AFIPS

CONFERENCE
PROCEEDINGS

VOLUME 41
PART I

1972

FALL JOINT
COMPUTER
CONFERENCE

December 5 - 7, 1972
Anaheim, California

The ideas and opinions expressed herein are solely those of the authors and are not necessarily representative of or
endorsed by the 1972 Fall Joint Computer Conference Committee or the American Federation of Information
Processing Societies, Inc.

Library of Congress Catalog Card Number 55-44701
AFIPS PRESS

210 Summit Avenue
Montvale, New Jersey 07645

©1972 by the American Federation of Information Processing Societies, Inc., Montvale, New Jersey 07645. All
rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

CONTENTS
PART I

OPERATING SYSTEMS

Properties of disk scheduling policies in multiprogrammed computer

BY SIS . o v oottt e 1 T.J. Teorey
The interaction of multiprogramming job scheduling and CPU

scheduling.co i 13 J. C. Browne

‘ J. Lan
F. Baskett

Storage organization and management in TENEX.................. 23 D. Murphy
The application of program-proving techniques to the verification of

synchronization processes..............c.o.o.uuenn.... P 33 K. Levitt

ARCHITECTURE FOR HIGH SYSTEM AVAILABILITY

Exact calculation of computer network reliability................... 49 R. Wilkov
E. Hansler
G. McAuliffe
A framework for analyzing hardware-software trade-offs in fault
tolerant computing systems........... 55 K. M. Chandy
C. V. Ramamoorthy
A. Cowan
Automation of reliability evaluation procedures through CARE—The
computer aided reliability estimation program................... 65 F. P. Mathur
An adaptive error correction scheme for computer memory systems. . . 83 A. M. Patel
M. Hsiau
Dynamic configuration of system integrity......................... 89 . B. Borgerson

COMPUTING INSTALLATIONS—PROBLEMS AND PRACTICES

The in-house computer department............................... 97 J. Pendray

A computer center accounting system.............. 105 F. T. Grampp

An approach to job billing in a multiprogramming environment. 115 C. Kreitzberg
J. Webb

Facilities management—A marriage of porcupines. 123 D. C. Jung

COMPUTER GRAPHICS

Automated map reading and analysis by computer................. 135 R. H. Cofer

J. Tou
Computer generated optical sound tracks.......................... 147 E. K. Tucker

L. H. Baker

D. C. Buckner
Simulating the visual envirenment in real-time via software.......... 153 R. 8. Burns
Computer animation of a bicycle simulation. 161 J. P. Lynch

‘ R. D. Roland

An inverse computer graphics problem. oo 169 W. D. Bernhart

SOFTWARE ENGINEERING—THEORY AND PRACTICE

(PART I)

Module connection analysis—A tool for scheduling software debugging
ACHIVIbIeS. . . e
Evaluating the effectiveness of software verification—Practical ex-
perience with an automated tool...............ot
A design methodology for reliable software systems.
A summary of progress toward proving program correctness.........

SUPERCOMPUTERS—PRESENT AND FUTURE
Supercomputers for ordinary Users.............ooiiiiiiiiiian

The Texas Instruments advanced seientific computer.

A production implementation of an associative array processor—
ST ARAN . . e e e

MAINTENANCE AND SYSTEM INTEGRITY
SIFT—Software Implemented Fault Tolerance.....................
TRIDENT—A new maintenance weapon.c.oeevunen.-
Computer system maintainability at the Lawrence Livermore

D7) 0705 2110) 20

The retryable processor. . ..ot

COMPUTER SIMULATIONS OF COMPUTER SYSTEMS
Evaluation nets for computer system performance analysis.

Objectives and problems in simulating computers...................
A methodology for computer model building.

SOFTWARE ENGINEERING—THEORY AND PRACTICE
(PART II)
LOGOS and the software éngineer
Some conclusions from an experiment in software engineering

BeCIIQUES. . . oo e
Project SUE as a learning experience.uviiiinnn..

System quality through structured programming. e

ARCHITECTURE LIMITATIONS IN LARGE-SCALE
COMPUTATION AND DATA PROCESSING

(Panel Discussion—No Papers in this Volume)

173
181

191
201

213
221

229

243
255

263

273

279
287
299

311

325
331

339

F. M. Haney

J. R. Brown
B. H. Liskov
T. A. Linden

D. J. Kuck
J. Watson

J. A. Rudolph

J. H. Wensley
R. M. Fitzsimons
M.

J. Burk
J. Schoonover
G. H. Maestri

. J. Nutt
. E. Bell
. De Cegama

PO

C. W. Rose

D. L. Parnas
K. C. Seveik

J. W. Atwood
M. 8. Grushcow
R. C. Holt

J. J. Horning
D. Tsichritzis
F. T. Baker

ARRAY LOGIC AND OTHER ADVANCED TECHNIQUES

An application of cellular logic for high speed decoding of minimum
redundancy codes.

On an extended threshold logic as a unit cell of array logics..........
Multiple operand addition and multiplication......................

Techniques for increasing fault coverage for asynchronous sequential
NetWOrKS.

ADVANCES IN SIMULATION
System identification and simulation—A pattern recognition
approach.
Horizontal domain partitioning of the Navy atmospheric primitive
equation prediction model. L

An analysis of optimal control system algorithms...................

Computer simulation of the metropolis............................

PRIVACY AND THE SECURITY OF DATABANK SYSTEMS
The protection of privacy and security in criminal offender record
information systems.
Security of information processing—Implications for social research. . . .
Privacy and security in data bank systems—Measures, costs, and
protector intruder interactions.,

Snapshot 1971—How one developed nation organizes information about
PeOple. L e

ARRAY LOGIC—WHERE ART THOU?

{(Panel Discussion—No Papers in this Volume)

HARDWARE-FIRMWARE-SOFTWARE TRADE-OFFS

Hardware-software trade-offs—Reasons and directions.
A design for an auxiliary associative parallel processor.

An eclectic information processing system. R

345

353
367

375

385

393

407

415

423
425
435

445

453
461

473

K, Ohmori
K. Nezu

S. Naito

T. Nanya
R. Mori

R. Waxman
S. Singh

L. R. Hoover
J. H. Tracey

W. J. Karplus

E. Morenoff
P. G. Kesel
L. C. Clarke
C. N. Walter
G. H. Cohen
B. Harris

S. Rothman
R. F. Boruch

R. Turn
N. Z. Shapiro

J. M. Carroll

. Mandell
A. Wesley
. Chang

. Mommens
utts
Huskey

. Haynes

J. Kaubisch

L. Laitinen

G. Tollkuhn

E. Yarwood

L
K
H

C

b 2

-

Microtext—The design of a microprogrammed finite state search
machine for full text retrieval.

Design of the B1700. i

HUMAN ENGINEERING OF PROGRAMMING SYSTEMS—THE
USER’S VIEW

An on-line two-dimensional computation system....................
Debugging PL/I programs in the multics environment..............

AEPIL—An Extensible Programming Language.

The investment analysis language.

DATA COMMUNICATION SYSTEMS

The design approach to integrated telephone information in the
Netherlands. e

Field evaluation of real-time capability of a large electronic switching

MEASUREMENT OF COMPUTER SYSTEMS—SYSTEM
PERFORMANCE

(Panel Discussion—No Papers in this Volume)

MEMORY ORGANIZATION AND MANAGEMENT
Control Data STAR-100 file storage station........................
Protection systems and protection implementations.................

B1700 memory utllization.,
Rotating storage devices as “partially associative memories”....... ..

DYNAMIC PROGRAM BEHAVIOR
Page fault frequency (PFF) replacement algorithms.

Experiments wish program locality.

COMPUTER ASSISTED EDUCATIONAL TEST CONSTRUCTION
TASSY—One approach to individualized test construction...........

A comprehensive question retrieval application to serve classroom
teachers.. e

479

489

499
507
515

525

537

545

553

561
571

579
587

597

611

623

633
641

R.
A
Ww.

H. Bullen, Jr.
K. Millen
T. Wilner

T. G. Williams

B. Wolman

E. Milgrom

J. Katzenelson

C. Dmytryshak

G. Christensen
P. D. Jones

R. M. Needham
W. T. Wilner
N. Minsky

J
P. J. Denning

T. Blaskovics
J. Kutsch, Jr.

G. Lippey
F. Prosser
J. Nakhnikian

Properties of disk scheduling policies in multiprogrammed

computer systems

by TOBY J. TEOREY

University of Wisconsin
Madison, Wisconsin

INTRODUCTION

The subject of scheduling for movable head rotating
storage devices, i.e., disk-like devices, has been dis-
cussed at length in recent literature. The early sched-
uling models were developed by Denning,? Frank,® and
Weingarten. Highly theoretical models have been set
forth recently- by Manocha,® and a comprehensive
simulation study has been reported on by Teorey and
Pinkerton.?

One of the goals of this study is to develop a model
that can be compared with the simulation results over
a similar broad range of input loading conditions. Such
a model will have two advantages over simulation: the
computing cost per data point will be much smaller,
and the degree of uncertainty of a stable solution will
be decreased.

Although the previous analytical results on disk
scheduling are valid within their range of assumptions,
they do not provide the systems designer with enough
information to decide whether or not to implement disk
scheduling at all; neither do they determine which
scheduling policy to use for a given application, be it
batch multiprogramming, time sharing, or real-time
processing. The other goal of this study is to provide a
basis upon which these questions can be answered.

The basic scheduling policies are summarized with
brief descriptions in Table I. Many variations of these
policies are possible, but in the interest of mathematical
analysis and ease of software implementation we do
not discuss them here.

SCAN was first discussed by Denning.? He assumed
a mean (fixed) queue length and derived expected
service time and mean response time. The number of
requests in the queue was assumed to be much less than
the number of cylinders, so the probability of more
than one request at a cylinder was negligible. We do
not restrict ourselves to such an assumption here.
Improvements on the definition and representation of

SCAN have been suggested by Coffman and Denning,?
Manocha,? and Merten.!® The implementation of SCAN
is often referred to as LOOK,!®2 but we retain the
name SCAN for consistency within this paper. Both
C-SCAN®11.12.38 and the N-step scan®2 have been
discussed or studied previously and the Eschenbach
scheme was developed for an airlines system.* Because
it requires overhead for rotational optimization as well
as seek time optimization it is not included in the
following discussion. In the simulation study'? it was
seen that the C-SCAN policy, with rotational optimiza-~
tion, was more appropriate than the Kschenbach
scheme for all loading conditions, so we only consider
C-SCAN here.

The simulation results indicated the following, given
that cylinder positions are addressed randomly:'?
under very light loading all policies perform no better
than FCFS. Under medium to heavy loading the FCFS
policy allowed the system to saturate and the SSTF
policy had intolerable variances in response time.
SCAN and the N-step policies were superior under
light to medium loading, and C-SCAN was superior
under heavy loading,.

We first investigate various properties of the N-step
scan, C-SCAN, and SCAN, since these are the highest
performance policies that optimize on arm positioning
time (seek time). The properties include mean, vari-
ance, and distribution of response time; and the
distribution of the positions of requests serviced as a
function of distance from the disk arm before it begins
its next sweep. Response time mean and variance are
then compared with simulation results.

A unified approach is applied to all three policies to
obtain mean response time. The expressions are non-
linear and require an iterative technique for solution;
however, we can easily show that sufficient conditions
always exist for convergence.

Finally, we look at the factors that must be con-
sidered in deciding whether or not to implement disk

2 Fall Joint Computer Conference, 1972

TABLE I—Basic Disk Scheduling Policies

ot

FCFS (First-come-first-served): No reordering of the queue.

2. SSTF (Shortest-seek-time-first): Disk arm positions next at
the request that minimizes arm movement.

3. SCAN: Disk arm sweeps back and forth across the disk
surface, servicing all requests in its path. It changes direction
only when there are no more requests to service in the current
direction.

4. C-SCAN (Circular scan): Disk arm moves unidirectionally
across the disk surface toward the inner track. When there
are no more requests to service ahead of the arm it jumps back
to service the request nearest the outer track and proceeds
inward again.

5. N-step scan: Disk arm sweeps back and forth as in SCAN, but
all requests that arrive during a sweep in one direction are
batched and reordered for optimum service during the return
sweep.

6. Eschenbach scheme: Disk arm movement is circular like
C-SCAN, but with several important exceptions. Every
cylinder is serviced for exactly one full track of information
whether or not there is a request for that cylinder. Requests
are reordered for service within a cylinder to take advantage
of rotational position, but if two requests overlap sector
positions within a cylinder, only one is serviced for the current
sweep of the disk arm.

scheduling in a complex system. In practice, con-
siderable attention should be given to these factors
before thinking about which policy to use.

N-STEP SCAN

The N-step scan is the simplest scheduling policy to
model using the approach discussed here. While the disk
arm is sweeping across the surface to service the pre-
vious group of requests, new requests are ordered
linearly for the return sweep. No limit is placed on the
size of the batch, but at equilibrium we know the
expected value of that size to be L, the mean queue
length. Furthermore, we know that the resulting
request position distribution will be the same as the
input distribution, which we assume to be uniform
across all the disk cylinders. We also assume the
following:

1. Request interarrival times are generated from
the exponential distribution.

2. File requests are for equal sized records. This
simplifies the analysis. We assume that the total
service time distribution (seek time plus rota-
tional delay plus transmission) is general and
cannot be described by any simple distribution
function. We also assume that the access time
(seek time plus rotational delay) dominates the
total service time, so that fixed record size

(constant transmission time) is a fair approxi-
mation for our purpose of a comparative
analysis.

3. Only a single disk drive with a dedicated con-
troller and channel is considered, and there is
only one movable head per surface. All disk
arms are attached to a single boom so they must
move simultaneously. A single position of all
the read/write heads defines a cylinder.

4. Seek time is a linear function of seek distance.

5. No distinction is made between READ and
WRITE requests, and the overhead for sched-
uling is assumed negligible.

If there are L requests in the queue at equilibrium
and C cylinders on the disk, we partition the disk
surface into C; equal regions (as defined below) and
assume that at least one request lies in the center of that
region. This partition is only valid when seek time is a
linear function of distance. C; is computed as follows:
since the distribution of L requests serviced is uniform,
the probability that cylinder % has no requests is
given by

1 L
Py = (1—— (_j) for all & 1

The expected number of cylinders with no requests is
Co=CP;, so that the expected number of cylinders
requiring service is:

Cl=C—Co

et
&) e

If the incoming requests are placed at random and
the disk arm has equal probability of being at any
cylinder, we know that the expected distance between
an incoming request and the current position of the
disk arm is approximately C/3 for large C. Typically,
C'=200 for currently available disks. In Figure 1 we see
the possible paths taken from the disk arm to the new
request for the expected distance of C/3. The expected
number of requests serviced before the new request is
serviced is L, and the mean response time is

W=LT;=T,, (3)

where T, is the expected service time per request and
T4 is the expected sweep time from one extreme of the
disk surface to the other.

