Insert 

Item number? (four digits) 

Figure 4 

~erse ~ 
1012demoOlq3What Is the correct date of the FALL JOINT COMPUTER CONFERENCE? 1. 
none of the above~~ 
RECORD 0012 successfully entered 
l.endl 

Mode? list, Insert, define, or stop 
list 

Enter the number of the Item to be listed 
number =.12 
ITEM 0012 COURSE 10 demo SECTION 01 
ATTRIBUTE Q CORRECT RESPONSE 3 
What Is the correct date of the FALL JOINT COMPUTER CONFERENCE? 
1. July 4 
2. Dec. 25 
3. Dec. 5 
4. Feb. 31 
5. none of the above 

Figure 5 



TASSY 629 

Mode? 1 i st, Insert, def I ne, or stop 

define 

Definition of quiz parameters 
There is a maximum of three attributes. These may be any letter or number (one character in length) 

Please enter the number of the quiz to be defined 
1 
Enter the number of attribute used in this quiz. Max of 3 
number =.1 
Enter attribute * 1 
.2 
Quantity? 
.1 
Enter attribute H 2 
..t. 
Quantity? 
2-
Enter attribute # 3 
1 
Quantity? 
I 
Quiz number 1 Is now defined 

Mode? list, insert, define, or stop 
~top 

Figure 6 

and number attempted; i.e., the number of questions of 
that type which were on the quiz. At the end of the quiz, 
the student is given the totals of questions correct and 
attempted and the breakdown of this information by 
question or attribute type. (See Figure 1) 

Before control is returned to the driving program, a 
student record is written onto a file, indicating the 
name, ID number, section number, quiz number, date~ 
time, and subscores, and total score on the examination. 
(See Figure 2) 

ROUTINE "DUMP" 

The "DUMP" routine is used by the instructor to 
print the records in the student file. In one sense 
"DUMP" keeps the instructor's grade book. The 
formatted file gives the instructor the student's name, 
his student number, the date the quiz was taken, the 
number of the quiz, section number, and a percentage 
correct breakdown for each attribute and percentage 
correct for the total quiz. 

The LIST function will list a requested item from the 
file. In the LIST is the correct response, question type 
(attribute), the question, and the distractors. (See 
Figure 3) 

INSERT is the converse of LIST. It allows the 
instructor to replace or insert an item in the file. 

There are two versions of INSERT. In the more 
commonly used version, the user is prompted before 

each entry. After each prompt the user enters the 
information requested. (See Figure 4) 

It was found that this method is time consuming and 
At present, the records are printed in chronological 

order. However, in later versions of TASSY the instruc­
tor will have the ability to have the records sorted for 
his convenience. (See Figure 2) 

ROUTINE "UPDATE" 

"UPDATE" is a routine for file maintenance of the 
question file. The user has the following options: LIST, 
INSERT, and DEFINE. 
somewhat boring for the experienced user, especially 
when large numbers of questions are being entered. 
Accordingly, a 'terse' mode of INSERT was developed. 
When this mode is requested, no prompts are given. It 
assumes that the user knows the record structure and 
the entire record is entered at one time. The basic 
difference between the two methods is that the infor­
mation (item number, attribute, correct response, 
course number, and section number) must be provided 
to the system in the correct order without prompts, 
when the 'terse' mode is used. (See Figure 5) 

In both modes the user must learn only one special 
character. This is· the 'not' (...,) sign which is used as a 
separator between the questions and its answers, as well 
as between the answers themselves. It should be noted 



630 Fall Joint Computer Conference, 1972 

Fo 11 ow i ng persons were in the system 
CG305 YURA DEE 1 07/20/72 08:43:17 OK 
2Q...+33 LAROCHE THm1A.S 234G43C'122 07/20/72 0c):ln:2Q 
CG305 YURA DEE 1 07/20/72 09:17:50 OK 
2-Z333 SKINNER BECKY 232702237 07/20/72 11:05:06 
2-Z333 SKINNER BECKY 232702237 07/20/72 11 t 0,9: 29 
CG305 YURA DEE 1 07/21/72 09:21:53 OK 
CG305 YURA DEE 1 07/21/72 09:24:21 OK 
533391 YURA DEE 07/21/72 09: 52: 12 
533391 YURA DEE 1 07/21/72 09:52:56 
533391 YURA DEE 123456678 07/21/72 09:53:45 
CG305 YURA DEE 123456789 07/21/72 09:54:34 OK 
CG305 YURA DEE 123455678 07/21/72 09:56:05 OK 
CG305 YURA DEE 123456778 07/24/72 09:41:26 OK 
CG305 YURA DEE 1 07/24/72 13:11:48 OK 
CG305 YURA DEE 1 07/24/72 13:28:39 OK 
2 P*PQ3 ADKI NS LINDA 236682088 07/24/72 14:06:09 
2 P* PQ3 ADKINS LINDA 236682088 07/24/72 14:08:51 
2+++*3 MCCLAIN CHARLES 236681690 07/24/72 15:22:40 
2+++*3 MCCLAIN CHARLES 236681690 07/24/72 15:27:22 
CG305 YURA DEE 1 07/25/72 08:51:36 OK 
2++533 GRINDLE BEVERLY 232743692 07/25/72 09:59:59 
23Z5-1 CARLSON t'/l LlI A~1 213441310 07/25/72 11:08:44 
23Z5-1 CARLSON WILL lAM 213441310 07/25/72 11:10:51 
23Z5-1 CARLSON \~/llL I AM 213441310 07/25/72 11:13:13 
23Z5 CARLSON \\fILLIAM 213441310 07/25/72 11:14:36 
23+ P*3 MEADO~/S SARA 233808122 07/25/72 11:59:38 
BIOL1 NEPTUNE CHARLOTTE 236849383 07/26/72 08:40:33 OK 
CG305 YURA DEE 1 07/26/72 08:56:29 OK 
2325+3 MURPHY SANDY 232824319 07/26/72 10:42:21 
2325+3 MURPHY SANDY 232824319 07/26/72 10:43:40 
23Z5+3 MURPHY SANDY 232824319 07/26/72 10:45:15 
23Z5+3 MURPHY SANDY 23282431c) 07/26/72 10:46:32 
2Q* PP; JElLINEK HOl LI S 232760653 07/26/72 11:42:05 
2 ** P3 3 BLIZZARD GINNY 232781259 07/26/72 14:09:06 
2**P33 BLIZZARD GINNY 232781259 07/26/72 14:10:43 

Figure 7 

that this is the only place in the entire system where a 
user has to learn a new symbol. All other commands to 
the system are in natural language and are very 
straightforward. 

The DEFINE function is used to set up the control 
record with the quiz definitions. This includes the 
number of items to be on a given quiz and the break­
down for each type. This record is used by "GENER" 
when generating the quiz. (See Figure 6) 

ROUTINE "WHO" 

This routine, available only from control mode, is 
used to print the system activity file generated by 
"P ASS." It shows who has entered the system and 
whether or not their password was accepted. The date 
and time are also available. (See Figure 7) 

The value of this routine is to check on activity, 
especially if an instructor thinks his password is no 
longer secret. 

MESSAGE ROUTINES 

Message routines have been implemented. These 
allow communications from the instructors to the 
system manager through a file. It is thought that this 
feature may be valuable for reporting any difficulty to 
the system manager or for leaving suggestions for 
improved function. 

CONCLUSIONS 

Our interest in developing TASSY was to explore the 
problems and potentials of using the computer in the 
educational process. TASSY served that purpose in 
many ways. Our first concern was the problem of soft­
ware development and record design. We originally 
designed the question record to be 500 characters long. 
We found that this is too short. Our next version of 
TASSY will have the ability to hold a question and 
associated distractors totalling 1,000 characters on each 
record. 



At the time of this writing we are still not sure what 
optimal student record should look like. We estimate 
that the student record should have the ability to record 
a minimum of 75 items, the sub-scores from 10 attri­
butes, and the total score, in addition to the necessary 
identification date mentioned in the system description. 

A second problem we wanted to evaluate was the 
feasibility of operating under the auspices of a large 
central computer using telephone communication. 
Under the best circumstances, our experience has 
indicated that we not try it again. 

Our experience was not unlike that of anyone else who 
has had to rely on the telephone system and someone 
else, i.e., the central system, to do the work for them. 
A third problem we encountered was that our system 
has had to rely on the telephone system and some else, 
i.e., the central system, to do the work for them. A 
third problem we encountered was that our system 
became fair game to students who would try to "break 
in" and look at the answers and the system. The 
computer center staff developed a special software 
"lock" for us that was, in effect, a self-destruct button. 
If any tampering was attempted, a system error was 
generated, duly logged, and the program disappeared. 
(See Figure 7) At times this security feature was 
inconvenient, but we felt the trade-off for security well 
worth it. 

We have decided to develop TASSY to operate out­
side of the University's central computer because of the 
cost of maintaining enough core and disc space on line. 
We estimate that the cost of a 16-terminal system 
would be almost double that of having our own mini­
system. 

Weare also concerned with the reactions of faculty, 
teaching assistants, and students. The students and 
teaching assistants liked TASSY very much. The 
students did not feel that the computer de-personalized 
them. In fact, most of the students felt that TASSY 
represented a meaningful step on the part of the faculty 
to meet their needs. The teaching assistants were 
overjoyed because the most boring 10 percent of their 
work assignment was removed. The faculty agreed with 
the idea, and liked the potential of the TASSY system. 
When the system became a reality, they wanted to use 
it as little more than a slow test printer. However, with 
some handholding and encouragement, and favorable 
results from the prototype experiment, the faculty have 
begun to use all of the system capabilities. 

Several additional problems arose as a result of our 
efforts. The faculty had difficulty in developing good 
test items. Traditional item analysis methodology is 

TASSY 631 

only partially useful. Because of TASSY's ability to 
generate so many different tests, item validity and 
internal consistency become difficult values to compute. 
We found that with an item pool of 500 items equally 
split over 5 attributes, the probability of getting the 
same test with the same order of items is 1 in (10 !jlOO !)5. 
Needless to say, sample size for each test is rather 
small. Our experience with TASSY, plus cOqlmunication 
with other researchers, indicates that this problem will 
be with us for a long time to come. 

A second, and even more serious, problem became 
apparent as we began to develop the diagnostic and 
prescriptive capabilities of TASSY: namely, once the 
instructors had detailed data on the student's deficien­
cies, they didn't know what course of action should be 
taken except in the most general terms. This has caused 
some embarrassment. 

Our future plans for TASSY include enhancing its 
response repetoire by adding the ability to recognize 
single answers and formulas in a manner similar to 
PLAN IT . We also hope to give the instructor his choice 
of scoring modes besides the traditional, rights, rights­
wrongs, etc. Finally, we hope, in the not too distant 
future, to be able to add some graphics capabilities to 
the system. 

Because of the modularity of TASSY and its rela­
tively simple-minded approach to testing and feedback 
we feel that it would be implemented readily by indi­
vidual instructors at almost any level of college instruc­
tion. We hope that, as our experience with TASSY 
grows, we will be able to develop· a product which will 
not only be easy to use, but will also be cost-effective 
enough so as to warrant serious consideration. 

ACKNOWLEDGMENTS 

The author would like to give thanks to Mrs. Rita Saltz 
for her invaluable editorial assistance and to the West 
Virginia University Computer for their patience. 

REFERENCES 

1 F B BAKER 
Computer-based instructional management systems-A first 
look 
Review of Education Research Feb 1971 Vol 14 No 1 
pp 51-70 
A C KELLEY 
An experiment with TIPS-A computer aided instructional 
system for undergraduate education 
The American Economic Review 1968 No 58 pp 446-457 





A comprehensive question retrieval application to 
serve classroom teachers 

by GERALD LIPPEY 

IBM Corporation 
San Jose, California 

INTRODUCTION 

CTSS (Classroom Teacher Support System) was -de­
veloped to aid teachers. The concept consists of re­
trieving questions according to specified attributes from 
a centralized data bank, assembling them into tests or 
exercises, and scoring student answers. Since scoring 
mark-sense answer sheets is a well-understood and wide­
spread application, the emphasis was placed on solving 
systems problems related to producing lists of ques­
tions which meet the teacher's needs as he perceives 
them. To achieve this, the system permits items to be 
classified along several dimensions so that they can be 
selected by the computer according to criteria set by the 
teacher requesting a test. (The word "test" is used here 
to design~te a list of questions, regardless of how it is to 
be used by the teacher who receives it.) 

CTSS enables many teachers to share a collection of 
questions; thus, they all benefit from the advantages of 
specialization. Such an application has the potential of 
providing a teacher with access to high-quality questions; 
freedom from the clerical chores of test construction and 
scoring; a new test, tailored to his needs, for each occa­
sion; and comparative data based on previous student 
responses. 

Exploration of this concept began in IBM's Ad­
vanced Systems Development Division in 1968. In 
1969, a joint study agreement was reached between 
IBM's Systems Development Division and the Los 
Angeles City Unified School District to develop a pro­
totype application. System functions were specifi~d 

jointly: IBM developed the computer programs, and 
the school district prepared an initial collection of 8000 
questions in U.S. history and took responsibility for 
all operational aspects. 

Objectives of the joint study were to 

1. Confirm decisions related to functional system 
operation, e.g., communications procedures, 

633 

forms, reports, retrieval options, item revision 
procedures,test modification p'rovisions. 

2. Identify problems associated with development 
of item pools, e.g., item classification, cost of 
preparation, adequacy. 

3. Discover how classroom teachers would use 
questions when they were conveniently availa­
ble, e.g., testing, drill, discussion. 

4. Gain quantitative information on usage, e.g., 
frequency of use, length of tests, requirement for 
data bank size. 

During the first half of 1969, functional specifica­
tions were established. Programs were coded during 
the second half, while the first item collection was being, 
prepared. Systems testing began in January 1970, with 
six teachers in one school. CTSS slowly phased into 
operational use as teachers at various schools have been 
gradually added during the last couple of years. There 
are now over 200 history teachers using the system in 
Los Angeles schools, and several other educational 
institutions have installed it. 

TEACHER SERVICE 

CTSS is intended to be entirely under the teacher's 
control. It may be used or not as the teacher sees fit. 
The system is free of any particular philosophy of test­
ing or other use; it is the teacher's prerogative to use it 
in any fashion that satisfies his needs. Questions have 
been used for quizzes, homework assignments, final 
exams, drill, review~ classroom discussion, and material 
for special student proj~cts. 

Although it can be used with essay and short-answer 
questions as well, CTSS was intended for objectively 
scorable (multiple-choice, true-false, and matching) 
questions. This decision was made to encourage ma­
chine-scoring in order to collect data to help identify 
unsatisfactory items. Within this framework, some 



634 Fall Joint Computer Conference, 1972 

features were included to accommodate item format 
variations: Items consisting of several questions pre­
ceded by a paragraph or table are acceptable. Also, 
special print control provisions permit item authors to 
specify overprinting of text lines (e.g., for underlining 
words) and to control the splitting of long items between 
test pages. 

Item collections are maintained on disk storage. 
Teachers submit requests for questions on optically 
scanned test-request forms, which are sent directly to 
the computer center through the district's internal mail. 
This input is batched, run each night, and the resulting 
tests placed in the school mail the next day. Scoring is 
handled in the same fashion. 

Item specification 

During the design of CTSS, primary attention was 
given to item selection. So teachers can conveniently 
construct tests· which meet their needs, the system per­
mits questions to be classified in several ways. Although 
specific questions can be requested, teachers usually 
request questions by specifying attributes associated 
with them. 

Questions in a broad subject matter area (an "item 
collection") are classified at the least into major sub­
ject matter "categories" and at most along four addi­
tional dimensions. The category classification may be 
based on behavioral objectives or not, depending upon 
the item collection designer's wishes. It may also be 
structured in hierarchical levels. During the retrieval 
process, items are selected from both those in the cate­
gory specified and those in all categories subordinate to 
the one specified. There may be up to five hierarchical 
levels in the category classification defined. 

Other classification dimensions can include an assign­
ed difficulty level, behavior level (knowledge vs. applica­
tion of knowledge), keywords, and several special flags. 
Some dimensions (e.g.,. keywords) permit the item 
classifier to assign more than one value to each item. 
Dimensions which can. have a large number of values 
(e.g., category) are coded numerically, so that, with the 
aid of an index, they can . easily be specified on an 
optically scatined test-request form. 

Specifications for questions are entered in "request 
blocks" on the test-request form. Each block consists of 
several fields in which the teacher specifies the attri­
butes and the quantity of a group of items desired. 
While items are normally selected by attribute, a re­
quest block may be used to specify the unique identifi­
cation number of an individual item desired. Thus, a 
test may be constructed which contains a specified num­
ber of questions in each of several categories with the 

desired mix of other characteristics, as well as some 
specific items which the teacher knows from experience 
and wants to include. 

Tests 

The result of processing a test request is a list of 
questions identified by the teacher's employee number 
and a two-digit test number assigned for that teacher 
by the system. The test thus produced is stored by 
CTSS and labeled "generation 1." 

The teacher may then modify the test by requesting 
the system to add or delete items. To accomplish this, 
a test-request form is filled out which references the test 
number and specifies the items to be added in the same 
way that an initial test is requested. Items to be deleted 
are indicated on another field in the form. A new list of 
questions with the same test number will be created and 
labeled "generation 2.". This process can be repeated 
until the list of questions satisfies the teacher. Only the 
most recent generation of a test is remembered by the 
system. A teacher may have up to twenty such tests 
retained simultaneously. 

The teacher may specify on the test-request form 
that the test be printed on a reproduction master. He 
may also request up to nine different versions of the 
test with the items appearing in a different sequence on 
each. 

Each time a test is printed, two associated reports 
are produced. An Item Characteristics report provides 
the answer key and informs the teacher how each item 
has been classified for retrievel. It may also provide 
references to two resources which contain information 
related to the content of each item. The second report 
repeats the teacher's request and indicates the items 
retrieved in response to each request block. 

CTSS will score student answer sheets when the 
teacher so desires. Since the test has been remembered 
by the system, it is not necessary for a teacher to sub­
mit a scoring key. Several scoring options are available 
for identifying students, suppressing or adding ques­
tions, and partitioning reports. The usual scoring re­
ports are sent to teachers. Scoring procedures and 
reports will not be discussed. 

The system was designed so that on-going, everyday 
service could be provided without the need for judgment 
by anyone other than the teacher concerned. Probably 
the most important consequence of this objective was 
the attempt to anticipate input errors of various kinds 
and, whenever possible, respond automatically by 
addressing an explanatory message directly to the 
teacher. 



SUPPORT ACTIVITIES 

The teacher service described above is supported in 
several ways. Direct daily support is provided by the 
internal mail service and the data processing center. At 
the center, request forms are batched and read by an 
optical mark reader; processing is accomplished at 
night; and output to each teacher is manually matched 
to its request form prior to its return to the teacher. 

CTSS is, however, not adminstered by the data 
processing group. Rather, the data processing center 
performs a service function, while operations are moni­
tored and managed by education-oriented personnel 
referred to as CTSS "coordinators." This arrangement 
dictates that the points of contact between the data 
processing center and others be well defined, so that the 
computer center can regard all CTSS jobs as routine 
production. Consequently, input from, and output to, 
both teachers and coordinators is handled according to 
well-established procedures. 

Service support 

Coordinators have two areas of responsibility-one 
related to operational teacher services and the other 
related to item pools. In the teacher service area, new 
users of the system may obtain coordinator assistance 
getting started and, subsequently, in understanding 
errors that they make. Coordinators also supply teach­
ers with the optically scanned request forms. 

Since a user identifies himself to CTSS on the test and 
scoring request forms by employee number only, a file 
of teacher names and locations, the "teacher file," is 
required to automatically address the title page of tests 
and scoring reports. A teacher must be registered on 
this file prior to using CTSS. One chief responsibility of 
the coordinators is maintenance of the teacher file. 

The file in which tests are stored, called the "active 
list," can also be influenced by coordinators. When a 
new test is generated, it is automatically added to the 
active list; when a test is scored, it is deleted. Since 
many tests are never scored by CTSS, the active list 
would continue to grow indefinitely unless old tests 
were removed. Old tests are identified by assigning an 
"activity date" to each test when it is created. This is 
reset to the current date whenever a new generation is 
produced or a scoring request is not successfully pro­
cessed due to input error. The activity date is used to 
purge old unscored tests from the file. A "time-out can­
cellation" program removes from the active list tests 
whose activity dates precede a cancellation date set by 
a coordinator. When a test is timed-out, a notice is sent to 
the teacher concerned, informing him that it is no longer 

Comprehensive Question Retrieval Application 635 

available for modification or for scoring against the 
answer key retained in the system. Time-out cancella­
tion is initiated periodically by coordinators. 

As tests are produced and scored, statistics on system 
activity are accumulated. A "system statistics file" 
contains counters which cumulate data for two dozen 
kinds of user activity. For example, the number of test 
requests rejected due to input errors, the average num­
ber of generations produced, and the average number of 
questions requested on tests are accumulated. The 
system statistics file contains this information for two 
durations (a long and a short time period); the data is 
maintained for each item collection; and it is classified 
according to which of 13 teacher groups the correspond­
ing users belong. Coordinators may reset the system 
statistics file counters when they wish the accumulation 
process to begin again. 

In addition to direct contact with teachers, coordina­
tors monitor system usage by looking over summaries 
produced by each test production and scoring run. 
There is also a report generated by the time-out cancel­
lation program, which summarizes the number of tests 
in the active list, tests having scrambled versions, and 
tests removed from the active list by. the time-out 
routine. Longer term activity is observed by drawing 
activity reports from the system statistics file described 
above. 