Properties of Disk Scheduling Policies 3

SWEEP LEFT DISK ARM SWEEP RIGHT

NEW
REQUEST

Figure 1

The expected service time under the assumptions
listed above was derived by Teorey and Pinkerton?
as follows:

Te=P <Tsk+ Z + Z)
2 m

(mt—2) (m—1)

e +J @)

+a-n k|

where P is the probability that a seek is required to
service the next request, Ty is the expected seek time,
T is the rotational time of a disk, m is the number of
sectors per track, and ¢ is the number of tracks per
cylinder. Under our conditions, P=Ci/L, and we
simplify expression (4) by making the following
definition:

T [(mt—2)(m—1)]
a=_ S mi—1) +1 (5)
Also, for a linear seek time characteristic
AT
Tmin N 23
+ c Ciz
T,k= ﬁ (6)
Tmin+ %’1: Cl <3

\

where AT =Tax— Trmin, Tmin is the seek time for a
distance of 1 cylinder, and T'y.x is the seek time for a
distance of C—1 eylinders. Restating (4) we now have

Cy (AT T T) (C,
Ty=— Twin+ —- o - 1— = 7
=7 +Cl+2+m+ La()
At equilibrium the mean number of incoming requests
that arrive in one complete sweep is L, because the
departure rate and the arrival rate must be the same.

L=AT,,=\LT, (8)

where A is the input (throughput or access) rate.
Dividing both sides of (8) by L and substituting (7)

1—-Xa>0

we have:

Cy AT T T L—C,

_ AC1(Tmm+AT/01+T/2+T/m—a)
B 1-2a

L (9)

Equation (9) computes mean queue length in terms
of the input rate A, the known disk hardware char-
acteristics, and Cy. Cy is, however, a nonlinear function
of L. We solve (9) by estimating an initial value for L
in (2) and iteratively substituting (2) into (9) until
the process converges.

Convergence

Rewriting (9) in terms of (2) we obtain

L(1—2a)

NI
¢ 2 " m

NAT A

L= 1 7a + T (Twin+T/2+T/m—a)

AC C—1*

Letting Ky =MAT/(1—xa) +[A\C/ (1 —2Aa))(Tmin+T/2+
T/m—a) and Ky=[AC/(1—Aa)]. Twin+T/2+T/m—a)
we obtain after 7 iterations:

C—1\%
L¢+1=K1—K2() (11)

C

Assuming that L;>0 for all £, and 1—a>0 (no satura-
tion), we have:

L1>O C—]. L;
=0= o <1

20K — K<L S K< »
[Boundedness on L]
From (11) we can easily see that ‘
L>L; =L;u>L; and L;<L;y=>La<L;
[Monotonicity]

Since every bounded increasing (or decreasing) set of
real numbers has a limit, (11) converges to L at
equilibrium.

For this technique, each data point of L vs. A requires
less than one second of UNIVAC 1108 CPU time,
whereas each point of the simulation requires over 30

4 Fall Joint Computer Conference, 1972

seconds. Mean response time is obtained from Little’s
formula® and can be verified by resubstitution of L
back through (3).

Under light loading conditions, i.e., when L<KC, the
probability that a seek is required for every request
approaches 1. Under such conditions Ci=L and the
following closed form expression is obtained:

LngT/[l—x (Tmi,.+ g + %)] (12)

Variance of response time

~ Simulation results verify the intuitive suggestion
that the response time distribution for the N-step scan
approaches the simple triangular distribution shown in
Figure 2. If we partition the disk into only 10 or 20
regions, place the disk arm in each of those regions with
equal probability, and then keep a cumulative total of
the probabilities of response times at each point, we
will obtain a discrete approximation of Figure 2.
Accepting this approximation, variance is found by

ow’=E(X*)—[E(X) P

Tsw x
= f v <T> e

2Tsw 2T —2
2 _ 2
o

—T,%/6
=W?/6. (13)

Thus, the N-step scan provides a very low variance
in response time.

C-SCAN

The C-SCAN policy is an attempt to decrease variance
of response time without degrading the maximum
possible throughput rate or increasing the mean
response time.

We assume requests distributed uniformly over all
cylinders. Since the disk arm always moves unidirec-
tionally to service requests, the expected density of

1
L
PROB (W)
i RESPONSE
,0 Tsw 2Mgw TIME

Figure 2

300 W)\ = 50 REQUESTS/SEC.

a
ul
o
3
&
s 200 T
—
]
>
=20 Rl TS/SEC.
i 100[‘ 20 REQUESTS/SEC.
o
[7¥)
a
=
2
l#,_.f.tf. A CYLINDERS
Figure 3

requests just ahead of the disk arm is uniform (pro-
vided we ignore the slight aberration of jumping back
to the outermost request once per cycle). Figure 3
shows a simulation result of this distribution under
light and heavy loading conditions. Consequently, the
computation of expected service time T'; is the same for
C-SCAN as it is for the N-step scan, i.e., equation (4),
except the number of requests serviced per sweep is no
longer restricted to L, but is some unknown quantity
L’. Therefore we now have C;=C{1—[(C—1)/C]*},
P =C1/L', and

T,= 93 (Tmi,.+ %T +T/2+T/m) +(1—-C/La
1

L
(14)

Total time for one cycle of C-SCAN is the expected
service time for L’ requests. This includes C;—1 seeks
and a return seek to the outermost request, which is
less than or equal t0 T'imax:

Tsw=L'Ty— (Twin+AT/C1) 4+ (Trmax— AT/Cy) (15)

At equilibrium the number of incoming requests that
arrive in one sweep (cycle) time is L', the total number
of requests serviced: '

L'=\T,,
=N Ci(Tumin+AT/Ci+T/2+T/m)
+L'(1—C1/L"Ya]—NTmin+AT/Ch)
+A(Tmax— AT/Ch)
L'(1—=xa) =\NCy(Tuin+T/2+T/m—a)
HNAT = Tnin— AT/ Ci+ Tinax— AT/ Cy)

r__ >‘CI- —
L= £ (TuntT/2+T/m—a)
2\NAT 20AT
+ (16)

1-a (1—a)C;

Properties of Disk Scheduling Policies 5

Convergence

Letting K1 =[AC/(1—A)]|(Twin+T/24+T/m—a) and
Ky=2\AT/(1—Xa) we can rewrite (16) after ¢ itera-
tions as

voer = (55
+K,— {K2/0 [1— (g;—IY]} (17)

In order to derive sufficient conditions for con-
vergence we assume the slightly stronger condition
L’;>1 for all 7, and 1—Xa>0 (no saturation).

L’>1 Ly

P —_ < —1
}=>0§ (CCI) < CC
1—-Xa>0 .

C—1\%
=>1/C<1'— (T)

A

1

K K.
=0< Fl <L'i1SKi+Ko— Fz <

[Boundedness]]

From (17) we see that the conditions for mono-
tonicity of L’ hold, and therefore the process converges.

Mean response time

The expected distance between the current arm
position and a new request is approximately C/3 since,
as with the N-step scan, the incoming requests are
located at random, and the disk arm is at each cylinder
with equal probability. An example of expected dis-
tance between a new request and the disk arm for
C-SCAN is shown in Figure 4. Two possibilities occur
with equal probability, as shown.

W =probability {new request to the left} - Ty, {left}
~+probability {new request to the right}
Ty, {right}
=14[25L'Ts~ (Tmin+AT/C1) + (Tmax— AT/C1)]
+24[35L'T.]
=V (L'T—2AT/C,+AT)
=Tw/2 (18)

In other words the mean response time is one-half
the expected sweep time. The mean queue length,

%
A N
I m) u | A -
NEW
REQUEST
DISK ARM
8 H—H) n| H—+5
NEW
REQUEST
Figure 4
including the request in service, is
L=\W =¥4\T,, (19)
but since L’ =T, we have
L'=2L (20)

which indicates that in one cycle the C-SCAN policy
services twice as many requests as there are in the
queue, and therefore should be able to attain a much
higher throughput rate than the N-step scan.

Variance of response time

Because C-SCAN is a policy for a unidirectional disk
arm, the distribution of response time is uniform be-
tween T/m (which we approximate to 0) and T,,. The
mean response time (18) is 7',/2. For a uniform dis-
tribution the variance is given by

. (4T W
oplm —————— = —

3 3 (21)

which is twice the variance of the N-step scan.

SCAN

The SCAN aceess method has been the basic model
for many implementations of scheduling in real systems.
However, its properties are more complex than either
of the other policies studied here. In order to determine
the distribution of requests serviced as a funetion of dis-
tance from the extreme points of the disk, a simulation
was devised and tested for very large samples under
both light and heavy loading conditions. The results are
summarized in Figure 5. They indicate in both cases
that the number of requests per cylinder is a linear

6 Fall Joint Computer Conference, 1972

function of distance from the starting point of a sweep.
This provides a basis for the linearity assumption in the
analytical model that follows.

The expected distance between the current arm
position and a new request is still approximately C/3
because the incoming requests are placed randomly,
and for each full cycle the probability that the disk arm
is at cylinder k is constant for all k. In Figure 6 we depict
the linear distribution of request positions for the case
K.< K, where K, is the cylinder position of a new
request and K, is the cylinder position of the disk arm.
The possibility that K,>K, also exists; each has a
probability of .5.

1. K,.<K,

Iz =number of requests serviced from K,
to C to K,

= Area 3+Area 1+Area 2
=L (22)
2. K,>K,
lp =number of requests serviced from K, to K,

= Area 2

K—1 2L/ K—1 2L'
=1 —_ T . L . —
14(K,—K.) <0—1 L C)
_ (Kr—Ka) (K7+Ka—2)L’
B C(C—1)

(23)

To compute the expected number of cylinders with
no requests, we first determine the probability of a given

/" X+ 50 REQUESTS/SEC.
500 VAR
8
< 400
&5
[72]
(723
=
g 300
g
['4
5
= 200 =20 REQUESTS/SEC.
jie)
=
2
100
— +— CYLINDERS AWAY
1 C FROM START OF

DiSK SWEEP

Figure 5

»
Ffﬁ DISK ARM DIRECTION
D ——
aa
xo i
&
o5
il
o
3 s
2 AREA1 AREA 2 AREA 3
1 Kr Ka c
Figure 6

cylinder & obtaining the next incoming request:

for Area 2, K,Sk=<K,
k=1 2L/, k—1 2
T eo-1'c TCc-1C

for Areas 1,2,3;1=k<C (23)

The input distribution is uniform; therefore each arrival
of a new request represents a repeated Bernoulli trial
of the same experiment. The probability that cylinder
k remains empty is

k—1 2L’ &
Py= [1— (m T lg)] for Area 2
for Areas 1, 2, 3

(24)
and the expected number of occupied cylinders in that

region is
& -1 2L i
C:=C/3— Y [1— (L lR)]

ol c—1 C
for Area 2
Ci=C— f: 1— k=1 . g-)L for Areas 1,2,3 (25)
— c-1 C T

Mean response time

The mean response time is given by

W =Probability {K,> K.} T.{Area 2}

+Probability {K,<K,} T {Areas 1,2, 3}
=Ll Co(Trmin+AT/Co+T/2+T/m) + (lg—Ce)a]
+1[Ci(Tmin+AT/Ci+T/2+T/m) + (L' — Cr)a]
(26)
At equilibrium L' requests arrive in the time required

Properties of Disk Scheduling Policies 7

for one complete sweep:
L' =\Ts
=A[C1(Tmin+AT/C:+T/24+T/m)+ (L' —C1)a]

_ MNCy(Twint+AT/Ci+T/2+4T/m—a)
B 1—Xa

(27)

This expression is the same as (9) for the N-step scan
except for the meaning of L’ and C,. Solution of (27)
is obtained by iteration.

Convergence

Sufficient conditions for convergence of the above
procedure for SCAN are L’%3>0 and 1—Xa>0. The
proof proceeds as before: Letting Ky = (A/1—xa)[AT+
C(Twint+T/24T/m—a)] and Ko=(N/1—2a)[Tmin+

TABLE II—Ratio of Requests
Serviced per Sweep to Mean
Queue Length for SCAN

Requests/second L//L
10 1.18

20 1.36

30 1.46

40 1.47

50 1.48

60 1.49

Limit 1.50

T/24T/m—a] we can substitute (25) into (27) and
obtain after ¢ iterations:

¢ 2 k—1*
L’i+1=K1—K2 E (1— - ":—) (28)

L,>O Lit
¢ -1
}=>O§ (l—%L) <1 forallk=C

c E—1\%
=0=< 2(1—%-0 1) <C

k=1
=K,—-K:C<L 22K,
[Boundedness on L';11] (29)

From (28) we see that monotonicity of L’ holds, and
therefore the process converges. ‘

The relationship between L and L’ is dependent upon
rate \ [see (26) and (27)7. For the characteristics of
the IBM 2314 disk the following table illustrates this
dependence.

125
100
2 075
£
=
33}
%.osa
a
025
RESPONSE
0 ST To LSTg, 2T, TIME

Figure 7

Variance of response time

The response time distribution for SCAN is not
intuitively obvious. In order to obtain a close approxi-
mation to this distribution we can sample all possible

/
/
/
Il
16 /
————— N-STEP SCAN - ,’
----------------- %AN
C-SCAN
14
12

b
(o)

(=2}

MEAN RESPONSE TIME (SECONDS)
)

L+
2
/ o
L INPUT (THROUGHPUT) RATE
0 10 2 30 40 50 60
REQUESTS/SEC.
Figure 8

MEAN RESPONSE TIME (SECONDS)

8 Fall Joint Computer Conference, 1972

TABLE III—Properties of Disk Scheduling Policies

N-step
Property scan C-SCAN SCAN
Distribution of request locations uniform uniform linear
Ratio L’/L (analytical) 1.0 2.0 1.5 (limit)
Ratio L’/L (simulation) 1.0 2.15 1.53
ow?/W? (analytical) .17 .33 .60
ow?/W? (simulation) .20 .35 .51

combinations of disk arm and new request positions.
Given C cylinders, there are C? combinations of K,
and K, positions. For each combination we can approxi-
mate the mean response time in terms of the expected
number of requests (Iz orly) serviced between the two
designated positions. From the resulting distribution
(see Figure 7) the mean and variance of response time
can be computed. We find that W=.662 T,, and
ow?=.264 T2 In the limit as A becomes very large

/
/
/

161 /
—————— N-STEP SCAN /I
--------------------- SCAN I
s (C-SCAN /

141 /

: /

12t
1

8

o1

u p

2 -

P INPUT (THROUGHPUT) RATE
0 10 20 30 40 50 60

REQUESTS/SEC.

Figure 9

(but still below saturation) W=.667 T, from (26),
os the two approximations are consistent.

COMPARISON OF SCHEDULING POLICIES

The properties of the N-step scan, C-SCAN and
SCAN are summarized below:

Mean response time is plotted in Figure 8 and Figure
9 as a function of input rate for the three high per-
formance policies. The analytical results (Figure 8)
correlate very closely with the simulation (Figure 9).
Both results show a crossover occurring between
C-SCAN and SCAN at approximately A=33. The
higher performance of C-SCAN at heavy loading
appears to be the result of a uniform high density of
requests always in front of the disk arm position. For
A=20 there is very little difference among these policies,
and for A<10 they all converge to the FCFS policy.

OPERATING SYSTEM AND HARDWARE
CONSIDERATIONS

The analysis of scheduling policies has been thus far
based on rather ideal mathematical conditions. As more
practical limitations are modeled, the relative effective-
ness of implementing disk scheduling compared to using
only FCFS will in most cases decrease, reflecting real
situations. Potentially, however, scheduling can be of
more benefit if it is included as an integral component
of an overall file system design rather than being treated
as an independent algorithm. Let us now consider the
following list of major factors that influence scheduling

effectiveness:

1. Disk storage as the limiting resource in a large
multiprogramming system.

. Level of multiprogramming specified.

. Multiple disk subsystems.

. Nonuniform request distributions.

File organization techniques.

. Seek time not dominant in total service time.

<R NN

Limating resource

In unbalanced multiprogramming systems, where
congestion is not caused by disk storage, disk scheduling
techniques should not be strongly considered. Instead,
effort should be concentrated on optimizing or replacing
the component causing poor system performance.
Global decisions such as this must be made before

individual components are to be upgraded, because a

Properties of Disk Scheduling Policies 9

saturated device or subsystem determines the per-
formance of the entire system. In a more balanced
system other factors must be considered in relation to
scheduling. When disk storage can be the cause of
bottlenecks, scheduling should be included as a means
of increasing throughput. An investigation of the effect
scheduling has on overall system performance under
such circumstances has been made by Teorey.”

Level of multiprogramming

A common misconception is that the level of multi-
programming is an upper bound on the queue length
(L) at any system component. However, when an
operating system breaks a program into multiple tasks
or activities, and these are allowed to do I/0 asyn-
chronously, one obtains much longer queue lengths.
(For example, consider a design which allows a distinct
process for every input or output activity on every
separate file opened by any user program.) For this
reason we must not rule out the possibility of scheduling
for batch systems with low levels of multiprogramming.

Disk activity typically varies quite considerably
from device to device; consequently it may be necessary
to measure the workload on each device to determine

when scheduling should be used. When L=<3 for an

individual disk, the FCFS policy should be used.
Certainly the level of multi-tasking will be an upper
bound on the queue length of any one device, and when
several devices are available the workload will probably
be even less for any given one.

Typically batch systems operate at a level of 5 to 15
simultaneously executing programs. (The UNIVAC
1108 at the University of Wisconsin operates at a level
of 9.) Time sharing systems may handle as many as
64 or 128 terminals; and in more specialized message
handling systems several hundred or a thousand
requests could be enqueued at any given time. Ob-
viously, then, the potential for using scheduling to
improve throughput is greatest in the latter type of
system, but we must be aware that increased efficiency
is usually achieved at the expense of mean and variance
of individual response time. Such constraints in real-
time systems must be seriously considered when
selecting a scheduling policy.

Multiple disk facilities

Multiple device configurations have two main effects
on disk performance. First, if requests are assumed
uniformly distributed among the devices, the demand
for an individual device is greatly reduced. Second,
many (e.g., 8) devices may be serviced by a single

controller, and many more (24 is not uncommon) may
be serviced by a single channel. Consequently, control
unit or channel saturation may be the cause of poor
performance, despite individual disk drive efficiency.
Theoretical models for multiple disk systems have been
developed elsewhere.!#8:11

A new feature, rotational position sensing (RPS),
is a disk hardware capability that allows the channel to
be released during most of the rotational delay as well
as the seek time delay, thus increasing its availability
for overlapped operations. An analytical model for
a multiple disk subsystem with RPS has been developed
recently.® Multiple disk facilities without RPS have
achieved effective masking of seek time due to con-
current arm positioning and heavy channel utilization.
Consequently, disk arm scheduling has been of marginal
benefit for such systems. However, because RPS
decreases channel utilization it also decreases the degree
of seek overlap, which in turn increases the potential
effectiveness of scheduling. For example, an IBM 3330
disk system was analyzed with 4 and 8 drives, mean
record sizes of 1.6K bytes and 8K bytes, with and with-
out RPS, and with FCFS and C-SCAN scheduling.’
The greatest throughput increase due to C-SCAN over
FCFS (539%,) occurred for 1.6K byte records, 4 drives,
and RPS. Channel congestion, which works against the
effectiveness of disk scheduling, is increased by using
larger record sizes, adding more devices per channel, or
by removing the RPS feature.

Nonuniform request distributions

Although a uniform request distribution does not
typify general purpose batch systems, the actual dis-
tribution is highly dependent on installation workload
and cannot be generalized. Some causes of nonuniform
distributions are the use of physical devices dedicated
to a single program (e.g., removable disk packs),
priorities for disk service, and placement of the most
highly used files or directories on a few contiguous
cylinders, usually near the central disk arm position.
Various estimates for nonuniform distributions have
been investigated in other studies.! 53

These techniques tend to reduce the effectiveness of
scheduling, and in some cases could be used in lieu of it.
If scheduling is necessary in addition to systematically
altering request distributions, the proper choice of an
algorithm would depend on the amount of disk arm
activity under these conditions. As with the uniform
distribution, SCAN is preferred for light to medium
loading and C-SCAN is preferred for heavy loading. At
least for unimodal nonuniform distributions the most
efficient algorithm still appears to be a simple scanning

10 Fall Joint Computer Conference, 1972

technique. In addition, if a few cylinders contain many
requests, rotational optimization should be implemented
as well as disk arm scheduling.

File organization techniques

Standard packages are available for various types of
file organizations: sequential, calculated (hashing, scat-
ter storage), tabular (index sequential), and others. A

common characteristic of these techniques is that they.

require multiple accesses to the disk to obtain a single
data record.

The index sequential access method (ISAM) requires
access to a master index, a cylinder index, and then to
the data record itself. The method is analyzed for a
multiple disk facility by Seaman, et al.'* They consider
all accesses to the disk to obtain a single record as
consecutive requests, that is, control of the disk arm is
maintained until the record itself is finally accessed.
Thus, in the worst case three consecutive random
accesses could be made to obtain a single record.
Normally, however, the master index is located in main
storage, and under special conditions the cylinder index
could be as well. In the latter case the record search is
reduced to a single access, but at the expense of a large
portion of main storage bound to a static index file, In
the former case we have two accesses, but if part of one
disk is dedicated to cylinder indexes the seek time for
the index search is restricted to values near Twin.
Furthermore, we can overlap the next cylinder index
search with the current record search. The two accesses
are always on different modules and each can be
scheduled independently.

Seek time not dominant

There are several other ways that diminish the effect
of scheduling because the ratio of seek time to total
service time is reduced. We note that scheduling of disk
arm movement is merely a method to reduce seek time,
and it can only have a significant effect on total service
time if the seek time is the dominant factor. An upper
bound on this dominance is established by the physical
characteristics of the device. Some examples are pro-
vided in Table IV:

TABLE IV—T/T, for a Single Record Operation

Tsk/ Ts
Read or Read or Write &
Device write 1 word write 1 track verify 1 track
IBM 2314 .83 .62 .49
IBM 3330 .78 .55 .42
UNIVAC
FASTRAND 1II .62 .35 .25

The Fastrand is limited by a very long rotation time,
and is particularly slow for large record transfers which
are typical for checkpoints, diagnostic dumps, and
sorting. Further reductions in seek time dominance are
caused by multi-phase operations such as “write and
verify,” retries for data read/write errors (hardware
unreliability), and delays due to I/O channel busy.

SUMMARY

Disk scheduling should be implemented only after a
careful consideration of the hardware configuration,
the workload, and the type of operating system deter-
mines that the system would operate more efficiently.’
Selection of the best disk scheduling policy depends on
the nature of the disk workload and the desired per-
formance criteria of the particular application, i.e.,
throughput, mean response time, and/or variance of
response time.

ACKNOWLEDGMENTS

I am deeply indebted to Tad Pinkerton and Bob
Fitzwater for their helpful criticisms and suggestions.

APPENDIX

The following variables are frequently used throughout
this analysis:

c number of cylinders per disk.

Co expected number of cylinders with no requests

Cy expected number of cylinders with at least one
request.

A input (throughput) rate.

L mean queue length including the one in service.

L’ expected number of requests serviced per sweep.

m number of sectors per track.

P probability that a seek will be required to service
the next request.

ow? variance of response time.

t number of tracks per cylinder.
Twmin time to seek one cylinder.
Tmax time toseek C—1 cylinders
AT Tm ax Tmin-

T disk rotation time.

T, expected service time,

T. expected sweep time.

w mean response time,

Properties of Disk Scheduling Policies 11

REFERENCES

1 J ABATE H DUBNER S B WEINBERG
Queueing analysis of the IBM 2314 disk storage facility
J ACM Vol 15 No 4 1968 pp 577-589
2 E G COFFMAN JR P J DENNING
Operating systems theory
Prentice-Hall Inc Englewood Cliffs N J 1972
3 P J DENNING '
Effects of scheduling on file memory operations
Proc AFIPS 1967 SJCC Vol 30 pp 9-21
4 W FELLER '
An introduction to probability theory and its applications
John Wiley and Sons Inec New York Vol 1 Third Edition
1968 pp 101-106
5D W FIFE J L SMITH
Transmission capacity of disk storage systems with concurrent
arm. positioning
IEEE Trans on Computers EC-14 Aug 1965 pp 575-582
6 H FRANK
Analysis and optimization of disk storage devices for
time-sharing systems
J ACM Vol 16 No 4 1969 pp 602-620
7J D C LITTLE
A proof for the queuirg formula: L = AW
Opns Res Vol 9 No 3 1961 pp 383-387

8 G H MACEWEN
Performance of movable-head disk storage devices
Tech Rep No 72-4 Queens Univ Kingston Ontario Canada
Jan 1972
9 T MANOCHA

Ordered motion for direct-access devices
SIAM 1971 Fall Meeting Madison Wisconsin Oct 11-13
1971

10 A G MERTEN
Some quantitative techniques for file organization
PhD Thesis Tech Rep No 15 Univ of Wisconsin Computing
Center 1970

11 P H SEAMAN R A LIND T L WILSON
An analysts of auxiliary storage activity
IBM Syst J Vol 5 No 3 1966 pp 158-170

12 T J TEOREY T B PINKERTON
A comparative analysis of disk scheduling policies
Comm ACM Vol 15 No 3 1972 pp 177-184

13 T J TEOREY
The role of disk scheduling in multiprogrammed computer
systems
PhD Thesis Univ of Wisconsin 1972 Madison Academic
Computing Center Tech Rep

14 A WEINGARTEN
The analytical design of real-time disk systems
Proceedings IFIP Congr 1968 pp D131-D137

The interaction of multi-programming job
scheduling and CPU scheduling

by J. C. BROWNE and JEAN LAN

The University of Texas at Austin
Austin, Texas

and

FOREST BASKETT

Stanford University
Palo Alto, California

INTRODUCTION

There have been very few systematic studies of the
effect on system performance of strategies for schedul-
ing jobs for execution in a multi-programming system.’
Most of this work has been concerned with empirical
efforts to obtain job mixes which effectively utilize the
central processor.234 These efforts are frequently carried
out in commercial or production oriented installations
where the job load consists of a relatively few jobs whose
internal characteristics can be well determined. This
approach is not feasible in an environment where inter-
nal job characteristics are not known before run time,
or where internal job characteristics may vary rapidly.
Such circumstances are often the case in an industrial
or research laboratory or in a university computer cen-
ter. This study uses as its measures for determining
job scheduling strategies such quantities as are fre-
quently known or can be accurately estimated such as
amount of core memory required, processor service time
required, etc. The specific job scheduling strategies
used include first-come-first-serve (FCFS), shortest
processor service time first (STF), smallest cost (cost=
core size X processor service time) first (SCF), and
smallest memory requirement first (SMF). We evalu-
ated both preemptive resume and non-preemptive job
scheduling. It is typical of virtually all of the previous
work that the emphasis has been on improving CPU
utilization. There may often be other goals which are
more useful measures of performance such as through-
put (job completion rate per unit time), the expected
wait time before completion of a given class of job, the
utilization of I/O resources, etc. We collected several
measures of system performance including all of those

13

listed previously to assess the effects of job scheduling,.
There has been very little previous study of the inter-
action between job scheduling and CPU scheduling. We
systematically vary CPU scheduling algorithms in con-
junction with alteration of job scheduling strategies.
Those job scheduling strategies which give high
throughput are characteristically observed to be more
sensitive to CPU scheduling methods than those which
yield relatively low throughput. We do not, however,
attempt to correlate job scheduling methods with inter-
nal job characteristics such as CPU burst time, etc. We
did, however, consider the effect of skewed CPU burst
time distribution on performance under different pairs
of strategies.