Item pool support 

The second area of coordinator responsibilities in­
volves the item collections themselves. To use an item 
pool, teachers must understand how it has been classi­
fied, and they must have access to at least the index 
which defines subject matter category numbers and 
perhaps to other indexes which have been constructed. 
Coordinators are responsible for communicating this 
type of information to teachers. 

Item collection maintenance is another important 
coordinator job. Typically, large collections of ques­
tions are made available before they have been thor­
oughly edited and field tested (otherwise, the develop­
ment investment would be too large). Thus, one begins 
with relatively poor-quality items and depends upon a 
long range revision process during usage to improve the 
questions. As teacher comments and scoring data be­
come available, items are repaired. Teacher reactions to 
poor-quality items, while negative, have not turned out 
to be a serious problem. Indeed, teachers sometimes 
appear to experience satisfaction when they discover 
and report items needing correction. 

The best source of item revision information appears 
to be the teacher. A second source has been provided in 
CTSS by cumulating item usage data in an "item 



636 Fall Joint Computer Conference, 1972 

statistics file," associated with each item collection. The 
item statistics file retains information on the number of 
times each question appeared in a test, or was deleted 
from a test or suppressed from scoring by a teacher. The 
file also contains student-supplied data obtained when 
questions are machine-scored, such as the number of 
responses to each option and a central tendency for 
discrimination index. 

A coordinator can obtain an "item statistics report" 
based on information in the item statistics file. The 
philosophy behind this report is that by appropriate 
selection of item statistics thresholds he can obtain a 
list of those items most likely to need revision. A co­
ordinator may set thresholds on high teacher rejection 
rate, low average discrimination, unusually heavy use 
of a distractor, and very high or low measured difficulty 
level. He may also require that some minimum number 
of tests has been drawn, or answer sheets scored, to 
cause an item to be eligible for these tests. 

Finally, it is the coordinator's responsibility to over­
see the creation and supervise the installation of new 
item collections. When a new item pool is to be con­
structed, many decisions need to be made: a character 
set, i.e., those characters which are to be allowed in 
item text, must be chosen; the kinds of items which are 
permissible must be determined; the dimensions of item 
classification must be designed; and the method of 
transmitting all the necessary classification information 
to teachers must be planned. 

There appears to be significant value in having large 
item pools. Teachers do not usually wish to encounter 
the same few items over and over. A large collection is 
especially useful when multiple tests are requested to 
cover the same material. It also enables the collection 
designer to include several approaches to subject mat­
ter ; this is essential if the collection is to be shared by 
users having a variety of pedagogical styles. Finally, it 
appears to be helpful if teachers regard an item collec­
tion as essentially infinite in size and constantly chang­
ing, and do not, therefore, have a desire to deal manual­
ly with the entire collection at once. Experience from 
CTSS indicates that about 30 questions per class hour 
should be regarded as a minimum item pool size; 50, as 
more desirable; and, perhaps, about 70 as the number 
beyond which the cost begins to exceed the value. 

SYSTEM DESIGN 

CTSS was designed as a prototype because it address­
es a new application area. Many of the design decisions 
were influenced by this. Perhaps the most obvious effect 
on system design was the effort to include features 
whose utility was questionable in order to establish 
their value through experience. 

On the other hand, an effort was made to design low 
cost into the system framework. Thus, on-line terminals 
were rejected in favor of internal mail service, and key­
punching of teacher requests is avoided by using 
optically scanned input forms. Costly human interven­
tion is further reduced by sending error messages di­
rectly to teachers. Also, teachers are discouraged from 
requesting reproduction masters or scrambled versions 
unnecessarily by preventing further modification of a 
test once either of these more expensive printouts has 
been produced. 

Program design priorities (from high to low) were as 
follows: (1) ease of coding and testing, (2) ease of 
modification and maintenance, (3) low storage require­
ments, (4) low execution time. Prototype design specifi­
cations included handling several item collections with 
about 10,000 items in each. The system was pro­
grammed in PL/I to run under the IBM/360 Oper­
ating System in a 74K byte partition. 

A highly modular programming approach was chosen. 
Communication between programs is accomplished 
through files which are either permanently established 
or used as temporary interfaces. Dividing functions 
into a series of separately executable programs simpli­
fied programming and testing. More importantly, this 
made it easier to modify the system, particularly when 
additional features were later inserted. The perma­
nently established files will be outlined next, followed 
by a brief summary of the major runs available. 

Files 

CTSS includes two types of permanent files: those 
which are item collection-independent and those which 
are item collection-dependent. An "item collection­
independent" file is required by the system only once, 
irrespective of how many item collections are supported. 
An "item collection-dependent" file is required to be 
present for. each item collection. The main permanent 
files and their contents are itemized in Tables I and II. 

Access to items 

Item manipulation is, of course, the key element of a 
test construction system. Ease and efficiency of item 
retrieval and item revision depend upon the item file 
organization. In CTSS, all of the selection decisions 
concerning which items are to appear on a test are made 
by consulting the classification file. This file contains 
item attributes, but no item text, and is therefore very 
small and easily referenced compared to the item file. 
During the run that produces tests, the item file is 
referenced only when it is necessary to format the test 



TABLE I-Principal Item Collection-Independent Files 

File Name Contents 

Course File Record for each item collection: Iden-
tification, location, and parameters Re-

Teacher File cord for each teacher: identification 
and address; identification of each 
active test, its activity date, and its 
location in the active list 

Active List Record for each active test: identifica­
tion of items, answer key, and status 
information; identification of last 50 
items deleted during previous modifica­
tions; location of version file record, if 
any 

Version File Record for each active test having 
scrambled versions: scrambling keys 

System Statistics File Record for each item collection: two 
sets of system usage information for 
each teacher group 

for printing. (Similarly, the active list contains records 
of specific tests by recording item identifications instead 
of the item text itself.) 

I t was decided early in the design phase that, while 
several dimensions of ite~ specification would be availa­
ble to teachers, one important dimension would be 
emphasized and retrieval optimized around it. As a re­
sult, items are ordered by subject matter category 
number in the item collection-dependent files, making 
hierarchical selection in this dimension easy to imple­
ment. Instead of building and maintaining inverted 
files for other dimensions, the classification file is simply 
scanned within the category designated for items which 
meet other specified criteria. To discourage teachers 
from too often requesting a scan of all items in a collec­
tion for those items which have some other attribute, 
they are prevented from initiating such a search with a 
single request block. By requiring that teachers enter a 
category number in each request block used and limit­
ing the range of a search initiated by one request block 
to the highest level of the hierarchical category classifi­
cation system, CTSS can require that several request 
blocks be used to cause a search over the entire item 
collection. Consequently, though it is possible to initi-

TABLE II-Principal Item Collection-Dependent Files 

File Name 

Classification File 

Item File 
Item Statistics File 

Contents 

Record for each item: item attributes 
and location in the item file 
Item text 
Record for each question: item· usage 
data 

Comprehensive Question Retrieval Application 637 

ate a scan of the whole classification file, a teacher must 
go to some trouble. This compromise between meeting 
user needs and discouraging use of unnecessary comput­
er time has so far proven satisfactory. 

The item file itself consists of 80-character card 
images, where each image contains one text line of a 
printed item and a unique identification number. No 
attempt was made to compress text by coding blanks. 
This file serves as the master file of items; there is no 
duplicate file of punched cards. When cards are desired 
to aid in changing item text, they are punched. 

The item file is normally accessed differently for file 
maintenance than for test construction. Items are 
retrieved from the item file for tests by direct access, 
but the basic item file maintenance run is a sort-merge 

TABLE III-Principal Runs for Coordinators 

Run Name 

Time-Out Cancellation 

Print Teacher File 

Teacher File Maintenance 

Print Activity Report 

Print Item Statistics File 
Print Item Statistics Report 

Print Classification File 
Print Item File 

Item File Maintenance 

Item Stop and Change 

Function 

Remove old tests from the active 
list 
List the teacher file and active 
list 
Add, delete, or modify teacher 
identification data 
Produce report from system 
statistics file and reset counters 
if desired 
List item statistics 
Identify items having statistics 
which exceed specified thresholds 
List item attributes 
List item text for specified sec­
tion of the item collection 
Add, delete, and replace items, 
and reset an item's statistics if 
desired 
Tag item so that it will not be 
available to teachers, or replace 
item characteristics or text line 

procedure which rebuilds all of the item collection­
dependent files. Item additions, deletions, and substan­
tial modifications may be accumulated and this run 
executed infrequently. Between such runs, it is possible 
to prevent specific items from appearing on tests and to 
change specific item cards in the file by direct access. 

Computer runs 

Like those for item file maintenance, most computer 
runs were designed for use by coordinators. The princi­
pal runs available to coordinators are listed in Table 
III. A few other runs are for the programmer during 
system maintenance or when adding new item collec-



638 Fall Joint Computer Conference, 1972 

tions. The two primary runs, executed daily, are those 
which service teachers: One produces tests and the 
other handles scoring. Test production will be discussed 
here; scoring will not. 

Test production 

There are two strategies which might be employed 
for batch retrieval of items: One is to publish a catalog 
of all items in the collection, from which the teacher 
selects those he wants; the other is to have the computer 
select items from the collection according to attributes 
specified by the teacher. When a large question data 
bank is involved, it is impractical for the teacher to deal 
directly with the questions. Furthermore, if, in addition, 
new items are continually being added and old ones 
revised, providing teachers with a relevant catalog of 
items becomes a problem. It would be hundreds of pages 
long, and the publishing cost would be compounded by 
the need for frequent revisions to account for changes. 
For these reasons, CTSS relies instead upon the comput­
er's ability to retrieve by attribute, while still reserving 
to the teacher his right of final choice. 

However, the approach chosen results in another 
problem. When selection by attribute is used to locate 
entries in a large data bank, the difference between the 
quantity desired and the quantity available must be 
resolved. This problem is easily handled in a conversa­
tional retrieval system, because the user can specify 
attributes and immediately learn how many items are 
available. If there were more than he wanted, he could 
tighten up the specifications and inquire again; if there 
were less, he could loosen· them. In a batch retrieval 
system, some alternate means need to be employed to 
insure that the user is neither flooded with eligible items 
nor receives too few. In CTSS, random selection 
achieves the former and automatic specification relaxa­
tion the latter. 

If, for example, a request block specifies five ques­
tions having certain characteristics and there are 100 
that satisfy the criteria, five are picked at random from 
the 100. CTSS does this by partitioning the 100 ques­
tions, ordered by category number, into five groups of 
20 items each. One question is selected at random from 
each group. The stratified sampling prevents too many 
items from being occasionally picked from a single 
category when selection ranges over several subordinate 
categories. There are, of course, many alternative ways 
to reduce the number of eligible items, but random 
selection has proven adequate. 

If fewer items are found that match a request block's 
specifications than are requested, some specifications 
will be relaxed in an attempt to meet the quantity 

objective. This is consistent with the observation that 
teachers prefer to receive items, even though they do 
not meet all criteria specified. In the prototype, be­
havior level, if specified, is ignored first; then, any 
assigned difficulty level specification is disregarded. No 
other type of teacher specification is relaxed. 

When more than one request block is used on a test­
request form, each is treated separately for item selec­
tion purposes. However, no item is included in a single 
test more than once. In addition, the identifications of 
items deleted from a test during modification are stored 
in the active list. Such items are considered ineligible 
for subsequent generations of the test unless specifically 
requested. 

The test production run consists of a series of pro­
grams, each of which operates on a batch of test requests 
and runs to completion prior to the next program's 
execution. This run handles both initial requests and 
requests for modifications to existing tests. Considering 
only requests for new tests, the primary functions of 
each program are summarized in the steps below: 

1. COJfvert the format of optically scanned test­
request forms to one more useful during program 
debugging and maintenance 

2. Sort test requests by item collection (so that all 
item files need not be accessible simultaneously) 

3. Edit test requests for teacher input errors and 
allocate space in the active list and version file 

4. Select items to appear on tests by referencing the 
classification file; store identification of items 
selected in the active list and scrambling keys in 
the version file 

5. Update the system statistics file 
6. Prepare tests for printing by retrieving text from 

the item file 
7. Print summary of this run 
8. Print tests on paper (spooled) 
9. Print tests which are to appear on reproduction 

masters (spooled) 

Backup and recovery 

CTSS has an extensive set of backup and recovery 
procedures built-in to reduce the impact of human or 
machine errors related to processing. Because all data 
needed for runs is retained in files, backup procedures 
need only be able to restore these files. Prior to exe­
cuting the test production, scoring, teacher file main­
tenance, and time-out cancellation runs, the teacher 
file, active list, and version file are automatically copied. 
If the run does not go to completion, these files are 
restored. Because the most recent state of the quasi-



random number generator used to select items and 
scramble tests is stored in the active list header, a test 
production run can be reproduced from restored files. 
The system statistics file is copied periodically. Every 
time item file maintenance is run, a copy of the item 
classification file, the item file, and the item statistics 
file is automatically made. 

CONCLUSION 

Probably the most significant systems learning that 
occurred during prototype operation has been in the 
support area. The fact that a good deal of attention was 
directed toward reducing teachers' chores turned out to 
increase the coordinators' work substantially. For 
instance, although teachers are encouraged to offer new 
items and suggestions for improvements, they are not 
expected to revise questions. Likewise, teachers are not 
required to submit their names and locations with re­
quests. Such system-provided services resulted in the 
presence of additional files and more support work for 
coordinators. The coordinators' activities have required 
more computer assistance than had been anticipated 
during system design. In fact, most of the functions 
added after CTSS was installed were to aid coordina­
tors-either to diagnose teacher difficulties or to main­
tain files. 

Comprehensive Question Retrieval Application 639 

The CTSS prototype is available to other educational 
institutions; programs, documentation, and some of the 
existing item collections may be obtained from the Los 
Angeles City Unified School District. Several other 
institutions have installed CTSS and more data banks 
of questions are becoming available. Also, systems of a 
similar nature have independently emerged at various 
other locations, chiefly in institutions of higher learning. 
One can infer from the success of CTSS and from the 
developing interest elsewhere that the use of computers 
for banking questions and generating tests and exer­
cises is an embryonic application area which will con­
tinue to grow. 

Furthermore, test generation is a natural component 
of more sophisHcated computer-assisted instructional 
approaches. A few of the existing automated test con­
struction activities are, in fact, parts of larger computer­
managed instruction systems. These more extensive 
systems usually include pedagogical decision-making 
elements, such as diagnosis of learner difficulties and 
prescription of assignments. Some of them enable stu­
dents to proceed through large units of instructional 
material independently of each other. Those who wish 
to begin with a small, simple system and grow toward a 
comprehensive system may find test construction a 
convenient starting point, since it can stand alone under 
teacher control as well as fit into an integrated comput­
er-managed instruction system at a later time. 



• 



Computer processes in repeatable testing 

by FRANKLIN PROSSER and JEAN NAKHNIKIAN 

Computer Science Department 
Bloomington, Indiana 

INTRODUCTION 

There is emerging an increased interest in computer 
augmented testing procedures. Among those feasible 
techniques that have proven of particular value is the 
method of Computer Generated Repeatable Tests 
(CGRT). This approach to testing, which allows the 
repeatable administration of tests over a body of ma­
terial, has been previously described.! Interest in the 
method has been high, and frequent inquiries into the 
nature of the computing processes involved in CGRT 
have led us to elaborate here on the computer software 
aspects of the method. In this paper we· describe the 
structure of the test generation and student response 
scoring programs, we describe important performance 
improvements, and we discuss some aspects of the prob­
lem of· developing "portable" or machine-independent 
computer programs. 

The CGRT process was conceived by Donald D. 
Jensen, now at the University of Nebraska, as a means 
of avoiding many of the adverse features of conven­
tional testing in large university classes. The typical 
exam in such classes consists of true-false or multiple 
choice questions, is administered at one fixed time only, 
and is given infrequently and over a large amount of 
material. Often several days elapse before the student 
receives any useful information on his performance, 
and often the total score is the only information given, 
an item that is of little value in guiding further study. 
Such procedures are disliked by students, who fre­
quently adopt the "loaf-and-cram" pattern of study, 
and who are subject to considerable· anxiety over their 
performance on the infrequent and all-important big 
exam. 

The CGRT scheme provides reasonable alternatives 
to these objections to conventional exams. First, the 
student may be examined more frequently, which en­
courages the student to keep up with his course work. 
Second, the student may receive immediate feedback: 
when he turns in his answer sheet, he may receive the 

641 

correct answers and other study aids. And third, the 
examinations are made repeatable. Large numbers of 
unique but equivalent individualized tests are pre­
pared using a digital computer. The instructor may 
readily permit his students to be examined repeatedly 
over the same unit of materiaL Students may learn 
from their errors,. and return to be tested again over 
similar material. In this way, the examination is 
made a vital part of the learning process. 

The CGRT method consists of four basic steps: de­
veloping pools of test items, producing the individu­
alized tests, administering the tests, and scoring of 
student responses to the tests. The entire process is 
described in general terms in Reference 1. Our purpose 
here is to discuss in some detail the computer processes 
involved in repeatable testing. 

STRUCTURE OF PROGRAMS 

Of the four basic steps in the CGRT procedure, the 
preparation of tests and the scoring of student responses 
are facilitated by computer. Test preparation is accom­
plished with a program GENERATOR, and scoring is 
done by GRADER. All programs are written in FOR­
TRAN. In the following sections, the essential features 
of the computer programs are described. 

Generator 

Figure 1 shows the overall flow of program GENER­
ATOR. The input to GENERATOR consists of the 
pool of items (questions and answers) to be used in for­
mulating individualized tests, and directives describing 
the structure of the tests. The program reads the pool 
of test items, verifies that each item is in an acceptable 
format, and stores the information as a convenient 
data structure in the program. 

A typical item· consists of the body of the question, 
contained on as many records (cards, usually) as nec-



642 Fall Joint Computer Conference, 1972 

READ} CHECK} AND STORE ITEM POOL 

READ TEST SPECIFICATIONS 

PREPARE ITEM POOL ANSWER SUMMARY 

INITIALIZE TEST NUMBER 

SELECT ORDER OF ITEMS FOR THIS TEST 

OBTAIN ITEMS~ FORMAT THE TEST~ 
AND OUTPUT TEXT FOR PRINTING 

INCREMENT TEST NUMBER 

NO ALL TESTS FORMED? 

Figurel-GENERATOR program flow 

essary, followed by one or more cards of answer infor­
mation. To facilitate computer grading, the correct 
answer is placed in a standard position on a card; other 
~upporting answer information (textbook references, 
etc.) may follow on this or subsequent cards. 

The cards are numbered in such a way that the cor­
rect card order may be verified, and the answer part 
distinguished from the question body. Each item is 
further identified with a numeric code. Typically, to 
permit the instructor to group his items into sets of 
items covering similar material, the item identification 
will consist of a set number and an item number within 
the set. 

The collection of items to be used in forming a series 
of individualized tests thus is divided into a variable 
numbers of sets, each containing a variable number of 
items. The instructor may assign a specific weight to 

each set. The weight applies to each item in the set, 
and represents the number of points to be awarded for 
correctly answering such an item. Further, the instruc­
tor may assign a frequency value to each set of items, 
the frequency being a relative or absolute measure of 
the number of times on a test that the set is to be used 
for selection of an item. Weights allow control of the 
point value of items, and frequencies permit control of 
the number of items used from each set. When weight 
factors are used, either with or without frequency speci­
fications, some simple rules are imposed. to assure a 
constant number of points on each test. 

The pool of items that forms the principal input to 
GENERATOR may reach a substantial size, perhaps 
several thousand cards. Some users of repeatable test­
ing find it convenient to maintain their item pools on a 
master file and manipulate the pools with an updating 
or editing system. 

The item pool is organized by GENERATOR into 
a list, which is controlled by several tables. An impor­
tant aspect of the overall efficiency of the CGRT pro­
cess is that the entire pool is kept in directly addressable 
memory, since it will be repeatedly accessed in a random 
fashion. In a subsequent section we discuss ways to 
operate with the data kept primarily on secondary stor­
age. All items in a set are stored in logically adjacent 
positions in the list. The list of items is accessed by a 
vector of pointers to the origin in the list of each item. 
To distinguish· sets of items,· another vector contains 
set pointers to positions in the first vector, each set 
pointer. specifying the index in the vector of the first 
item pointer for that set. The names of. the items and 
of sets,as supplied by the instructor in his item pool, 
are not used in the item selection processes; only the 
position of a set in the pool and the position of an item 
in its set is relevant. Thus the items may be accessed 
by position indices rather than by name; thjs allows a 
very rapid retrieval of any item. 

GENERATOR next reads the specifications for the 
tests to be produced from the pool of items. Required 
parameters are an examination unit number, the num­
ber of individualized tests, the number of copies of each 
such test, the· number of questions to appear on each 
test, and a starting value for numbering of the individ­
ual tests. Among the . optional specifications, in addi­
tion to the previously. described weight and frequency 
factors, is the .ability to specify randomized or ordered 
selection of sets during test generation. 

Once the test specifications are known, GENERA­
TOR produces a small output file (usually on cards) 
describing the structure of the item pool, the item 
identification, the item answers, and certain critical 
test parameters. This file, typically containing about 
twenty cards, will permit the later regeneration of the 



sequence of items (and answers!) on any given test, 
and thus will permit grading of student responses with­
out the necessity of explicitly preserving the answers 
for each form. The amount of information which must 
be maintained between test preparation and scoring 
is therefore very small. 