THE SYSTEMS MODEL

The model system which we simulate is based upon
Control Data Corporation’s (CDC) 6600 system at the
University of Texas at Austin under the operation of
the UT-1 and UT-2 operating systems. The CDC 6600
computer is a system of one very fast central processor
(CPU), 10 peripheral processors (PP), and 12 data
channels. The reader not familiar with the CDC 6000
series system is referred to Thornton® or the standard
CDC reference manuals.® The UT-Austin 6600 system
has 128K (K=1,024) words of central core memory,
505,204 words of extended core storage (ECS), and 4
six million word disks (6638 disks). The principal fea-
tures of the system are included in the model, the cen-
tral processor: 85,000 words of central core memory
(the balance is used by the operating system): the ex-
tended core storage, and the four disk channels: under

14 Fall Joint Computer Conference, 1972

START
INPUT PARAMETERS, CONTROL
INITIALIZE COUNTERS PO?NTS
AND JOB QUEUE

E
i
t
PREEMPTED JOBS !
1]
L]
PREEMPTED ! No
JOB QUEUE .
[—— | Y ce CPU [} ANy B
COMPLETED?
NEW JOB JoB INPUT SCHEDULING QUEUE SCHEDULING
ARRIVES QUEUE YEs
CM queue I/Ol QUEUE FCFS I/Ol-
[/0 cHANNEL 1/05 QUEUE FCES [/05 &
New Jos SELECTION 2_ 2
GENERATION :
1/03 aueve —EES—41/05 F
SHOULD THE SIMULA- Qutput SHOULD THE SIMULA- THE COMPLETED
DED? REPORT TION RUN BE ENDED? JOB LEAVES
No |TION RUN BE ENDED YES YES JoB LEAVES
No
4
STOP

Figure 1—The computer system simulation model

UT-1 operation PP’s were a surplus resource and could
be left out of the model without materially affecting
performance analysis. The operating systems under
which the measurements were taken to parameterize
this simulation model were the UT-1 and UT-2 operat-
ing systems. These operating systems are locally written.
UT-1 used one PP as the system monitor (MTR); it
was responsible for the coordination of all system ac-
tivity. The 85,000 words of central memory available
to user programs are allocated (by software) to seven
(or fewer) control points which are virtual central pro-
cessors. The multi-programming batch portion of UT-2
does not differ materially from UT-1 except for the
allowance of up to 16 control points. A more complete

description of the UT-1 system can be found in Schwet-

man’ or Baskett, Raike and Browne.!

Both UT-1 and UT-2 have extensive measurement
packages embedded in them [see Schwetman (7)]. The
output of this measurement package is the source of
the data which is used to parameterize the simulation

model. Comparison of the output of the simulation
model for key measures such as CPU utilization and
channel utilization are used to validate the model.
Figure 1 is a schematic diagram of the system model.
The general operation of the model proceeds as follows:
Ten jobs with specified storage requirements and cen-
tral processor service times are generated and placed
in the input queue. Jobs are selected from this input
queue and operation of the system is started. The CPU
burst times are selected from a specified (see following)
distribution independently for each burst. The I/0
burst times are similarly chosen from an exponential
distribution. Channel selection is by a non-uniform
discrete distribution for each I/0 service request. The
simulation proceeds with new jobs arriving at the input
queue with an average interval of two seconds. The
simulation run proceeds until 180 seconds of real
(“clock-on-the-wall”’) time have passed. The simula-
tion is then restarted nine successive times. The result
of ten runs of 180 seconds are averaged to find average

Interaction of Multi-programming Job Scheduling and CPU Scheduling 15

values and standard deviations for the performance
measures. This procedure appears to be more reliable in
terms of generating reproducible results than running
the simulator for longer intervals. The complete set
of simulations was run with exponential and hyperex-
ponential CPU burst time distributions. Distribution
functions for the memory requirements, total CPU
service time required, arrival times, CPU burst time,
I/0 burst time, and channel selection are constructed
from measurements made on the actual running system.
For the CPU burst time, I/0 burst time, and job arrival
rate, analytic fits to the data were used. For storage
requirements, total running time, and channel selec-
tion, table look-up procedures are used to generate a
representation of the data distribution. The mean of
the CPU mean burst time distribution was 48 ms. For
the hyperexponential distribution a variance of 10 was
used. A mean I/0 burst time of 46 ms was taken from
the measured data. The CM requirements were gen-
erated from a table which yields an approximate mean
of 21,000 60-bit words. Channel 0 had a probability
of selection of 14, channels 1, 2, and 3 each had prob-
ability of 1/6. The variance of the measured CPU
burst time distribution was larger than 10. However,
a variance as large as 10 captured the key features of
the skewness of the distribution while still allowing a
stable simulation. Larger variances (eg., 40) did not
materially alter the performance measures but required
very lengthy runs to reproduce the theoretical distribu-
~ tions. The job arrival rate was taken to have a mean of
one every two seconds. This is the maximum rate ob-
served in the system. The simulation program was
written in FORTRAN; a thoroughly commented and
flow charted version of this program is available on
request. A more complete description of the simulation
is given by Lan.?

VALIDATION

Since the simulation model is to be used to compare
the relative merit of different scheduling algorithms
rather than to predict absolute performance, the vali-
dation of interest is to be sure that the parameters put
into the model reflect reasonably well the principal
characteristics of the system and, more especially, the
job-mix. A good test, however, of how well the model
captures the characteristics of the real system is to
operate it using the scheduling algorithms used in the
UT-1 operating system. Comparison to the real system
can thus be obtained by examining the entries in the
matrix of Table III with the data reported by Schwet-
man.” Schwetman reports central processor utiliza-
tions in the vicinity of 85 to 91 percent for various days

production run. The average utilization of the four disk
channels 10-57 percent, 1-20 percent, 2-19 percent,
3-18 percent, also fall well within the range observed by
Schwetman for channel utilization. The actual numbers
generated by the distribution functions were found to
reproduce the theoretic means and variances of the
CPU burst time, the I/O burst time, the channel selec-
tion, and the core size distribution function to less than
14 percent. This indicates a very high degree of sta-
bility and reproducibility in the simulated data.
Another measured factor which can be compared is the
average degree of multi-programming. We find 4.6
while Schwetman, including the remote terminal man-
ager as a job as was appropriate for UT-1, measures
4.7. The neglected overhead in the central processor
utilization is a known and small error under UT-1 where
the central processor overhead was under 5 percent.
The system monitor was a peripheral processor and
monitor and service functions are done in the peripheral
Processors.

RESULTS OF VARIATION IN SCHEDULING
ALGORITHMS

The goals of this simulation model are to evaluate
the utility of several memory scheduling algorithms
and several central processor scheduling algorithms and
their interaction in terms of various measures of com-
puter system performance. We studied the behavior of
the model under four different memory scheduling
algorithms.

(1) Shortest time to run first (STF)
(2) Smallest cost first (SCF)

In this context cost is defined to be the product of mem-
ory space required and central processor time required.

(8) Smallest memory first (SMF), in this algorithm
one schedules the jobs according to the amount
of central memory required.

(4) First-come-first-serve (FCFS), the classic dis-
cipline of queueing theory.

We considered both preemptive and non-preemp-
tive memory scheduling. Table I compares preemptive
and non-preemptive job scheduling for round-robin
CPU scheduling. The central processor scheduling al-
gorithms considered are:

(1) round-robin (RR) with an 8 millisecond (ms)
quantum. Eight ms is the quantum size for the
UT-1 and UT-2 operating systems. (A few runs
were made with other quantum sizes.)

16 Fall Joint Computer Conference, 1972

TABLE I—Results for Both Preemptive and Non-preemptive CM Scheduling Cases (With RR CPU Scheduling
' and Hyperexponential CPU Service Times)

Preemp.
Measures or non- STF SCF SMF FCFS

preemp .
Number of P 76 .5 75.1 37 .4 25.4
Jjobs completed N 57.0 54.5 28.8 25.9
Degree of P 4.362 4.601 5.610 4,430
multiprogramming N 5.184 5.176 5.160 4.648
CM ubtili- P .944 .935 .888 .955
zation N .934 .927 .900 .941
CP utili- P .877 .889 .956 .940
zation N .938 .944 .959 .949
CP work P 158.9 161.3 173.4 170.3
time N 170.0 171.2 173.8 172.3
1/0 work P 205.4 205.5 195.2 165.4
time N 190.6 186.0 175.7 169.0
Total CP and I/O P 364.3 366.8 368.6 335.7
work time N 360.6 357.2 349.6 341.3
1/0 overlap P 167.8 171.3 180.8 145.5
time N 170.9 168.0 162.0 152.9
Average flow P 11.8 11.6 15.4 58.8
time for the N 20.5 24 .4 27.9 54.1
completed Jjobs
Average wait P 7.8 7.8 10.8 51.0
time for the N 16.0 19.8 21.5 46.9
completed jobs
Total flow P 2797 2893 6198 7131
time N 4364 4847 6961 7142
Total wait P 2433 2526 5830 6796
time N 4003 4490 6612 6801
Average number P 16 16 34 39
of jobs in N 24 27 38 39
the system
Number of P 99 Q2 27 9
swaps N 0 0 0 0

(2) Smallest time remaining (STR).
(3) Shortest burst time next (SBT).
(4) Longest burst time next (LBT).

The basic output of the simulation model is thus a set
of 16 entries for each possible combination of scheduling
disciplines for each measure of performance of interest.
Table II is the matrix of entries for the case of an ex-
ponential CPU service time distribution. Table III is
the matrix of entries for a hyper-exponential service

time distribution. First-come-first-serve CPU schedul-

ing was also tried for the hyperexponential CPU burst
distribution. Table III thus has sets of 20 entries rather

than 16. Most of our discussions will be couched in
terms of the entries in Table III since it is known that
the hyper-exponential distribution of service times is
characteristic of most large scale multiprogramming
computer systems. In most cases, the conclusions on
the influence of scheduling algorithms on performance
measures are corroborated by the exponential case
(Table II).

Table IV is a summary chart of the principal results
of this study. The left column of Table IV is a list of
measures of computer system performance, through-
put in terms of number of jobs completed, degree of
multi-programming, central memory utilization, cen-

Interaction of Multi-programming Job Scheduling and CPU Scheduling 17

tral processor utilization, I/O processing utilization,
average flow time for complete jobs, average wait time
for completed jobs, and the number of memory swaps
as a measure of overhead. The rows of Table IV are the

combination of scheduling algorithms which yield the
best result for the performance measure in the left
column. For example, in terms of throughput, the best
combination of scheduling disciplines is STF-RR fol-

TABLE ITI—Results for Models with Exponentially Distributed CPU Burst Times

cM
CP ched-
Measures Sched- \ule STF SCF SMF FCFS
ule
RR 74.6 74 .3 36.1 24.7
gmb;:’t:g Jobs STR 76.0 75.9 40.6 27.7
(thp Pout SBT 75.3 74.4 37.1 25.3
roughout) LBT 74.5 73.5 35.6 24 .4
RR 4.432 4.619 5.698 4 .436
Degree of STR 4.334 4.609 5.382 4 .368
multipro- SBT 4.385 4.637 5.717 4.418
gramming LBT 4,452 4,680 5.741 4.454
RR 947 039 887 058
CM utili- STR .944 .935 .886 .953
zation SBT .946 .939 .890 .955
LET .950 .940 .889 .957
RR 941 956 7975 047
CP utili- STR .944 .958 .973 .948
zation SBT .971 980 .993 .975
LBT .922 .925 .949 .919
RR 170.7 173.4 176.9 171.9
CP work STR 171.3 173.8 176.6 172.0
time SBT 176.1 177.8 180.2 176.9
LBT 167.2 167.8 172.2 166 .8
RR 155.3 158.7 166.9 162.1
1/0 work STR 156.8 159.2 166.0 161.1
time SBT 162.1 164.0 171.2 167.0
LBT 152.6 153.7 162.2 157.6
RR 326.0 332.3 343.9 334.0
Total CP & I/0 STR 328.1 333.0 342.5 333.1
work time SBT 338.2 341.9 351.4 343.9
LBT 319.9 321.4 334.4 324 .4
RR 139.4 145.1 158.9 145.5
1/0 overlap STR 141.1 145.9 157.1 144.6
time SBT 154.3 158.4 169.3 159.5
LBT 127.1 129.1 143.7 130.3
Average flow RR 12.1 12.7 16.3 56.9
time for STR 10.5 11.0 13.3 53.2
the comple- SBT 12.3 12.7 16.6 57.2
ted jobs LBT 12.4 13.1 16.3 56.9
Average wait RR 8.5 9.0 11.7 49.0
time for . STR 6.7 7.1 8.1 45.1
the comple- SBT 8.5 9.0 11.8 49.5
ted jobs LBT 8.8 9.5 11.9 49.4
RR 2068 3056 6278 71684
Total STR 2776 2814 5763 6788
flow time : : SBT 2919 3022 6206 7112
LBT 3020 3114 6334 7216
RR 2662 2724 5934 ~ 6850
Total STR 2448 2481 5420 6455
wait time SBT 2580 2680 5854 - 6768
LBT 2701 2793 5999 6892
RR 17 17 35 20
g;egzgg no. STR 15 16 32 37
the" system SBT 16 17 34 39
y LBT 17 17 35 40
100 B89 27 B
STR 104 99 27 8
No. of swaps SBT 99 90 27 8
LBT 99 87 24 '8

18 Fall Joint Computer Conference, 1972

TABLE III—Results for Models with Hyperexponentially Distributed CUP Burst Times

Measures STF SCF SMF FCFS
RR 76.5 75.1 37.4 25.4
Number of jobs STR 75.4 75.1 37.9 23.6
completed SBT 75.6 74.9 35.9 21.8
(throughout) LBT 74.6 74.0 34.4 20.7
FCFS 74.9 73.5 34.0 20.3
RR 4.362 4,601 5.610 4 .430
Degree of STR 4,340 4,572 5.592 4.410
multiprogramming SBT 4,363 4,609 5.698 4,430
LBT 4.425 4.615 5.820 4.498
FCFS 4,469 4,643 5.873 4.515
RR .944 .935 .888 .955
CM STR .945 .937 .892 .954
utilization SBT .944 .940 .890 .955
LBT .947 .939 .889 .956
FCFS .950 .942 .891 .958
RR .877 .889 .956 .939
cp STR 815 .828 .884 .862
utilization SBT .841 .860 921 .889
LBT .804 .802 .856 .851
FCFS .827 .834 .890 .869
RR 158.9 161.3 173.4 170.3
ce STR 147.8 150.2 160.5 156 .4
work time SBT 152.5 155.8 167.1 161.5
LBT 145.7 145 4 155.3 154 .6
FCFS 150.0 151.3 161 .5 157.7
RR 205 .4 205.5 195.2 165.4
1/0 STR 188 9 190.6 179.7 147.3
work time SBT 195.1 196 9 184 9 148.9
LBT 186.1 183.5 169 3 141 .4
FCFS 189.2 188 1 171.9 144.5
RR 364 .3 366 .8 368.6 335.7
Total CP STR 336 7 340 8 340.2 303.7
and 1/0 SBT 347 6 352 7 352.0 310.4
work time LBT 331.8 328 9 324 6 296 .0
FCFS 339 2 339.5 333.4 302.2
RR 167.8 171 3 180.8 145.5
1/0 overlap STR 133 5 138.4 141.0 104 .2
time SBT 150 .1 155 4 160 7 115.8
LBT 122 .7 122.1 123 .6 92.1
FCFS 135.4 136 3 136.1 102 .0
RR 11.8 11.6 15.4 58.8
Average flow STR 11.7 11.8 14 .8 54.3
time for the SBT 12.5 12.2 16.1 54 .9
completed jobs LBT 12.5 13.2 17.1 57.0
FCFS 13.2 13.5 19.2 - 55.7
RR 7.8 7.8 10.8 51.0
Average wait STR 7.8 7.9 10.0 46.7
time for the SBT 8.6 8.4 11.5 41 .1
completed jobs LBT 8.7 9.6 12.7 49.2
FCFS 9.4 9.7 14.4 47.8

lowed by SCF-RR. There are a number of striking and
perhaps not intuitively obvious results from the simu-
lation model.