With these preliminaries attended to, GENERATOR 
then formulates and prints each test. The selection of 
items for a test involves two stages: selection of a se­
quence of sets, and then choosing of an item from each 
selected set. The instructor will have stipulated either 
random or ordered set selection, and may have pro­
vided frequencies for his sets. Randomized set orderings 
are effected using a pseudo-random number generator; 
ordered set selection requires that the sets be used in 
the order that the instructor presented them in the 
item pool. Item selection from within a chosen set is 
always randomized; of course, the item selection is per­
formed without replacement, to assure that no item 
appears more than once on a given test. The designa­
tion of both set and item is achieved conveniently 
using indices to the set and item vectors previously de­
scribed. 

For later scoring to be performed by regeneration of 
the answer sequence for each test, it is vital that the 
pseudo-random numbers used be reproducible. This 
is achieved by using a simple function of the test num­
ber as an initializing value for a random number gen­
erator. 

Using the indices to the selected items, G ENER­
ATOR formats and writes the test onto a file for subse­
quent printing. See Reference 1 for an example of the 
format of a printed test. The test consists of a heading 
section followed by each item, with question body on 
the left and answer part on the right. The answer ma­
terial will be removed by the instructor prior to admin­
istration of the exam, and will be given to the student 
upon his completion of the test. As one might imagine, 
the speed of test generation is very heavily dependent 
on the speed of the test formatting and output processes. 
As is shown in a later section, very dramatic improve­
ments in program performance may be obtained by 
some rather simple (but unfortunately non-standard) 
manipulations of the FORTRAN output processes. 

Grader 

Scoring of student responses is performed by 
GRADER, whose program flow is given in Figure 2. 
Its first important act is to read and record the infor­
mation contained on the small answer regeneration 
decks prepared by GENERATOR. Since the instruc­
tor may have prepared tests with several different exe-

Computer Processes in Repeatable Testing 643 

READ ANSWER SUMMARY DECKS 

READ STUDENT RESPONSE 

REGENERATE ANSWERS FOR THIS TEST 

___ N_O ___ rALL RESPONSES SCORED? 

YES 

SORT SCORES BY STUDENT 

PREPARE ROSTER OF SCORES 

Figure 2-GRADER program flow 

cutions of GENERATOR (and indeed may have 
changed items between runs), he may supply several 
answer regeneration decks to GRADER. The princi­
pal requirement for the success of this procedure is that 
no two different tests over an examination unit· have 
the same test numbers. This is easily arranged by the 
instructor at the time he prepares the tests. For mean­
ingful scoring, the instructor will also see that each 
test has the same total point score. The answer infor­
mation is structured in memory in a fashion very simi­
lar to that used by GENERATOR for the item pool, 
except· the text of the items is not present during grad­
ing. The student typically marks his responses on a 
mark sense form, which is subsequently reduced to a 
punch card by an optical form reader. An annoying 
phenomenon is inherent in many such operations be­
cause of inadequacies in form design and reader capa­
bility: the mark sense answer form may contain in­
sufficient space for each item to uniquely record the 
range of possible answer characters, and some doubling 
up of spaces is required. This imposes a many-to-one 



644 Fall Joint Computer Conference, 1972 

mapping on the information that reaches the computer, 
and requires that the original item pool answers be 
similarly transformed. This transformation is described 
to GRADER in a series of FORTRAN data state­
ments, and is imposed on the correct answer informa­
tion prior to entering the scoring section of the program. 

A student's response to a test thus typically reaches 
the computer as a card containing his name or identifi­
cation number, the individual test number, and his 
(possibly transformed) answers to the questions. Using 
the test number and the information supplied with 
the appropriate answer deck, GRADER performs an 
item selection identical to that done by GENERATOR 
when the test was prepared. With the sequence of cor­
rect answers at hand, GRADER scores the student's 
response, weighting each item appropriately. When all 
student responses have been scored, GRADER sorts 
the results according to student identification, and 
prints a roster of the scores. A student may have taken 
several tests over the same examination unit; his scores 
will be . listed together on the roster, ranked either ac­
cording to score or test number, as dictated by the in­
structor. 

Several special features associated with the grading 
process are available. We mention them only briefly. 
A number of computer programs are in use for cumula­
tive recording of examination scores and subsequent 
assignment of a course grade. We have a rather primi­
tive but useful item analysis routine which assists 
the instructor in the detection and improvement of 
faulty items in his pool. An elaborate system of pre­
editing of both correct answers and student responses 
is available. This allows very flexible alterations of "cor­
rect" answers and student responses, and permits the 
assignment of penalty points (e.g., for lateness), or the 
selective elimination or alteration of specific items, 
sets, tests, students, etc. We are working on methods 
of allowing optional and multiple answers to items, 
weighted appropriately. 

ENHANCEMENT OF PERFORMANCE 

The CGRT process was conceived and implemented 
as a production system-to be used repeatedly and rou­
tinely by many people. The efficiency and cost of the 
computing processes are thus important factors in the 
acceptance of the method both by instructors and by 
computing centers. Observations of early versions of 
the test generation program indicated that the develop­
ment of the test output to be printed was requiring an 
uncomfortable amount of computer time. (Note that 
we are discussing central processor time for producing 
the test output and recording it on some appropriate 

device such as disk, drum, or tape; the printing of the 
output is inevitably a lengthy process, but does not 
place a significant burden on the central processor in 
modern buffered output systems.) Subsequent timing 
studies showed that the vast bulk of central processor 
time was spent in the formatting and outputting pro­
cesses themselves, with only a small portion of the time 
spent in the logic of item selection and other compu­
tational and input-output activities. Most of the ac­
tivity in test production is character manipulation of 
a very elementary kind. The elaborate FORTRAN 
formatting routines, which were being.invoked for each 
line of output, were inappropriate for such simple but 
voluminous work. Furthermore, it was felt that too 
much time was being spent in the library routines which 
supported the FORTRAN write operation. 

As aresult of these observations, a version of GEN­
ERATOR was prepared which (1) reduced the calls to 
the FORTRAN formatting routines virtually to zero, 
and (2) blocked the output internally in the program so 
as to reduce the calls to the FORTRAN output rou­
tines .. This was made possible on our Control Data 
3600 (later a CDC 6600) equipment by two non-stan­
dard but now fairly prevalent FORTRAN features: 
in-core formatting (specifically, the ENCODE feature), 
and direct input-output (specifically the BUFFER 
OUT feature). The former allows data in memory to be 
manipulated with the customary FORTRAN format­
ting routines and the result placed in memory, rather 
than inescapably on an output device. The latter fea­
ture permits the writing of an arbitrary amount of data 
in an arbitrary format onto a file without any editing 
by the FORTRAN library. 

These features were used in the following way: Since 
the highly repetitive processes in GENERATOR were 
in the test printing section, all editing of information 
which would eventually be printed was moved forward 
in the program and performed (with the aid of the in­
core formatting feature) at the earliest practical time. 
For instance, the text of each item in the pool could be 
immediately edited and stored to appear as printable 
lines by inserting the printer control character in the 
first character position of each line.· Other formatting 
operations, such as formation of question· numbers, 
were moved forward until the number of invocations of 
a format statement was reduced to one per test! This 
one involved the first line of the test, which contained 
the test number. The lines of generated output were 
collected in a buffer (a FORTRAN array) with appro­
priate line terminators appended, and under the man­
agement of a simple blocking routine were written 
periodically to the output file. 

The results were astonishing, even to seasoned pro­
grammers. Table I gives timings for the standard FOR-



TABLE I-Execution Times to Produce 1000 
Tests on CDC 6600 

Total time in GENERATOR 
Time in output section 
Time in item selection section 
Time in other parts of 

program 

Standard 
FORTRAN 

version 

326 sec. 
320 

4 
2 

Modified 
CDC 6600 

FORTRAN 
version 

18 sec. 
12 
4 
2 

TRAN version of GENERATOR and for our CDC 
6600 modified FORTRAN version. The figures are 
central processor times for preparation of 1000 typical 
individualized tests, and do not include printing time 
or time spent waiting for the completion of physical 
output operations (the latter time is used in a multi­
programming system to run other programs). 

One observes an improvement factor of 27 in the cru­
cial output section, with no appreciable cost in other 
sections of the program! The exact figure will vary with 
different computer systems, but the obvious conclusion 
transcends this particular project and this particular 
machine. Programming language designers and imple­
menters please note. The improvement in performance 
gained by the above steps changed the CGRT test pro­
duction operation from one which placed uncomfort­
able demands on the central processor (which if nothing 
else usually results in poor turnaround) to one whose 
cost and performance were quite acceptable. Readers 
are referred to Reference 1 for a discussion of the eco­
nomics of the CGRT process. 

"MACHINE-INDEPENDENT" FORTRAN 
PROGRAMS? 

The resounding effect of the improvements cited in 
the previous section has posed a dilemma. One of us 
(FP) has had considerable experience in developing' 
"machine-independent" FORTRAN programs, and 
has been an enthusiastic advocate of such coding prac­
tices, wherever realistic. Yet the value to the CGRT 
project of our non-standard practices could not be 
denied. To compound the problem, there developed 
considerable interest in the CGRT scheme on the part 
of teachers and computer people at numerous other 
locations. 

We have developed standard FORTRAN IV ver­
sions of GENERATOR and GRADER that are spe­
cifically. designed to be readily adaptable to most me­
diumand large computer systems. By and large, the 

Computer Processes in Repeatable. Testing 645 

syntactic problems in such an effort are minor; virtu­
ally everyone has a well-maintained standard FOR­
TRAN compiler at his disposal. However, there are a 
number of serious semantic difficulties. Although this 
is not the place to embark on a catalog of possible FOR­
TRAN machine dependencies, several of the problems 
and our solutions (or lack of them) -should be men­
tioned. The first awkward problem is the packing of 
characters into words during input and output oper­
ations. Different computers have different word sizes, 
which accommodate various numbers of characters, 
and the FORTRAN format statements should reflect 
this fact. Packing is essential in this project, since the 
item pool frequently contains a large number of charac­
ters. Our solution was to provide for each input and 
output operation a set of read or write and format 
statements for each common number of characters 
per word, and to select the proper read/format or 
write/ format pair by a branch governed by a variable 
indicating the number of characters per word. The 
user thus is required to set only a single variable at the 
beginning of the program. 

A second problem is the shifting of characters within 
words. The usual multiplications or divisions by powers 
of two inevitably fail on some machine (e.g., the CDC 
6600) . We reduced the problem in these particular pro­
grams to the need to move a character from the leftmost 
end of a word to the rightmost end. We request the 
user to supply his own shift routine to accomplish this 
act, and to replace our routine, which is designed for 
the CDC 6600. 

The generation of acceptable pseudo-rando m num­
bers on machines with small word size is difficult to 
generalize. However) almost every installation will have 
a random number generator in its library, and we ask 
that the user repla-ce our generator with a call to his 
own routine. These are easy and acceptable (if inele­
gant) solutions to several tedious problems in produc­
ing portable FORTRAN programs. There remains the 
more difficult matter of converting the output in GEN­
ERATOR to reduce the dependence on FORTRAN 
output procedures. With the present inadequate stan­
dard FORTRAN, there is no good solution. Our choice 
was to provide the straightforward FORTRAN pro­
gram, with copious comments illustrating what one 
should wish to accomplish with the particular in-core 
formatting and blocking mechanisms available at his 
installation. 

CGRT WITH SMALL COMPUTERS 

CGRT has aroused the interest of teachers in colleges 
and high schools that have access to small computing 



646 Fall Joint Computer Conference, 1972 

systems. We have received many inquiries about the 
availability of programs for such machines. The IBM 
1130 seems to be most widely used in this environment. 
Therefore we have developed a version of CGRT for a 
minimal IBM 1130 system equipped with card reader 
and punch, disk, line printer, and 8K of main memory. 
At the time of writing, the programs for generating and 
scoring tests have just completed field test and are 
ready for distribution. 

The tactics employed to implement CGRT on small 
computers are significantly different from those pre­
viously described, although the result is similar. The 
FORTRAN language available is typically ANSI Basic 
FORTRAN, a minimal language with few frills. The 
minimum 8K words of main memory will accommodate 
on the order of 16,000 characters. Since a modest pool 
of test items will need over 100,000 characters, the pool 
must be kept almost entirely on secondary storage. 
Further, a typical test of three pages will fill main mem­
ory, and thus test output must be disposed of promptly. 
The computer is too small to provide a spooling mech­
anism (one in which printable material is written to a 
secondary storage file for later printing), so printing 
occurs on-line at the time of execution of the program. 
Since the volume of print is large, and since the typical 
line printer available on such a system operates at a 
rather slow speed (80 lines per minute for an IBM 1132), 
one anticipates that the limiting factor in test genera­
tion on the small machine will be the speed of the 
printer. 

On the basis of these indications, our IBM 1130 ver­
sion of the test generation program was designed to keep 
the item pool entirely on the disk, using main memory 
for programs and for organizational data such as the 
vector of (disk) pointers for each item. Items are se­
lected for inclusion on a test using algorithms similar 
to those described in an earlier section. The items are 
then obtained from the disk in the proper order for 
printing, and are immediately formatted and printed. 

The expectation that the test generation process 
would be limited by the speed of the line printer was 
confirmed for the IBM 1132 printer. However, on a 
machine with a 600 line per minute printer, the opera­
tion was then limited by the disk access time. Weare 
now developing algorithms to minimize disk accesses 
so as to again make such faster printers the limiting 
resource in test generation. 

PRESENT STATUS AND PROJECTED 
DEVELOPMENTS 

Computer Generated Repeatable Testing has been 
a useful adjunct to the instructional process at Indiana 

University for several years, and more recently at other 
institutions. A number of uses of repeatable testing 
have suggested themselves. The principal use has been 
for testing in college-level classes, frequently but not 
exclusively in large sections. Repeatable testing in the 
classroom, at scheduled times outside class, and in a 
more flexible student-scheduled environment have each 
proven effective for various instructors. Repeatable 
testing is well suited for make-up examinations and for 
administering special tests to allow advanced place­
ment. There are potential applications to correspon­
dence course work, and in regional and national testing 
centers. Using the repeatable test as a tutorial device, 
in which the student may take tests simply as a study 
aid, has become a very important aspect of our ser­
vice. 

For those instructors with available item pools or 
who are willing to develop items in the necessary quan­
tity, repeatable testing has frequently been a great aid 
to effective teaching. There are now the beginnings of 
a coordinated effort to publicize the availability of test 
items in machine readable form. At the instigation of 
Gerald Lippey of IBM Corporation (San Jose, Cali­
fornia 95114), a meeting was held in San Jose in January 
1972 of a small group of people who had worked in the 
area of mechanized test item banking or computer 
facilitated testing. As a result of this meeting, Lippey 
has made a good start toward ascertaining the type and 
extent of available pools of test items. Through such 
efforts, and through the generosity of item writers, 
banks of items may in the future be more readily 
available than in the past, and each instructor will not 
be faced with the task of developing his own complete 
item pool. 

At Indiana University, instructors have developed 
and used repeatable testing item pools in English, 
geography, home economics, chemistry, economics, 
statistics, psychology, speech therapy, accounting, 
education, and others. Usage of CGRT at Indiana 
University encompasses about ten courses a semester, 
with over 40,000 individualized tests printed for over 
2000 students. Our plans are for expansion of the CGRT 
facility in several areas. We are working on schemes for 
student recording (and mechanized recovery) of multi­
character answers, to accommodate those instructors 
who find the single-character answer restriction to be 
unacceptable. We would like to allow multiple or op­
tional answers to items, with appropriate weights for 
allocating part credit. There is interest in a more com­
prehensive item analysis package. And several people 
are working on the automatic generation of test items. 

Repeatable testing programs are available for dis­
tribution. The standard FORTRAN version (for me­
dium and large computer systems), the specialized CDC 



6600 FORTRAN version, and the IBM 1130 FOR­
TRAN version may be obtained from the authors. If 
you wish to investigate the CGRT method, please 
write for documentation and instructions for request­
ing the programs. 

Computer Processes in Repeatable Testing 647 

REFERENCE 

1 F PROSSER D D JENSEN 
Computer generated repeatable tests 
Proceedings of 1971 Spring Joint Computer Conference 
pp295-301 





AMERICAN FEDERATION OF INFORMATION 
PROCESSING SOCIETIES, INC. (AFIPS) 

AFIPS OFFICERS and BOARD OF DIRECTORS 

President 

Mr. Walter L. Anderson 
General Kinetics, Inc. 
12300 Parklawn Drive 

Rockville, Maryland 20852 

Secretary 

Mr. Richard B. lUue, Sr. 
TRW Systems Group 

Scientific Data Processing Lab. 
One Space Park-R3/1098 

Redondo Beach, California 90278 

Executive Director 

Dr. Bruce Gilchrist 
AFIPS 

Vice President 

D. Robert A. Kudlich 
Raytheon Co., Equipment Division 

Wayland Laboratory 
Boston Post Road 

Wayland, Massachusetts 01778 

Treasurer 

Mr. George Glaser 
McKinsey and Company, Inc. 

3000 Sand Hill Road 
Menlo Park, California 94025 

210 Summit Avenue 
Montvale, New Jersey 07645 

Dr. Anthony Ralston 
SUNY at Buffalo 

Computer Science Department 
4226 Ridge Lea Road 

Amherst, N ew York 14226 

ACM Directors 

Mr. Donn B. Parker 
Stanford Research Institute 

333 Ravenswood Avenue 
Menlo Park, California 94025 

Mr. Herbert S. Bright 
Computation Planning, Inc. 

5401 Westbard Avenue, Suite 520 
Washington, D.C. 

Dr. A. S. Hoagland 
IBM Corporation 

Dept. 29A-Building 021 
P.O. Box 1900 

Boulder, Colorado 80302 

IEEE Directors 

Dr. S. S. Yau 

Professor Edward J. McCluskey 
Stanford University 

Department of Electrical Engineering 
Palo Alto, California 94305 

Department of Electrical Engineering 
Stanford University 

Simulations Council Director 

Mr. Frank C. Rieman 
Electronic Associates, Inc. 

P.O. Box 7242 
Hampton, Virginia 23366 

Palo Alto, California 94305 

Association for Computation Linguistics Director 

Dr. A. Hood Roberts 
Center for Applied Linguistics 

1717 Massachusetts Avenue, N.W. 
Washington, D.C. 20036 



American Institute of Aeronautics and 
Astronautics Director 

Mr. Frank Riley, Jr. 
Auerbach Corporation 
1501 Wilson Boulevard 

Arlington, Virginia 22209 

American Statistical Association Director 

Dr. Mervin E. Muller 
5303 Mohican Road 

Mohican Hills 
Washington, D.C. 20016 

Instrument Society of America Director 

Mr. Theodore J. Williams 
Purdue Laboratory for Applied Industrial Control 

Purdue University 
Lafayette, Indiana 47907 

Society for Information Display Director 

Mr. William Bethke 
Rome Air Development Center 

RADC (IS, W. Bethke) 
Griffiss AFB, New York 13440 

American Institute of Certified Public 
Accounts Director 

Mr . Noel Zakin 
AICPA 

666 Fifth Avenue 
New York, New York 10019 

American Society for Information Science Director 

Mr. Herbert Koller 
ASIS 

1140 Connecticut Avenue, N.W" Suite 804 
Washington, D.C. 20036 

Society for Industrial and Applied 
Mathematics Director 

Dr. D. L. Thomsen 
IBM Corporation 

Armonk, New York 10504 

Special Librar'ies Association Director 

Mr. Herbert S. White 
Institute for Scientific Information 

325 Chestnut Street 
Philadelphia, Pennsylvania 19105 

Associat'ion for Educational Data Systems Director 

Dr. Sylvia Charp 
Director of Instructional Systems 

The School District of Philadelphia 
Board of Education 

5th and Luzerne Streets 
Philadelphia, Pennsylvania 

JOINT COMPUTER CONFERENCE BOARD 

President 

Mr . Walter L. Anderson 
General Kinetics, Incorporated 

12300 Parklawn Drive 
Rockville, Maryland 20852 

V ice President 

Dr. Robert A. Kudlich 
Raytheon Company, Equipment Division 

Wayland Laboratory 
Boston Post Road 

Wayland, Massachusetts 01778 

Treasurer 

Mr. George Giaser 
McKinsey and Company, Iuc. 

3000 Sand Hill Road 
Menlo Park, California 94025 

A aM Representative 

Dr. Herbert R. J. Grosch 
National Bureau of Standards 
Center for Computer Science 

Washington, D.C. 20234 

IEEE Representative 

Dr. S. S. Yau 
Department of Electrical Engineering 

The Technological Institute 
Northwestern University 

Evanston, Illinois 60201 

sa I Representative 

Mr. Paul W. Berthiaume 
Electronic Associates, Inc. 

185 Monmouth Park Highway 
West Long Branch, New Jersey 07764 



JOINT COMPUTER CONFERENCE 
COMMITTEE 

Mr. Jerry L. Koory, Chairman 
H-W Systems 

525 South Virgil 
Los Angeles, California 90005 

JOINT COMPUTER CONFERENCE TECHNICAL 
PROGRAM COMMITTEE 

Mr. Henry S. MacDonald, Chairman 
Bell Laboratories 

Murray Hill, New Jersey 07971 

1973 NATIONAL COMPUTER CONFERENCE CHAIRMAN 

Dr. Harvey Garner 
Director 

Moore School of Electrical Engineering 
University of Pennsylvania 

Philadelphia, Pennsylvania 17104 



1972 FJCC STEERING COMMITTEE 

Chairman 

Robert Spinrad 
Xerox Corporation 

Technical Program 

Donald A. Meier 
National Cash Register 

Secretary 

Harold Sarkissian 
Major Data Corp. 