There is an enormous difference in the throughput
rates produced by the different job scheduling algo-
rithms. Two methods, STF and SCF give strikingly
better performance, over a factor of 2, over the SMF
or FCFS method. Two facts of particular interest are

that the SCF algorithm is so close to the STF algorithm
in terms of throughput. Bearing in mind that the job
mix was taken from well-grounded empirical measure-
ments, it suggests that the SCF discipline with its more
equitable selection of jobs is almost as good as the STF
discipline with respect to throughput. The second fea-
ture is that the FCFS job scheduling discipline is so
very poor. This suggests that queueing models which

Interaction of Multi-programming Job Scheduling and CPU Scheduling 19

normally rely upon the use of first-come-first-serve
scheduling disciplines only may predict erroneous
throughput results for realistic job mixes. It is clear that
with a job high arrival rate such as taken for this model,
preemptive resume job scheduling will yield a higher
throughput than non-preemptive scheduling. For the
high throughput algorithms STF, and SCF, the im-
provement was in excess of 40 percent, a striking dif-
ference.

Central memory utilization as a performance measure
would normally be of interest only in sharply memory
limited systems. The only marked difference in the per-
formance of any of the job scheduling algorithms is
that the SMF produced a markedly lower central mem-
ory utilization. This would be expected since loading
shortest memory first would tend to deplete the supply
of small jobs which could be used to fill small gaps in the
memory. This would lower the probability that a small
residue of memory could be utilized effectively.

Multiprogramming increases CPU utilization and
I/0 channel utilization, and the mean degree of multi-
programming may be used as a measure of system per-
formance. Note that there is a certain point in multi-
programming such that no performance improvement
can be achieved even with a higher degree of multipro-

gramming. The SMF models with a higher degree of
multiprogramming give a worse over all system per-
formance than that of other models. Thus the degree
of multiprogramming will not be used to evaluate sys-
tem performance.

The measure of computer system performance most
commonly used is the utilization of the central pro-
cessor. The utilization of the CPU was very high for
all memory (job) scheduling disciplines, and indeed for
all CPU scheduling disciplines. This is indeed true for
the computer system from which the experimental
data used to characterize the model and the job mix
were taken. The performance measures run typically
about 5 percent greater than the actual performance
of the system. This is due to omission of certain effects
due primarily to queueing for peripheral processors and
of certain aspects of system overhead. In the case of the
exponential CPU service time distribution, the CPU
scheduling algorithm had very little effect under any
of the job scheduling disciplines. This is to be expected.
On the other hand, in the case of the hyper-exponen-
tially distributed CPU burst time, the CPU utilization
varied more than 7 percent with different CPU schedul-
ing algorithms. This span of CPU utilization is in good
accord with the trace-driven model results of Sherman,

TABLE IV—Summary of Results for Hyperexponential CPU Burst Time Distribution Models

Throughput
(Number
of Jjobs
completed)

STF-RR STF-SBT

Degree of
multi-
programming

SMF-FCFS SMF-LBT

CM utili-
zation FCFS~-FCFS FCFS-LBT
CP utili-

zation SMF-RR FCFS-RR
/D utili-

zation SCF-RR STF-RR
Mean flow
time for
the com-

pleted jobs

SCF-RR STF-STR

Mean wait
time for
the com-
pleted jobs

SCF-RR STF-RR

Overhead FCFS-SBT FCFS-STR

STF-STR

SMF-SBT

FCFS-SBT

SMF-SBT

SCF-SBT

SCF-STR

STF-STR

FCFS-LBT

SCF-RR SCP-STR STF-FCFS. SCF-SBT
SMF-RR SMF-STR SCF-FCFS SCF-LBT
FCFS-RR FCFS-STR STF-FCFS STF-LBT
SMF-FCFS SCF-RR FCFS-SBT SMF-STR
SMF-RR STF-SBT SCF-STR STF-FCFS
STF-RR SCF-SBT STF-LET STF-SBT
SCF-STR SCF-SBT STF-SBT STF-LBT
FCFS-RR FCFS-FCFS SMF-FCFS SMF-LBT

20 Fall Joint Computer Conference, 1972

Baskett, and Browne.® It is interesting to note that for
the hyper-exponentially distributed CPU service times
the RR scheduling produced consistently the best re-
sults while on the exponentially distributed CPU burst
time, the theoretically best® scheduling algorithm, SBT
produced the best results consistently. This is particu-
larly due to the neglect in the simulation model of the
overhead in switching the processor from job to job.
For non-preemptive job scheduling, the STF and SCF
job scheduling gave higher CPU utilization than pre-
emptive job scheduling. This is associated with the
higher average degree of multi-programming for these
cases with non-preemptive scheduling.

Other interesting results are obtained by considering
total I/0 utilization as a measure of performance. This
measure is clearly affected by both job scheduling al-
gorithms and CPU scheduling algorithms. The algo-
rithm for utilization of I/O facilities was first-come-
first-serve. In each, the order of I/O utilization is di-
rectly analogous to the throughput as a performance
measure. It is particularly interesting to note that the
RR central processor scheduling disciplines produced
markedly higher utilization of I/0 facilities over any
other disciplines. As would be expected on theoretical
grounds, SBT produced the next best results. Note that
for the exponentially distributed CPU burst time case
the SBT produced the higher utilization of I/0 facil-
ities. Preemptive job scheduling tended to produce
higher rates of I/0 utilization.

A measure well correlated with total I/0 utilization
is I/O overlap time. This is the total amount of time
in the 180 seconds of the simulation runs that I/0 pro-
cessing and CPU processing were going on simultane-
ously. In some cases more than one I/0 activity was
overlapping a given CPU burst time.

Average wait time for completed jobs is an interesting
measure of non-productive consumption of resources.
During the wait time no processing, either I/0 or CPU
service was being applied to a given job. Thus, the
larger this measure the more waste of central memory. It
is interesting to note that in the exponential CPU dis-
tribution case the STR-CPU scheduling discipline
scores well for all job scheduling disciplines while RR
scores well in the hyper-exponential distribution case.
Tt is also worth noting that the SMF scheduling algo-
rithm performs better here than on any other measure.

The number of swaps of jobs in and out of memory
is a convenient measure of overhead in central memory
management. It is quite clear from this measure that
the STF and SCT scheduling discipline incur a mark-
edly higher overhead as the price paid for improvement
in the throughput. Recall that these swaps are gener-
ated by preemption of batch jobs when jobs with a
higher priority under the given job scheduling discipline

arrive in the input queue. Note that we have ignored
in all discussions the difference in cost of the overhead
of the different memory scheduling algorithms. The
use of ECS as a swapping medium in our model justi-
fies this neglect. For swapping to disks or drum a seri-
ous overhead would be incurred.

We summarize briefly the most significant points of
this research:

(1) Pre-emption is a key element for high through-
put job scheduling.

(2) Job scheduling has a dramatic effect on through-
put. It would appear that with our realistic
job mix, the SCF is the most desirable job
scheduling algorithm.

(3) If RR does not incur a high overhead for pro-
cessor switching, it would appear to be the most
desirable scheduling algorithm for CP scheduling
if the CPU burst times have a strongly skewed
distribution function (which is usually the case).

(4) Total I/0 utilization is fairly strongly dependent
on both memory scheduling algorithm and CP
scheduling algorithm. For the case of a skewed
distribution of CPU service times RR results
again give a good utilization of I/0 facilities.

(5) The scheduling disciplines which yield the high-
est throughput on the whole tend to incur the
largest overhead.

(6) If maximum throughput or minimum mean flow
time is the performance goal, then probably SCF
memory scheduling and RR central processor
scheduling (SCF-RR) or STF-RR will yield most
consistently the best results.

(7) Either RR or a predictive scheduling mechanism
based on attempting to predict that job which
will have shortest burst time (SBT) will yield
best CPU utilization.

(8) To maximize I/0 utilization, SCF-RR or STF-
RR would appear to be the most desirable com-~
binations.

ACKNOWLEDGMENT

This research was supported by the National Science
Foundation under grant GJ-1084.

REFERENCES

1 F BASKETT J C BROWNE W M RAIKE
The management of a multi-level non-paged memory system
Proc AFIPS 1970 SJCC Vol 36 AFIPS Press Montvale NJ
Pp 459-465

2 P R KLEINDORFER C H KRIEBEL
Analyzing job mix in multi-programmed computer systems

Interaction of Multi-programming Job Scheduling and CPU Scheduling 21

Management Sciences Research Report No 166
Carnegie-Mellon University August 1969

3 K D RYDER
A heuristic approach to task dispaiching
IBM Systems Journal 8 3 1970 pp 189-198

4 W A WULF
Performance monitors for multi-programming systems”
Proc 2nd Symposium on Operating Systems Principles
October 1969 pp 175-185

5 J E THORNTON
Design of a computer system: The Control Data 6600
Scott Foresman & Co Glenview Illinois 1970

6 Control Data Corporation
Control Data 64/65/6600 Computer Systems Reference
Manual Pub No 60100100 1967

7 H D SCHWETMAN
A study of resource utilization and performance evaluation
of large-scale computer systems
TSN-12 Computation Center University of Texas Austin
Texas July 1970

8 J LAN
A simulation study of job and CPU scheduling
TSN-21 Computation Center and Computer Science
Department University of Texas Austin Texas December
1971

9 S SHERMAN J C BROWNE F BASKETT
Trace-driven modeling and analysis of CPU scheduling in a
multi-programming system
To appear CACM—Also Proc of ACM Workshop on
Performance Evaluation Cambridge Mass pp 173-199
April 1971

Storage organization and management in TENEX

by DANIEL L. MURPHY

Bolt Beranek dnd Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

In early 1969, BBN began an effort aimed at developing
a new time-shared operating system.* It was felt at the
time that none of the commercially available systems
could meet the needs of the research planned and in
progress at BBN. The foremost requirement of the
desired operating system was that it support a directly
addressed process memory in which large list-pro-
cessing computations could be performed. The cost of
core storage prohibited the acquisition of sufficient
memory for even one such process, and the problems of
swapping such very large processes in a time-sharing
environment made that solution technically infeasible
as well.

Paging was therefore the logical alternative, and our
study and experience with list processing systems!?
led us to believe that using a demand-paged virtual
memory system for such computations was a feasible
approach.

With demand paged process virtual memory added
to our requirements, we found no existing system which
could adequately meet our needs. Qur approach was
to take an existing system which was otherwise ap-
propriate and add the necessary hardware to support
paging. The system chosen was the DEC PDP-10,3
which, although not paged, was available with a time-
shared operating system and substantial support soft-
ware.

Consideration was given to modifying the existing
PDP-10 operating system to support demand paging,
but that approach was rejected because of the sub-
stantial amount of work which would be required,
because of the inherent constraints imbedded in the
architecture of any large system, and because develop-
ment of a new operating system would allow the in-
clusion of a great many other features and facilities

* The work reported here was supported in part by the Advanced
Research Projects Agency of the DOD, and in part by BBN.

23

which were judged desirable. Among these were a multi-
process job structure with software program interrupt
capabilities, an interactive and well human-engineered
command language, and advanced file handling capa-
bilities.

Reports of some of the other operating system de-
velopment in progress at the time suggested that con-
siderable advantages were obtained by generalizing the
concept of file storage and integrating process memory
with it. Earlier systems had taken the view that files
were sequential streams of bytes or words, perhaps
with a facility for limited random accessing built on
top.

In these earlier systems, process memory was viewed
as the equivalent of the physical core memory that a
program would see when running stand-alone on a
dedicated processor. Time- and core-sharing facilities
provided a means for several independent processes
to use core and processor concurrently, but the basic
concepts still required, for example, a file to be “read
in” byte-by-byte or block-by-block into process mem-
ory.

The file-process memory integration achieved by
MULTICS*5 provided an entirely different view of
these concepts, and opened up many new possibilities
for improved throughput, enhanced ease of pro-
gramming, etc. The MULTICS segmentation concepts
however, would have required substantial modifica-
tion of the address computation logic of the processor
and in other ways seemed to require a level of effort
inappropriate to the scale of system we could support.
Therefore, we began to examine the ways by which
some of these same goals could be achieved in a system
which had only paging hardware.

It was known from that outset that our system would
contain multi-level storage components. A high speed,
rapid access drum would obviously be needed as the
swapping facility to support demand paging, and a
larger and slower disk storage device (at least 50 million
words) was planned for permanent storage. We were

24 Fall Joint Computer Conference, 1972

already using a system, the XDS-940% which provided
a means of “naming” process storage, and swapping
on the basis of the named elements in a process memory.
Although the file system was not integrated into this
process memory naming scheme, certain basic con-
cepts, e.g., a process memory map into which named
elements could be placed, were present.

Thus, having determined that we would build a new
monitor system to achieve certain specific objectives,
we decided to adopt a more advanced architecture and
obtain many other useful features. In particular, we
realized that very little if any additional complexity
was necessary in the design of the paging hardware in
order to provide the base on which a monitor with
integrated file and process memory could be built.

The system which resulted from this development
effort is called TENEX, and this paper describes the
facilities for naming memory and dealing with named
memory which were developed and implemented in
TENEX. Implementation details of the system are
given, including the operation of the three levels of
storage, and the flow of data between them.

NAMED MEMORY

TENEX terms and conventions

The discussion which follows will require knowledge
of a few of the terms and conventions used in TENEX.
The operating system provides a job structure which
may contain multiple processes. By a job, we mean a
set of active resources normally under control of a
single user. That set may in principle be empty, but
in practice will always contain at least one process.

In TENEX, each process is provided with an inde-
pendent process address space, and is capable of per-
forming computation in parallel with other processes.
That. is, TENEX processes are independent virtual
machines with all necessary storage for holding the
state of a computation. Various means are, of course,
provided for allowing communication and control
between processes.