Controller 

H~ward Verne 
Hughes Aircraft Co. 

Registration 

Patricia Riley 
TRW Systems 

Chairman 

Mr. Donal A. Meier 
National Cash Register 

Vice-Chairman 

Dr. Harold Petersen 
RAND Corporation 

Local Arrangements 

Antonia Schuman 
Litton Industries 

Printing and Mailing 

Katherine Jamerson 
Computer Sciences Corp. 

Exhibits 

A. Luke Ward 
San/Bar Electronics Corp. 

Public Relations 

Allen T. LeAnce 
LeAnce and Associates 

Special Activities 

Fred Gruenberger 
San Fernando Valley State College 

TECHNICAL PROGRAM COMMITTEE 

Publication Director 

Mr. Russell Bennett 
Burroughs Corporation 

Speaker A rrangements Director 

Mr. Lynn Maxson 
IBM Corporation 

Liaison & Review Coordinator 

Mr. Wolfgang G. Pfeiffer 
National Cash Register 

SESSION DIRECTORS 

A nalysis and Simulation Director 

Dr. Ray Nilsen 
Users and Applications Director 

Mr. Ross F. Penne 
University of California, Los Angeles University of Southern California 

Interdisciplinary Director 

Mr. Lowell Amdahl 
Compata, Inc. 

Softwm'e Director 

Dr. Richard R. Muntz 

Users and Applications Assoc. Dir. 

Dr. Arnold F. Goodman 
McDonnell-Douglas Astronautics 

Hardware Director 

University of California, Los Angeles 
Mr. Jack Pariser 
Hughes Aircraft Co. 

Systems and A rchitecture Director 

Mr. Harut Barsamian 
National Cash Register 



SESSION CHAIRMEN, REVIEWERS AND PANELISTS 

Baker, Frank 
Balzer, Robert M. 
Barsamian, Harut 
Bekey, George 
Boehm, Barry 
Chen, T. C. 
Chu, Wesley W. 
Denning, Peter J. 
Farber, David J. 
Fetter, William A. 
Flynn, Michael J. 
Gaines, Eugene C., Jr. 
Gentile, Richard B. 
Golub, Eugene 
Goodman, Arnold 

Alberts, A. 
Alrich, J. C. 
Anderson, H. M. 
Anderson, R. 
Arndt, F. 
Arnovick, G. 
Astrahan, M. 
Augustin, D. C. 
A vizienis, A. 
Ball, N.· 
Barlow, A. E. 
Becker, P. 
Bell, T. E. 
Bernstein, W. A. 
Biener, J. W. 
Bloomfield, J. 
Boehm, B. W. 
Borgsahl, R. 
Bork, A. 
Branch, R. 
Branin, F. 
Brereton, T. B. 
Brown, A. B. 
Calhoon, D. 
Canova, G. 
Cardwell, D. 
Carlson, G. 
Carroll, J. 
Carter, W. C. 
Chen, T. C. 
Chernak, J. 
Cheydler, B. F. 
Choma, J. Jr. 
Chu, W. W. 

SESSION CHAIRMEN 

Hamming, Richard W. 
Hollander, G. 
Hunter, Kenneth 
Husson, Samir 
Juncosa, M. L. 
Kimbleton, Stephen 
Kiviat, Philip J. 
Lyon, JohnK. 
McCluskey, E. J. 
McManus, Jack 
MeN amee, Laurence 
Mason, Maughn 
Mills, Harlan 
Mitchell, Gordon 

REVIEWERS 

Climenson, W. D. 
Copp, D. H. 
Courtney, R. 
Cowell, W. 
Critchlow, A. 
Csuri, C. 
Dale, A. 
Dalrymple, S. H. 
Darms, D. 
Dittberner, D. 
Dorr, F. W. 
Duggan, M. 
Durney, A. I. 
Eccles, W. 
Edwin, L. 
Eisenstark, R. 
Farmer, N. A. 
Feurzeig, W. 
Feustel, E. A. 
. Fiefant, R. 
Firschein, O. 
Fletcher, J. 
Frank, H. 
Freilich, A. 
Frost, C. R. 
Fuches, E. 
Fulton, L. M. 
Gardner, R. 
Gentile, R. 
Gillette, G. 
Gilliland, B. 
Gold, M. 
Goodman, A. F. 
Gosden, J. 

Montgomery, Christine 
Morgan, Howard 
Newport, Christopher 
Patrick, Robert 
Penne, Ross F. 
Phister, Montgomery, Jr. 
Pinkerton, Tad 
Reinstedt, Robert 
Stefferud, Einar 
Taplin, Janet M. 
Turn, Rein 
Waxman, Ronald 
Weissman, Clark 
Wilson, Jon C. 

Gotterer, M. 
Grandmaison, J. 
Grau, A. 
Grobstein, D. 
Gulick, L. R. Jr. 
Hagenstad, M. T. 
Hamilton, D. C. 
Hammer, C. 
Hamming, R. W. 
Hammond, F. 
Hanson, R. J. 
Harper, S. 
Harrison, R. L. 
Hartwick, R. 
Hendrie, G. 
Herr, W. B. 
Heterick, R. Jr. 
Hixon, J. 
Hoffman, L. 
Hootman, J. T . 
Humphrey, R. 
Hunt, E. 
Hunter, 'K. W. 
Hutt, A. E. 
Hyman, M. 
Isaksen, L. 
Ito, R. A. 
Jackson, H. L. 
Jeffrey, S. 
J ellinek, 1. 
Jenkins, J. M. 
Joseph, E. 
KaltmanJ A. 
Karplus, W. J. 



Kay,A. Moler, C. B. Schechter, J. 
Keenan, T. Morterana Short, G. E. 
Kernighan, B. W. Myers, R. Silvern, L. 
Kerr, D. V. Nance, R. E. Singh, S. 
Kimbleton, S. R. Nicols, A. J. Skelly, P. G. 
Klein, E. Niedrauer, R. V. Small, D. L. 
Kleinrock, L. Nielsen, R. Smith, C. 
Klinger, A. O'Brien, J. Smith, R. A. 
Klotz, D. A. Ofek, H. Southworth, R. W. 
Knight, K. Oliver, P. Steenbergen, H. 
Koory, J. Onovec Stefferud, E. 
Kosinski, W. Onyshkevych Stephenson, J. W. 
Kurasch, C. Opderbeck, H. Stewart, R. M. 
Kuhns, J. L. Ostapko, D. Sturm, W. 
Lange, L. Owens, J. Su, S. Y. H. 
Larkin, R. Pariser, J. Summit, R. 
Larson, K. Parker, D. Sutherland, W. 
Lasser, D. J. Patel, A. Svoboda, A. 
Ledley, R. Patrick, R. L. Sykes, D. 
Leffler, N. Penne, R. Taylor, R. 
Leichner, G. H. Petersen, H. Thomas, R. T. 
Levine, L. Phillips, T. D. Tseng, C. 
Lewis, W. Pohm, A. Tucker, S. 
Lindloon, E. Pomerene, S. Uhlig, R. H. 
Linville Postel, J. Uttal, W. 
Liskov, B. Price Van Tassel, D. 
Loewe, R. T. Prokop, J. Walker, D. E. 
Logan, R. S. Rajaraman, A. S. Watson, R. A. 
Losleben, P. Ramamoorthy, C. Watt, W. C. 
Luderer, G. W. R. Ray,L. Weeg, G. P. 
Lum, V. Reynolds, C. Wegbreit, B. 
Madden, J. Rhodes Weiss, E. 
Markel, R. Rick, J. W. Weissman, C. 
Marks, H. Rigney, J. Werner, J. J. Jr. 
Martin, W. Ripley, G. Wersan, S. 
Mathison, S. Robinson, J. Whitney, D. 
Mathur, F. Robinson, L. Wiederhold, G. 
Mayper, V. Rodriguez, R. Wigington, R. 
McCracken, D. Rosenbaum, S. Wiggins 
McGovern, W. Rosenberg, A. M. Wilkov, R. S. 
Mclssac, D. Rosenthal, M. Williams, J. G. 
McMurran, M. N. Rutman, R. Williams, L. 
Meier, D. Saal, H. Williams, T. J. 
Mekota, J. St. John, D. Wilner, W. 
Mergenweck, Schafer, E. Wilson, J. 
Meuller, M. Schell, R. Wolf, E. W. 
MichIe, M. Schichman, H. Wright, K. 
Miller, S. Schieldge, J. Wyllys, R. 
Miller, W. G. 

Schischa, E. Yakowitz, S. 
Mills, H. 
Minker, J. Schneidewind, N. Yelvington, S. 

Mitchell Schultz, M. H. Young, J. 
Mittman, B. Sedelow, W. Zelkovitz, M. 



PANELISTS AND SPEAKERS 

Donald Aufenkamp, N .S.F. 
A. Avizienis, University of Southern California 
John Bacon, United California Bank 
Max Beere, Tymshare 
Barry Boehm, RAND Corporation 
Robert Brass, Xerox 
Barry Brotman, Allied Chemical Corporation 
Gary Carlson, Brigham Young University 
Leo Cohen, Consultant 
David Copp, Bell Telephone Laboratories 
Stephen Crocker, Department of Defense 
John Davis, TESDATA Systems Corp. 
Lt. Col. Phillip Enslow Jr., Office of Telecommunica-

tions Policy, Executive Office of the President 
David Evans, Evans and Sutherland 
John Farquhar, RAND Corporation 
Nick Finamore, Western Electric 
H. Fleisher, IBM Corporation 
L. Garrett, Motorola 
Robert Gordon, Consultant 
P. F. Gudenschwager, Honeywell 
Richard Hamming, Bell Telephone Laboratories 
Cdr. Grace Murray Hopper USNR 
Richard Johnson, Stanford University Computation 

Center 
Robert Johnson, Burroughs Corporation 
V. Kahan, University of California at Berkeley 
Robert Kahn, Bolt, Beranek and Newman, Inc. 
E. Mahoney, United States General Accounting Office 

C. H. Mays, Fairchild 
John McCarthy, Stanford University 
M. Douglas McIlroy, Bell Telephone Laboratories 
Harry Mergler, Case Western Reserve University 
Capt. M. Morris, Federal ADP Simulation Center 
Mervin Muller, International Bank for Reconstruction 

and Development 
Peter Newcombe, Brigham Young University 
Nils Nilsson, Stanford Research Institute 
A. Patel, IBM Corporation 
Alan Perlis, Yale University 
Charles Perry, McDonnel-Douglas Astronautics 
Tom Poole, United Computer Systems 
C. Ramamoorthy, University of Texas 
Louis Robinson, IBM Corporation 
Arthur Rosenberg, Informatics 
Capt. Paul Roth, Fleet Combat Direction Systems 

Support Activity 
Stephen Y. Su, University of Southern California 
Lee Talbert, Packet Communications, Inc. 
L. C. Thomas, Bell Telephone Laboratories 
D. E. Walker, S.R.I. 
P. Weber, Lane County 
Mark Wells, Los Alamos Scientific Laboratory 
James Williams, United States General Accounting 

Office 
Joe Wineke, Compress, Inc. 
M. Worthy, Operating Systems 
Gordon Zeller, Los A ngeZes Times 



PRELIMINARY LIST OF EXHIBITORS 

Addison-Wesley Publishing Company, Inc. 
Addmaster Corporation 
Addressograph Multigraph Corporation 
AFIPS Press 
American Elsevier Publishing Company 
American Telephone & Telegraph 
Ampex Corporation 
Anaheim Publishing Company 
Ansul Company 
Basic Timesharing, Inc. 
Beehive Terminal 
Bridge Data Products, Inc. 
Burroughs Corporation 
Caelus Memories, Inc. 
Centronics 
Century Electronics and Instruments 
Cipher Data Products 
Codex Corporation 
Collins Radio Company 
ComData Corporation 
Computer Access Systems, Inc. 
Computer Automation, Inc;. 
Computer Copies Corporation 
Computer Design Publishing Corporation 
Computer Machinery Corporation 
Controls Research Corporation 
Courier Terminal Systems, Inc. 
Data Disc, Inc. 
Data General Corporation 
Datamation 
Data Printer Corporation 
Datapro Research Corporation 
Data Products Corporation 
Dataram Corporation 
Datawest Corporation 
Datum, Inc. 
Diablo Systems, Inc. 
Digital Computer Controls, Inc. 