File storage naming

The first and most obvious memory “name” in
TENEX is the file name. A powerful and versatile
directory and file naming facility is provided in which
a particular file is identified by a fixed-depth path which
includes device, directory name, file name, extension,
and version.

The identifiers in each field (except for device and

version) are strings of up to 39 characters. All per-
manent storage resides in files, so the first step in
identifying any particular element of storage is to
specify the path name.

It would be both cumbersome and inefficient to
require that the file name be used for each operation
on a file, even though TENEX provides default con-
ventions which usually allow the user to specify only
the name portion of the path. We therefore provide a
means of associating the full path name with a small
integer called a Job File Number (JFN) which will
serve to identify the file over some limited period of
time.

The JFN is an important concept in TENEX and
deserves some further explanation. The first step in
doing any operation on a file is to execute a monitor
call giving as an argument the string representing the
path name of the desired file.

Various conditions and default options are specified
at that time. If the path name correctly identifies a
single file, the monitor will return a- JEN, and the
association of that JFN with the file will remain in
effect until the user program explicitly ‘“‘releases” the
JEN (or the job is logged out). JEN’s are 18-bit num-
bers arbitrarily selected by the system, commonly but
not necessarily assigned sequentially upward from 0.
The domain of a JFN is the job in which it was as-
signed; therefore it may potentially be used by any
process in the job (subject to various protection mech-
anisms). The system will always know what JFN’s are
in use in each job and so can assign at any time one
known to be unique. It is possible for the same file to be
associated with two or more JFN’s within the same
job (and with JFN’s in other jobs), and this often
happens when two processes are performing concurrent
operations on the same file,

Once the initial association of JFN and file has been
established, the JFN is used for all ensuing operations
on the file, including sequential reading and writing,
opening, closing, etc. The 18-bit JFN is a PDP-10
half-word, and so is conveniently manipulated by the
system and user programs. Because the monitor system
chooses JFN’s to be indexes into system tables holding

FILE NAME -»> JFN
18 BITS
PAGE IDENTIFIER JFN PN

Figure 1

Storage Organization and Management in TENEX 25

information about the relevant file, the lookup time
on individual file function calls is very short and re-
quires only a range test to reject invalid arguments.

Having once identified a particular file and obtained
a JFN, a process need only identify the element within
the file and the naming process will be complete. On a
word-oriented machine such as the PDP-10, the most
basic element in a file is obviously the word, but since we
are operating in a paged environment, we will want to
identify pages. Therefore, our complete identifier is
constructed from the JFN of a file, and the page
number (PN) within that file, as shown in Figure 1.
The paging facilities will allow us then to reference any
word within that page as described below.

File-to-process mapping

With the naming of our file memory specified, we
next explain how this may be integrated with the
address space of processes. As stated earlier, each
TENEX process has an independent virtual memory
of 256K words, a size fixed by the 18-bit addressing
capability of the processor. With the TENEX page
size of 512 words, each process virtual memory there-
fore consists of 512 pages. But these pages are not fixed
storage. Rather, each page of the process virtual
memory is actually a window through which one can
look at a page of “real” storage.

To specify the contents (possibly null) of these
windows, TENEX provides a virtual memory map,
with one entry for each page of the virtual memory.
Each map location is identified by a map handle which
consists of two items, the process handle (provided by
the system when the process was created), and the page
number of the desired slot (Figure 2). It is important
to understand that the map handle identifies a map
slot and does not represent the contents (if any) of
that slot. The monitor provides two basic operations
for which the map handle is necessary, obtaining the
identifier of the present contents of the slot, and placing
an identified page into the slot.

This brings us to the basic facility for file/process
memory integration. We have constructed a file system
in which each page can be named with a convenient
(one word) identifier, and we have specified a paged

PROCESS ID PN

PROCESS MAP IDENTIFIER

Figure 2

PROCESS
4 FILE, MAP
PN" 3 4
Bl PAGE R
4 FILEp JFNa | PN
PN, 3 3
T pace

Figure 3—File-to-process mapping

process address space represented by a map into which
page identifiers can be put. Figure 3 shows this graph-
ically. The process address space contains pages from
two files, indicated by identifiers in the process map
which act as pointers to the file pages.

There is some additional information in the map
slots not included in these page identifiers, and that
is the access permission. The TENEX paging hard-
ware provides independent read, write, and execute
access control on each page, so when a process places
a file page identifier in its map, it must specify which
of these accesses (each represented by a bit) is alldwed.
The system may further restrict the access according
to arguments given when the file was opened, which
in turn are limited to combinations permitted by the
general protection mechanisms associated with file
names. Thus the access actually permitted to a mapped
page is the logical AND of the specific case access
request (specified by the process) and the general access
permitted to the file (specified by information residing
in the file dlrectory)

Sharing named storage

Since the file path names identify files over the
domain of all jobs in the system, it is evident that our
naming and mapping procedures readily provide a
means for sharing storage. Using the appropriate path
names (including legality checks), processes in two or
more different jobs can identify the same file, and each
can obtain a JEN for it. Nothing in the mapping pro-
cedures specified above requires that either process
be aware of the other’s access, and so each process
constructs an identifier and places it in its process map
(Figure 4). Remember that the JEN is associated with

26 Fall Joint Computer Conference, 1972

FILE PROCESS1

PPN, | PN

PAGE

PROCESS 2

oFN2 | PN

Figure 4—Shared file page

a file only within the domain of a job, and so the two
JEN’s shown are probably not the same small number.
The page number (PN) shown is an absolute address
within the file and will appear as the same number in
both process maps. Thus two or more processes in the
same or different jobs can identify and map the same
page of physical storage. The mechanism by which
this is implemented is described below.

Along with this basic sharing mechanism, TENEX
provides a convention to help ensure that the access
to shared or potentially shared information is logically
consistent. We identify two cases:

. A file contains information which must be in a
consistent state to be used, e.g. a symbolic text
file. Such a file may be read concurrently by
several processes, but one process modifying
the file precludes any other processes reading or
modifying it.

2. A file contains information which, by agreement
of the processes involved, can be simultaneously
modified and used by several processes, e.g., a
common data base or a file used for interprocess
communication.

When a process opens a file, it must specify which of
these two cases applies. The system will not permit any
file to be open both ways at the same time on the
grounds that such a situation can only result from
disagreement among the processes on how the file is to
be used, and is therefore a logical programming error.
The monitor will permit any number of simultaneous
case 2 openings of a file (which we call thawed access),
and will allow any of the three types of access legal for
the file to be used for each opening. The consistency
and integrity of the data in the file is the responsibility
of the processes using it.

The monitor will permit any number of case 1

openings of a file (which we call frozen access) providing
all processes request only.read and/or execute access.
One or more openings of any type will preclude a new
opening for write, and one write opening will preclude
any new openings of any type. Thus the system guaran-~
tees the integrity of file data by prohibiting potentially
conflicting access.

Copy-on-write access

One other important TENEX feature which facili-
tates sharing is a type of page access called copy-on-
write. To our knowledge, this facility was first de-
veloped and used on the BBN-LISP system for the
XDS-9407. It was developed as the result of two
common observations:

1. Some programs, particularly older ones, are not
quite reentrant. That is, they were coded with-
out observing reentrant coding practices with
the result that some code or initial data areas
may be modified. Because of the architecture
of the PDP-10, we in fact find many programs
with completely reentrant code (even lazy
programmers usually use the stack-oriented
subroutine call and return instructions of the
machine), but with local temporaries, data areas,
etc., sprinkled arbitrarily through the program.

2. Some programs use large initial data bases
which are common to all users, but which may
be modified by some users in some specific cases.
The principal example of this is the BBN-LISP
system which initially contains over 100,000
words of compiled function code (reentrant),
and some common list structure. It is however,
necessary and legal for some users and some
functions to modify portions of this base for
local operations. In fact, none of this original
base can be guaranteed immune from modifica-
tion. For example, a list may be appended to,
or 2 compiled function may have a ‘“break point”
temporarily inserted.

In TENEX, a process may specify this copy-on-
write access whenever a file page is mapped into a
process. Copy-on-write is legal even if write access is
not. A page mapped in this way will remain shared so
long as the process only does read or execute references.
A write reference to the page will be trapped by the
monitor, whereupon a private copy of the page will be
made, and the process map changed so that it points
to the copy rather than the original. Write access is
then permitted to the copy, and the process’ original
write reference is completed.

Storage Organization and Management in TENEX 27

All of this is invisible to the process, except that it
may read its memory map and discover a different
identifier and access than was initially used to map the
page. This facility thus provides a means for allowing
sharing wherever possible without penalizing un-
avoidable modifications or requiring the user program
to handle them explicitly.

FEzamples of use of named memory

Let us consider the most common example of how
file/process memory integration and sharing is used
in TENEX, ie., a file containing a commonly used
program. We will identify this file as PROGRAM.SAV
(the extension SAV by convention implies a core-
image file). The file contains a number of pages of code
and some mapping information as shown in Figure 5.
The mapping information specifies where the code and
data pages are to be placed in a process map to produce
an image of the program. A monitor routine interprets
the mapping information and performs the mapping.
As shown in the figure, the code and data pages are
arranged contiguously in the file, but may be put any-
where in the process map. In fact, the mapping shown
is a common one, with data and temporary storage
assigned to low addresses, and reentrant code assigned
to addresses in the upper half of the process address
space.

One might suggest that instead of placing pointers
to the file in the process map, the file map itself be used
as the process map. This would be analogous to running
in a particular segment in the MULTICS-type seg-
mentation scheme. But without the full power of
general segment addressing, inter-segment references
are not possible, and our procedure offers the following
advantages.

FILE "PROGRAM.SAV"

PROCESS . MAP

/
7
/

W

//{/ !
///4/ ,/4 /

i,

:/
7///

PAGES

5,
T

§
3
3

-

Figure 5

1. A process map may contain pages from several
different files. In our scheme, individual pages
or groups of pages may be viewed as mini-seg-
ments, and used in similar ways.

2. Different processes may have different access
permissions to the same file page. In particular,
when a write reference is done to a copy-on-
write page, only one entry of the process map is
changed to address the copy.

Sequential file access

While mapping operations are readily suggested in
the case of program core images, it must be noted that
the only basic type of file access permitted under
TENEX is page mapping. TENEX provides a num-
ber of monitor facilities for other types of file access,
the most common of which is sequential. To implement
the file sequential monitor calls (e.g., byte-in, byte-out)
the monitor maintains a number of “window” pages
in a separate map invisible to the user process. For
each file with sequential operations in progress,.the
monitor maps the file page which is to receive or pro-
vide the next byte. Each call from the user causes one
or more bytes to be loaded from or stored into this page,
and a count updated to determine if a new page should
be mapped. Movement through the file is accomplished
by mapping successive pages, and the sequential access
module does not have to be aware of the physical device
on which the page resides nor interface with I/0 driver
modules to read or write it. This modularity is very
satisfying from an operating system design point of view.

As a final example, we note that processes may use
shared file pages for interproccess communication. In
this case, a particular file and set of pages within the
file are agreed upon by several processes, and the pages
are mapped into the address space of each of the
processes. The actual map slots chosen by the pro-
cesses need not be the same, i.e., the shared pages may
be put in different places in the various process address
spaces. Since the same physical storage is seen by all
processes, any of a number of common techniques may
be used to pass information in any direction, e.g., flags,
ring buffers, ete.

In itself, this procedure does not provide any direct
means for processes to signal one another, so for
asynchronous events the processes are required to
periodically test flag words in one of the shared pages.

IMPLEMENTATION
Pager

As stated above, paging hardware was designed and
built as part of the TENEX development, and a few of

28 Fall Joint Computer Conference, 1972

LLOCATION
PRIVATE ;
POINTER PHYSICAL
STORAGE
SPT
Y
Y LOCATION
SHARED
POINTER PHYSICAL
STORAGE

Figure 6—Pointer types

the characteristics of the BBN Pager are particularly
relevant to this discussion. The pager is placed logically
between the processor and the core memories and
translates each memory' address received from the
processor into a physieal core address which is sent to
the memories. Control signals allow the pager to know
what type of access the processor is making (read,
write, or execute), and allow the pager to signal the
processor when for some reason a reference cannot be
completed (e.g., the page is not in core). The virtual
addresses received from the processor are 18-bits, and
the page size is 512 words, so the pager is in fact trans-
lating the high-order 9 bits of address, and passing the
low-order 9 bits through unchanged.

The pager uses a set of associative registers to hold
some number of recent virtual/physical address as-
soclations, but the source of this information is always
a ‘“page table” in core memory. Page tables contain
(or point to) the physical storage address, if any, of
each page of a virtual memory. Thus, each process
virtual memory is represented by one page table. Page
table entries are one word, hence a page table for a
256K virtual memory is 512 words, or exactly one page.

The pager references the relevant page table, using
the 9 high-order virtual address bits as an index, when-
ever the associative registers fail to contain the re-
quested virtual address. It is capable of interpreting
three types of page table entries of which two are of
interest here. The first is called a “private” pointer
and contains a physical storage address. If this is a
core address, the pager will load an associative register
with the information and complete the requested
reference. If it is any other address, the pager will
initiate a trap to the monitor for appropriate action.
The second type of page table entry is called a “shared”
pointer, and contains an index into a system table at

a fixed location. This “shared pages table’’ (SPT) con-
tains the physical storage address, and the details of
its function are described below.

These two pointer types are shown in Figure 6. The
third type of page table entry is the “indirect” pointer
described in Reference 8, but it is not relevant to this
discussion.

One other fixed table, called the Core Status Table
(CST), is used by the pager. For each page of physical
core, this table contains information about recent
references and notes if the page has been modified.

Hierarchical storage considerations

In any system using hierarchical storage, one is con-
cerned with the movement of data between the various
levels, with knowing where the current ‘“up-to-date”
copy is, with updating lower levels, ete. It is usually
considered essential that the address of the currently
valid copy of an item of storage reside in one and only
one place. This tends to conflict with the goal of sharing
which says that items of storage should be made
available to many processes simultaneously. Replica-
tion of addresses would appear to admit the possibility
of unresolvable phase errors, and the updating problem
by itself would introduce undesirable complexity in
the software.

One quite elegant solution to this problem is the
hash table scheme which is shown in Figure 7. In this
scheme, storage addresses reside in only one place, the
storage hash table. Processes using an element of
storage are given the “home” (and presumably in-
variant) address of the element, and the current loca-
tion at any time may be found by performing a hash
lookup into the table. Using this scheme, storage ele-
ments may be moved from place to place at any time,
and only the table entry need be changed. Also, the
table entry itself may be deleted when the element is
moved back to its home address even though one or
more processes are still using it. In this case the hash
lookup will fail, and the monitor will have to re-create
the entry.

HASH TABLE
STORAGE ADR 'X' HASH X
J Lookur LOCATION
POINTER]
PHYSICAL
STORAGE

Figure 7—Hash table scheme

Storage Organization and Management in TENEX 29

A second solution to the basic storage management
problem is the shared pages table scheme used in
TENEX and shown in Figure 6. In this scheme,
storage addresses (for shared elements) again reside
in only one place, a fixed table called the shared pages
table. Processes using an element of storage are given
a fixed index Y’ which identifies the SPT entry holding
the current address. Here, also, storage elements may
be moved from place to place by changing only one
address, but unlike the hash table scheme, an entry
cannot be deleted from the SPT so long as pointers
exist which use it. Therefore a share count is required
for each entry to record the number of pointers to it
which have been created.

We considered both of these schemes and a number
of variations for TENEX before choosing the second
of the above approaches. An exhaustive justification
of this decision cannot be given here, but the decision
was based primarily on our judgment that:

1. The cost of hardware to implement the hash
table scheme was somewhat higher in terms of
design effort and overall size and complexity.

2. Additional (time) overhead would be incurred
in making the one or more probes into the hash
table for each associative register reload.

3. The resident storage requirement of the hash
table scheme would be greater.

TENEX implementation—mapping

We are now ready to show exactly how TENEX
implements the file mapping operations discussed in
the previous section, and how data flows between the
several levels of storage. The TENEX storage hierarchy
consists of three levels, core, swapping, and file. In
practice, the swapping device is a fixed head drum with
high transfer rate and fairly short latency time (e.g.,
less than 30 ms.). The file storage device is usually a
movable head disk with substantially greater capacity,
but reduced transfer and latency speeds.

As described in the previous section, named memory

FILE PAGES
INDEX ON DISK
BLOCK

DISK ADR

Figure 8—TFile structure

PROCESS
PAGE
TABLES
SPT
PHYSICAL
SHR PTR i DISK PAGE
T
DISK ADR
—~
SHR PTR
INDEX
BLOCK
SHR PTR +

Figure 9—Two processes map a file page

consists of pages within files, so we start with an ex-
ample file and two of its pages as shown in Figure 8.
The basic structure of the file is an index block con-
taining the storage addresses of all of the data pages.
This index block is in fact a page table, initially con-
taining private pointers. We assume a starting point
where none of the file pages are mapped in any process,
so the “one and only one” place for the storage address
of each of these file pages is logically and properly the
index block of the file which owns them.

Next, a process requests that one of these file pages
be mapped into its address space. The monitor uses the
JEN portion of the identifier to locate the file index
block, and the PN (page number) portion to select the
appropriate entry within it. Although our aim here is
to have just one process using the page, we see that in
fact the page must become shared at this point, that
is, shared between the file and the process. Therefore,
the monitor will assign a slot in the SPT and place in
it the disk address obtained from the file index block.
Simultaneously, it creates a shared pointer which
points to that SPT slot and places a copy in both the
file index block and the process page table. The share
count for the SPT slot is set to reflect the fact that the
page is in use twice, once by the file, and once by a
process. A second process wishing to use the page

. proceeds in the same manner, but now it is only neces-
sary to-create another .copy of the shared pointer and
increment ‘the share count. This situation is shown:in
Figure 9. The subsequent reduction of the share count
to 1 (when all processes unmap the page) will indicate

tithatthe BR Thentrynmathbeadelninged.

Some additional bookkeeping is necessary in order
to keep track of the owner of the page, and the fact

30 Fall Joint Computer Conference, 1972

SPTH

SPT

HOME_ADR

TG._ADR 1

INDE X
BLOCK

Figure 10—Ownership back pointers

that the file index block is in use. This is shown in
Figure 10. The table labeled SPTH is a table parallel
to and the same length as the SPT. For our example
file page which was assigned slot ‘SPTN’, the parallel
entry in the SPTH: records the owning page table of
the page. This is shown as OFN and PN. The OFN
(open file number) is the monitor internal equivalent
of the user’s JEN, except that it identifies open files
over the domain of all jobs in the system. The OFN is
actually an index into a portion of the SPT which is
reserved for index blocks, and the PN is the page num-
ber supplied by the user. The OFN portion of the
SPTH holds the home addresses of the currently in
use index blocks. The monitor must always open files
on the basis of the storage address of the index block
as obtained from the file directory, and a search of this
part of the SPTH is necessary to determine if the file
is already open.

Inter-level data flow

Next we show what happens when one of the pro-
cesses references the file page which has been mapped.
This is shown in Figure 11. The pager interprets the
shared pointer found in the process map, and references
the SPT. It finds, however, that the page is not in core
and traps to the monitor. The monitor in turn selects

PHYSICAL PHYSICAL
SPT. CORE PAGE DiSK PAGES
splm {
~—ds 'N' ¢
csT2 CST1
T : :
CORE N)
PAGE]
NUMBER . SPTN HOME DISK ADR 1

Figure 11—Page is referenced and brought into core

a page of real core and initiates a read of the to disk
bring in the page. The SPT slot is then changed to
indicate that the page is in core.

For completeness, we must note the function of two
tables which record the state of physical core. These
are the Core Status Tables (CST1 and CST2). For
each page of physical core, CST1 holds the physical
address of the next lower level of storage for the page.
In our current example, this is a disk address because
the page is just being read from the disk. CST2 records
the name of the page table holding the pointer to that
core page, which in this case is an SPT index. One
additional bit (not shown) is used to record whether
the page has been modified with respect to the next
lower level of storage.

PHYSICAL PAGES

CORE DRUM DISK
[+ -
SPT
SPTN
N
csT2 CsST1
T
N
Z CORE PAGE + =7 i
NUMBER v bsT
/ DRUM PAGE 3.1-
NUMBER
HOME DISK ——| +
ADR

Figure 12—Page is swapped onto drum

Next we consider what is necessary for the monitor
to swap the page onto the drum. It is important to note
that during the course of the drum write (including
latency) and for a period of time thereafter, the core
page still contains a current copy of the data, and so we
may properly leave the SPT slot pointing to it. This
will prove useful in the event that a process makes
another reference to the page during this time because
the page will not have to be read into core again. Thus
to begin the swapout, the monitor selects a free drum
page, initiates the drum-write operation, and updates
CST1 to reflect the fact that the next lower level of
storage is now the drum. :

However, we can’t discard the home address of th
page, so one other table is required. The DST (drum
status table) serves a function for the swapping level
of storage equivalent to that of the CST for core. That
is, for each page in use on the drum, the DST holds the
address of the next lower level of storage. It also records*
whether the copy on the drum has been modified with
respect to the copy on the disk so that the monitor will

Storage Organization and Management in TENEX 31

PHYSICAL PAGES
DRUM DISK

SPT

yvim

DST
¥
DRUM PAGE\A '
NUMBER

-z

Figure 13—Core page is released

know whether a write is necessary at some time to
update the disk copy. Our picture of a file page with
copies on all levels of storage is now complete (Figure
12),

One final step is shown in Figure 13. If the page re-
mains unreferenced for some period of time, the monitor
will want to use the core page for some other purpose.
To do this, the monitor will move the drum address
from CST1 of the page being reclaimed to the SPT
slot, and succeeding attempts to reference the page will
discover that it is no longer in core.

Updating lower levels

So long as the page remains mapped by one or more
processes, the share count will keep the SPT slot in use,
and our convention is that the page will be moved
between the drum and core as needed. This suggests
that some procedure may be necessary to periodically
update the home (disk) copy of pages. This is neces-
sary both to guard against loss due to system crash,
and because some files are mapped when the system
starts up and are never unmapped (e.g., the disk as-
signment bit table). In TENEX, a special system
process takes this responsibility. It periodically scans
the open files, finding pages which have been changed
since being read from the disk. File pages are backed
up to the disk by setting a request bit in the CST which
causes the swapper to move the page to the disk in-
stead of the drum. File index blocks must also be up-
dated but require a different procedure. For these, the
backup process constructs an image of the index block
as it would appear with no pages shared. That is, it
finds the home address of each page and puts it in the
index block in the form of a private pointer. This copy
is then written on the disk. This procedure is a com-
promise of the goal or having only one copy of a storage

address, but a simple interlock mechanism prevents
any phase errors during the updating.

Dynamic storage management

One of the most important and difficult aspects of
storage management in TENEX is the dynamic control
of core and flow between levels of storage. The pager
provides information on the frequency and type
(read/write) of references made to pages in core. It
also provides information on which of the processes
sharing a page (i.e., having it mapped) have actually
referenced it. A detailed description of these facilities
and the algorithms which have been developed to
handle dynamic storage management is beyond the
scope of this paper.

SUMMARY AND CONCLUSIONS

This discussion has shown how named memory can be
incorporated in an operating system having only paging
facilities, and how some of the advantages of segmenta-
tion are thereby obtained. Although there are limita-
tions to this approach, it does have the advantage of
considerably less complex hardware and software. To
date, we have not found a way to use mapping to
provide dynamically linked library subroutines, one
advantage which segmentation does provide. One
possible solution may be to build a library of self-
relocating subroutines and provide a convention for
mapping them in a portion of the address space which
the calling process is not using. Unfortunately, the
PDP-10 processor does not provide a convenient facility
for self-relocating code.

We have found that the process memory map is an
extremely useful facility for a number of purposes. It
is true that the 256K virtual memory eliminates the
need for overlaying procedures in most programs, but
where this technique is still required, it is easily imple-
mented simply by remapping groups of pages.

The implementation of a three-level storage hierarchy
used in TENEX has proved to be workable in over two
years of actual operation. The software complexity
required for the maintenance of the various tables is
perhaps greater than would be required had we adopted
the hash-table approach, but it has nonetheless been
a manageable and programmable system.

ACKNOWLEDGMENTS

In addition to the author, T. R. Strollo, R. 8.
Tomlinson, J. D. Burchfiel, and E. R. Fiala actively

32 Fall Joint Computer Conference, 1972

participated in the design of this implementation
strategy. R. 8. Tomlinson and J. D. Burchfiel did the
logic design and checkout of the Pager. Appreciation
is also due in large measure to J. I. Elkind and D. G.
Bobrow whose inspiration, leadership, and support
made the TENEX project possible.

REFERENCES

1 D G BOBROW D L MURPHY
The structure of a LISP system using two-level storage
Communications of the ACM Vol 10 No 3 March 1967

2
A note on the efficiency of a LISP computation in a paged

machine
Communications of the ACM Vol 11 No 8 Aug 1968

3 DIGITAL EQUIPMENT CORP
PDP-10 reference handbook Dec 1971

4V A VYSSOTSKY F J CORBATO R M GRAHAM
Structure of the MULTICS supervisor
Proceedings AFIPS 1965 FJCC Vol 27 Pt 1 Spartan Books
New York

5 R C DALEY P G NEUMANN
A general purpose file system for secondary storage
Proceedings AFIPS 1965 FJCC Vol 27 Pt 1 Spartan Books
New York

6 B LAMPSON et al
A user machine tn a time sharing system
Proceedings IEEE 54 12 Dec 1966

7 D G BOBROW D L MURPHY W TEITELMAN
The BBN-LISP system reference manual
BBN April 1969 pp 3.8-3.9

8 D G BOBROW J D BURCHFIEL D L. MURPHY
R S8 TOMLINSON
TENEX, a paged time sharing system for the PDP-10
Communications of the ACM Vol 15 No 3 March 1972

The application of program-proving techniques to
the verification of synchronization processes

by KARL N. LEVITT

Stanford Research Institute
Menlo Park, California

INTRODUCTION

The purpose of this paper is to establish the applicability
of program-proving techniques to the verification of
operating systems, control programs and synchroniza-
tion programs. All the illustrative examples to be
presented use Dijkstra’s' P and V operations for con-
trolling the synchronization of competing processes.
However, the techniques discussed are applicable to
any set of such control primitives. A major portion of
the paper is devoted to the proof of correctness of two
programs devised by Courtois et al.? that control the
sequencing of “readers’” and “writers” requesting the
use of a common device.

The notion of establishing the correctness of com-
puter programs by providing a formal proof of correct-
ness originated with Floyd? and Naur.# In the following
section we discuss the Floyd-Naur approach in more
detail, but for our purposes here the method can be
summarized as follows. Each input line of a program is
associated with an input assertion ¢ that expresses any
constraints on the input variables. Similarly, each
output line is associated with an output assertion ¢
that expresses the desired relation among output vari-
ables when (and if) the program halts. Certain inter-
mediate program lines, most notably those lines that
serve to cut the program loops, are associated with
“Floyd” assertions (or simply, assertions) that express
the relationship among all program variables whenever
control passes to those points.

The correctness of the program with respect to these
programmer-supplied assertions is proved as follows.
For each path in the program that commences and
terminates with assertions (and not traversing any
intermediate assertions), it is shown that the ‘“com-
mencing”’ or antecedent assertion, together with the
transformation expressed by the intervening code,

33

implies the “terminating’ or consequent assertion. Such
a proof establishes the correctness of the program, if
successfully earried out for all paths, provided the
program halts.* The establishment of program halting,
as described by Floyd, is to be carried out as a separate
proof, by, for example, showing a well-ordering of a
variable’s values throughout the execution of the
program. Manna® later showed that a single proof
process, albeit more difficult than Floyd’s, and also
undecidable, could suffice to demonstrate both program
correctness and halting. London®7# has proven some
moderate size programs (up to 100 lines of code) using
Floyd’s method, and has provided some insight into the
specification of the assertions. The status of program
proving through June 1971 is summarized in a tutorial
manner in a survey paper by Elspas et al.?

In most applications of program proving to date, it
has been assumed that (1) the program is executed in
a serial, i.e., uniprocessing, uniprogramming environ-
ment, or that any multiprogramming or multiprocessing
is invisible to the program’s execution; and (2) the
program contains specified output points to which
well-defined output assertions can be applied. The
implication of assumption (1) is that, at any instant
of time, control resides at only one point in the program.
In contrast, synchronization and operating system
programs are parallel programs. There are really two
types of parallelism of concern to us. Explicit parallelism
occurs when more than one processor is available to
execute a program so that several program paths are
processed simultaneously. Implicit parallelism, which is

* We emphasize that this proof process establishes' program
correctness with respect to the user-supplied assertions. As
another way of looking at the process, the proof establishes the
equivalence between a procedural description (i.e., the program)
and a nonprocedural description (i.e., the assertions).