, Digital Development Corporation 
Documation, Inc. 
DuPont Company 
Eastman Kodak Company 
Electronic Engineering Company of California 
Electronic News, Fairchild Publications 
Facit-Odhner, Inc. 
Federal Screw 'Vorks 

Floating Point Systems, Inc. 
General Automation, Inc. 
GTE Lenkurt 
G-V Controls 
Hayden Publishing Company, Inc. 
Hewlett-Packard Company 
Honeywell Computer Journal 
Houston Instrument 
IMSL 
Inforex, Inc. 
Information Data Systems, Inc. 
Infosystems 
Infoton, Inc. 
Intel Corporation 
International Communications Corporation 
International Computer Products, Inc. 
Kennedy Company 
Kybe Corporation 
Lipps, Inc. 
Litton ABS OEM Products 
Lorain Products Corporation 
Marubeni America Corporation 
Microdata Corporation 
Micro Switch 
Milgo Electronic Corporation 
Miratel Divisiqn-Ball Brothers Research Corp. 
Modern Data 
Mohawk Data Sciences Corporation 
Northern Electric Company, Ltd. 
Nortronics Company, Inc. 
Olympia USA, Inc. 
Ovonic Memories, Inc. 
Panasonic 
Paradyne Corporation 
Pertec Corporation 
Pioneer Electronics Corporation 
Pioneer Magnetics, Inc. 
Potter Instrument Company, Inc. 
Prentice Hall, Inc. 
Printer Technology, Inc. 
Producers Service Corporation 
Radley Associates Limited 
Randomex, Inc. 
Raymond Engineering, Inc. 
Raytheon Service Company 
Redactron Corporation 



Remex, A unit of Ex-Cell-O Corporation 
Sangama Electric Company 
Signal Galaxies, Inc. 
The Singer Company 
Sycor, Inc. 
Sykes 
Systems Furniture Company 
Tally Corporation 
Techtran Industries, In~. 
Tekronix, Inc. 
Tele-Dynamics 

Teleprocessing Industries, Inc. 
Teletype Corporation 
Texas Instruments, Inc. 
Toko, Inc. 
Tri-Data Corporation 
Van San Corporation 
Vector General, Inc. 
VelD-Bind 
Wangco, Inc. 
John Wiley and Sons, Inc. 
Xerox Corporation 



Albus, J. S., 1095 
Alexandridis, N., 1057 
Altshuler, G. P., 1133 
Anacker, W., 1269 
Anderson, J. A., 703 
Atwood, J. W., 331 
Augusta, B., 1261 
Avizienis, A., 1057 
Bailey, P. T., 1279 
Baird, G., 819 
Baker, F. B., 661 
Baker, L. H., 147 
Baker, F. T., 339 
Barr, W. J., 755 
Baskett, F., 13 
Bauer, W. F., 993 
Bell, C. G., 765,779 
Bell, T. E., 287 
Beltz, G. E., 1009 
Bernhart, W. D., 169 
Berra, P. B., 867 
Blaskovics, T. L., 611 
Boehn, B. W., 1141 
Booth, G. M., 1025 
Borgerson, B. R., 89 
Boruch, R. F., 425 
Bowdon, E. K., Sr., 755 
Brown, J. R., 181 
Brown, K. M., 1309 
Browne, J. C., 13 
Buckner, D. C., 153 
Bullen, R. H., Jr., 479 
Burk, J. M., 263 
Burns, R. S., 153 
Calahan, D. A., 885 
Carroll, J. M., 445 
Casasent, D., 709 
Chandy, K. M., 55 
Chang, S. K., 461 
Chen, T. C., 1045 
Christensen, G., 561 
Chu, W. W., 597 
Clarke, L. C., 393 
Cofer, R. H., 135 
Cohen, G. H., 407 
Concus, P., 1303 
Conn, R. B., 1057 
Cosell, B. P., 741 
Cowan, A., 55 
Cronin, H. F., 1037 
Crowther, W. R., 741 
Cureton, H., 965 
Curtice, R. M., 1105 

AUTHOR INDEX 

Cutts,R., 473· 
Dana, C., 1111 
De Cegama, A., 299 
De Mercado, J., 553 
Denning,P. J., 611 
Derksen, J., 1181 
Di Palma, R.,537 
Dmytryshak, C. A., 525 
Doty, K. L., 691 
Down, N. J., 1243 
Ellis, M. E., 1117 
Feldman, J. A., 1193 
Fichten, J. A., 1017 
Fitzsimons, R. M., 255 
Foster, D. F., 1235 
Freedy, A., 1089 
Freeman, P., 779 
George, A., 1317 
Glaser, E. L., 1045 
Goodman, A., 669, 1163 
Grace, H. A., 1257 
Grampp, F. T., 105 
Grobstein, D. L., 889 
Grushcow, M. S., 331 
Haney, F. M., 173 
Hansler, E., 49 
Harris, B., 415 
Harroun, T. V., 1261 
Haynes, H., 473 
Healey, L. D., 691 
Heart, F. E., 741 
Hench, R. R., 1235 
Hice, G. F., 537 
Hoagland, A. S., 985 
Holt, R. C., 331 
Holt, R. M., 1069 
Hoover, L. R., 375 
Horning, J. J., 331 
Hsiau, M. Y., 83 
Hull, F., 1089 
Huskey, H., 473 
Jensen, E., 719 
Jones, W. C., 545 
Jones, P. D., 561 
Jung, D. C., 123 
Karplus, W. J., 385 
Katke, W., 1117 
Katzenelson, J., 515 
Kaubisch, J., 473 
Kesel, P. G., 393 
Kimbleton, S., 1163 
Kossiakoff, A., 923 
Kreitzberg, C. B., 115 

Kuck, D. J., 213 
Kutsch, J. A., Jr., 611 
Laitinen, L., 473 
Lan, J., 13 
Levitt, K. N., 33 
Linden, T. A., 201 
Lipovski, G. J., 691 
Lippey, G., 633 
Liskov, B. H., 191 
Lou, J. R., 1089 
Low, J. R., 1193 
Lyman, J., 1089 
Lynch, J. P., 161 
McAuliffe, G., 49 
McDermott, D. V., 1171 
McQuillan, J. M., 741 
Maestri, G. H., 273 
Mandell, R. L., 453 
Martins, G. R., 801 
Mathur, F. P., 65 
Merten, A., 849 
Milgrom, E., 515 
Millen, J. K., 479 
Minnick, R. C., 1279 
Minsky, N., 587 
Mommens, J. H., 461 
Moe, M. L., 1081 
Morenoff, E., 393 
Morgan, M. G., 1243 
Mori, R., 353 
Murphy, D. L., 23 
Naito, S., 345 
N akhnikian, J., 641 
Nanya, T., 345 
Needham, R. M., 571 
N ezu, K., 345 
Nutt, G. J., 279 
Ohmori, K., 345 
Olson, J., 1117 
Opderbeck, H., 597 
Orlandea, N., 885 
Orlando, V. A., 859 
Parhami, B., 681 
Parnas, D. L., 325 
Parrett, G. H., 1251 
Patel, A. M., 83 
Pendray, J. J., 97 
Plagman, B. K., 1133 
Pomerene, J. H., 977 
Presser, L., 1111 
Prosser, F., 641 
Raamot, J., 867 
Ramamoorthy, C. V., 55 



Roland, R. D., 161 
Rose, C. W., 311 
Rosenberg, A. M., 993 
Rothman, S., 423 
Rudolph, J. A., 229 
Rulifson, J. F., 1181 
Ruud, R., 949 
Sadler, R. W., 1243 
Sager, N., 791 
Sandfort, R. M., 1279 
Schneidewind, N. F., 837 
Schoonover, J. E., 263 
Schultz, G. W., 1069 
Schwartz, J. T., 1081 
Semon, W. L., 1279 
Sevick, K. C., 331 
Shapiro, N. Z., 435 
Singh, S., 367 
Sleight, T. P., 923 
Spirn, J. R., 611 

. Sterling, W., 709 
Stone, P. J., 811 

Strauss, J. C., 1225 
Stucki, L. G., 829 
Sussman, G. J., 1171 
Swinehart, C., 1193 
Szygenda, S. A., 875 
Taylor, R. H., 1193 
Teichroew, D., 1203 
Teitelman, W., 917 
Teorey, T. J., 1 
Thompson, E. W., 875 
Thurber, K., 719 
Tobias, M. J., 1025 
Tollkuhn, G., 473 
Tou, J. T., 135 
Tracey, J. H., 375 
Tsiang, S. H., 545 
Tsichritzis, D., 331 
Tucker, E. K., 147 
Turn, R., 435 
Uhlig, R. P., 889 
Varah, J. M., 1299 
Vickers, F. D., 649 

Walden, D. C., 741 
Waldinger, R. J., 1181 
Walter, C. N., 407 
Warner, C. D., 959 
Watson, J., 229 
Watson, R. A., 1141 
Waxman, R., 367 
Way, F., III, 1045 
Webb, J. H., 115 
Wegbreit, B., 905 
Weltman, G., 1089 
Wensley, J. H., 243 
Wesley, M. A., 461 
Wilkes, M. V., 971 
Wilkov, R., 49 
Williams, L. H., 899 
Williams, T. G., 499 
Wilner, W. T., 489, 579 
Wolman, B. L., 507 
Wulf, W. A., 943 
Yang, S. C., 1117 
Yarwood, E., 473 


	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082a
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659