34 Fall Joint Computer Conference, 1972

really multiprogramming occurs when a program’s
execution can be temporarily interrupted to carry out
the execution of another program. Thus several pro-
grams are in various stages of execution at any instant.

With regard to assumption (2) the behavior of an
operating system is not conveniently described by
assertions placed at output points. In particular an
operating system does not contain output points since
t should, in proper operation, never halt.

The dominant theme here relates to techniques for
handling the simultaneous or parallel activity asso-
ciated with an operating system and for the specification
and proving of Floyd assertions so that the intent of
the program is distributed among these assertions.

Some mention should be made of previous work
relating to the proving of programs with parallel ac-
tivity. Ashcroft and Manna® have investigated a
particular model of a parallel program wherein several
independent parallel paths may exist in a program
(and it is conceived that each path has its own program
counter), but execution is carried out by a uniprocessor.
In executing the program the uniprocessor arbitrarily
selects one of the paths, processes the single instruction
specified by the program counter, and then arbitrarily
selects the next path to consider, which might also be
the previously considered path. BEGIN- and JOIN-
type nodes are also included for generating and
““collapsing” parallel paths. Ashcroft and Manna then
visualize a single nondeterministic program, based
on the original parallel program, that contains choice
points corresponding to the several instructions from
which the uniprocessor may select at any instant.
Assertions are applied to each such choice point and to
all points at the heads of loops. The assertions at a
particular point describe the state of all program
variables when (and if) control reaches the point in
question, for all possible paths of control to that point.
Thus the problem of proving a parallel program reduces
to the proving of a conventional program provided
suitable interpretation is given to the choice point.

A disadvantage of this approach is that a proliferation
of assertions results from the need to consider every
instruction in each path as a choice point. To alleviate
this situation Ashcroft and Manna introduced a special
block into the model so that, if control enters this
block, the execution of the block is continued without
interruption until the block halts.

The parallel model that we will consider here for the
synchronization programs is an extension of the
Ashceroft-Manna model in that processing is carried on
simultaneously by more than one processor. In addition,
we assume the existence of a special SPLIT node that
permits a uniprocessor path to be converted into a

multiprocessor path and a critical section so that only
one processor at a time is granted access to such a
section. With these improvements the number of
assertions tends to remain manageable.

In a recent paper Habermann!' has made an initial
attempt to formalize the synchronization mechanisms
associated with control primitives like P and V, and
has provided proofs of several simple programs using
such primitives. In a sense, Habermann’s proof tech-
nique could eventually be more attractive than the
method we will describe since it takes better advantage
of the hierarchical or modular structure induced by the
control primitives. The present disadvantage of the
Habermann method is that it is ad hoe for programs
with a mixture of control primitives and “conventional”
code. As the program-proving field matures so that
automatic or semiautomatic program verifiers become
available, our approach will be amenable to implementa-
tion by such a system. In fact, the proofs that emerge
although lengthy, involve relatively simple manipula-
tions, and should be implementable by relatively
unsophisticated program verifiers.

In the following sections we review briefly the
pertinent program-proving theory, review the semantics
of the P and V operators and present a proof of a simple
mutual exclusion program, present a few simple exten-
sions to handle the parallel case, present detailed proofs
of the two programs by Courtois, and present our
conclusions.

REVIEW OF PERTINENT PROGRAM-
PROVING THEORY

In the foregoing section we pointed out that in
proving a program by Floyd’s method the user must
provide an input assertion ¢ for each input point, and
an output assertion ¢ for each output point. In addition,
he must provide intermediate assertions ¢, ¢s, . .., so
that each loop in the program is cut by at least one
such g;. The process of proving the program with respect
to the applied assertions is to prove each path, where a
path is defined by an antecedent assertion, a consequent
assertion, and intervening code. For each path a
verification condition is derived that is a statement of
the form:

antecedent assertion A intervening code
Dconsequent assertion.

In order to prove the program correct it is necessary
and sufficient to prove that each of the verification
conditions is logically correct. An interesting mechanical
approach to the generation of verification conditions

Application of Program-Proving Techniques 35

called back substitution has been developed by King.!?
Since we will Jater make use of back substitution in
developing verification conditions, it is worth giving it
a brief discussion here for program code consisting of
simple variable assignment statements of the form
y«(expression) and branch statements. For the treat-
ment of array assignment statements of the form
A (m)<«—expression and of procedure calls, the reader is
referred to References 12, 13, and 14.

Briefly, the generation of verification conditions for a
path with antecedent assertion ¢; and consequent
assertion ¢; involves the carrying out of string sub-
stitutions proceeding backward along the path from
g; to g.. That is, if ¢; involves a variable y and a s'mple
assignment statement immediately preceding ¢; is of
the form y«f(z), then g; is transformed to a ¢;/, where
each occurrence of y in ¢; is replaced by f(z). The newly
formed assertion g, is then transformed to a g¢;/’ based
on the assignment preceding y«f(z) and so on, until
an assertion ¢ is generated so that all assignments
between ¢; and ¢; are accounted for. The verification
condition to be proved to establish the correctness of
the path in question is ¢; Dg;” A test (or branch state-
ment) T, appearing subsequent to the generation of an
assertion ¢/*, is handled by transforming ¢/ to T Dg/.
Substitutions specified by subsequent assignment
statements (proceeding backwards) are made for
variables in both ¢/ and T.

The mechanics of back substitution are illustrated
with respect to the simple program path depicted below.
The program is taken from Reference 9.

41

Test: P—A—-B2>0
Y—Y+D/2
A—~A+B
B<—B/2
D«D/2

Q1

The guessed assertion is given by ¢i: [A=(Q%Y)]JA
(B=Q*xD/2) A (D=27%) A (k=nonnegative integer) A
(P/Q—D<Y<P/Q). The reader can verify that the
back substitution of ¢; through the intervening tests
and assignment statements leads to the following
verification condition:*

@A (D/2<E) A (P—A—B20)
O (A+B=Qx(Y+D/2)

* We have made use of the tautology [RD (SO T)]=[(RAS)D T)]
to form a logical expression involving a single implication where
only the transformed consequent assertion appears on the right
side of the implication.

A (B/2=QxD/4) A (D/2=27%)
‘A (k=nonnegative integer)
A(P/Q—D/2<Y+D/2<P/Q).

We leave it to the reader to verify that the above
condition is logically true. For example, we note that
the term (B=Q%D/2) in ¢ implies the term (B/2=
Q%D/4) in the consequent of the verification condition.

At present, we know of several implementation of
verification condition generators that handle the simple
assignment statements and tests discussed above, in
addition to arrays, procedure calls, and various ALGOL-
like constructs. The discussion section contains a
prognosis of the availability of verification condition
generators, theorem provers, and semiautomatic asser-
tion generators.

P AND V PRIMITIVES AND PROOF OF THE
SIMPLE MUTUAL EXCLUSION PROBLEM

Dijkstra! introduced the P and V operators as a
software approach . toward controlling the access to
critical sections of competing processes.* The simplest
possible use of these operators is illustrated by the
following program,

I

P(S
i .
critical section
i)
V(S)
i

wherein it is assumed that many processes wish to gain
access to the critical section, but only one such process
is to be processing the critical section at any instant.
The P operator ensures that a process gains access only
if no other processes have current access; otherwise, the
requesting process is forced to wait. The V operator
activates the scheduling of a deferred process on the
completion of the current processing of the critical
section. (Throughout the discussion we will assume that
the scheduler arbitrarily selects one of the deferred
processes for access to the critical section.) The paral-
lelism here is actually trivial; control can be in the
critical section and P simultaneously, but at no other
pair of points simultaneously. The following interpreta-
tion of P and V will accomplish the desired control**

* Throughout this discussion we will assume a process to mean a
task that requires access to particular resource or resources for its
execution.

** We assume the existence of some primitive lock-out mechanism
so that only one process at a time gains control of a P or V
operator. '

36 Fall Joint Computer Conference, 1972

wherein, according to Dijkstra, the variable S serves
as a semaphore.

Initially S=1,

P(S): S&S-—-1;
if S=0 then schedule process else wait.
V(S): S«S+1;
if S<1 then schedule deferred process else
done.

To prove formally that the control is indeed as
hypothesized, we will represent the program as the flow
chart of Figure 1. We have introduced two new integer
variables: PENS, which indicates the number of pro-
cesses pending (on the semaphore S), and D, which
indicates the number (hopefully 0 or 1) of processes
that are processing the critical section. (Note that
PENS and D are not strictly a part of the P and V
mechanism but merely variables that we have intro-
duced to simplify the extraction of the program’s

INITIALLY: S =1
PENS = 0
D=

D<D+1

P(S) | TEST: S = 0—p{ PENS « PENS + 1|
1Yes :
!
D-D+1 |
e]
v
CRITICAL SECTION
oy i
| | D<D-1 !
| S«S+1 |
vis) | 1 !
Y < _
I TEST S < 1Y, PENS < PENS - 1 IL
I |

TA-710582-33

Figure 1—Flow chart representation of simple control program

intent from the assertion.) Point @) of the flow-chart
corresponds to the wait point, and when the V operation
schedules a process, control returns to Point 3). Points
@ and @ correspond, respectively, to the entry point
of a process and the exit point wherein no processes
are pending on S.

The proving of the program has two aspects. The
first part, which we will call the correctness part, is to
prove that at any instant D is either 0 or 1, corre-
sponding to 0 or 1 processes in control of the critical
section. The second part, which we will call the deadlock
part, is to show that D>1 if and only if PENS>1. The
proof of this latter condition will ensure that, if a set of
processes has been deferred, then there is a process that
will eventually perform a V operation and schedule a
deferred process. This approach toward avoiding
deadlock has been called the expediency condition,” and
ensures that the system never reaches a state where no
requests can be granted. The deadlock part of the proof
corresponds to the proof of halting in Floyd’s method
in that in both cases the proof is handled apart from the
proof of correctness.

The use of program-proving techniques requires the
attachment of assertions to the flow chart. We have
assumed that if a process has gained control of the P
(or V) operators, then all other processes are prevented
(by hardware lockout) from gaining control of either P
or V until the process in control has taken either of
the two exits from P (or V). On the basis of th's assump-
tion it is not necessary to apply assertions at any
interior points in the P or V operations, since the state
of the variables at the terminal points of P and V are
sufficient to specify the state at any interior points of
P or V. However, by the definition of the problem this
does not apply to the critical section, i.e., if the control
were not working as intended then several processes
could have control of the critical section.

The “guessed” Floyd assertions for the program are
as follows, where ¢;, =1, 2, 3, 4 is the assertion at
point (7).

.= (integer S) A (S<1) A (D=u(—S8+1))

A (PENS =u(S) —8)
2= (integer S) A (S<0) A (D=1) A (PENS=—8)
gs= (integer S) A (S<0) A (D=1) A (PENS = —§8)
= (integer S) A (S=1) A (D=0) A (PENS=0),

where u(z) is the step function defined by

u(z)=0 for 2<0
u(x)=1 for x>0.

Two steps must be followed in proving the program

Application of Program-Proving Techniques 37

with respect to the above four assertions. Step 1 is to
prove that for all paths the assertions are consistent
with the transformation specified by the intervening
code; Step 2 is to establish that the validity of the
correctness and deadlock parts is correctly embedded
in the guessed assertions.

First, in Step 1 the following control paths must
be verified:

152, 13, 34, 353

For purposes of illustration we will outline the proof of
1—3; this outline should enable the reader to verify the
other paths. The path from 1—3 embodies the following
steps

41

Se8—1
Test: S=0
D«D+1
Q3.

Back substitution on ¢; leads to the following verifica-
tion condition:

[(integer S) A (S<I)A(D=u(—S+1))
A(PENS=u4(8)—S)JA(8—1=0)
D[(integer S—1) A (8—1<0)

A(D4+1=1) A (PENS=—8+1)].

The first term of the consequent, integer S—1, is true
from integer S. The second term is true from S—1=0,
ie., S=1. The third term, D=0, is true from
[D=u(—~S+1)]JA(S=1). The fourth term is true
from [PENS=u(8) —S]A (S=1). Thus the path 1—3
is verified (with respect to the ‘“guessed’ assertions).

Step 2, establishing that the assertions embody the
desired behavior of the correctness and deadlock parts,
remains to be carried out. The correctness part is
apparent from the assertions by noting that D=0 or 1.
The deadlock part is satisfied by noting that whenever
PENS>1, then also D>1; thus there exists a process
currently in the critical section that will eventually
schedule some deferred process.

As an extension of this simple control program that
we will use in the following sections, consider the
program displayed in Figure 2. The program is a
straightforward extension of the simple single critical
section program discussed above. It can be shown by a
proof similar to that outlined above that access is

granted to only one of the two critical sections at a

time. Thus, control cannot be simultaneously at points
® and (. The interpretation of P(S) and V(S) is
modified from that described previously, as shown in
Figure 3. The variables PENS1 and PENS2 serve to

®

v
P(S)——b@

——6
v

CRITICAL SECTION 1

'

P(s)—(2)
—
®

—eee>
|
CRITICAL SECTION 2
i
V(S)
TA-710582-34

Figure 2—A control program with two critical sections

indicate, respectively, the number of processes pending
on semaphore S at critical sections 1 and 2. The
“CHOOSE” box functions as follows. Either of the two
output branches is chosen at random. If the test in the
selected branch succeeds, then control continues along
the branch; otherwise, control is passed to the other
branch. Note that the relation S <1 ensures that control

38 Fall Joint Computer Conference, 1972

P(S) (FOR CRITICAL SECTION Ul

TEST: § = 9-Noy,

IENS1<—PENS1+1"->

Yes
V(S)
S <8 -1
‘ Yes
TEST: S < 1—p
No 4
P y

-

CHOOSE

TEST: PENS 1 > 03> TEST: PENS 2> 0
Yes

,ENS 2 « PENS 2 -—1]
v
To@

TA-710582-35

| PENS 1< PENS 1- 1]
v
To@

Figure 3—Interpretation of P and V for two critical sections

can pass along at least one of the branches because if
S<1, then PENS1+PENS2>1. The purpose of the
CHOOSE box is to place no arbitrary constraints on
the scheduling of deferred processes. The ‘“SPLIT” box
simultaneously passes control along each of its output
branches. The intention here is both to reschedule
another process onto a critical section associated with
semaphore S and to have the process that just finished
the critical section execute the instructions following
V(S).

Wherever two or more parallel paths converge there
is a JOIN box, embodying some rules for combining
the paths. Points &) and ® of Figure 3 are really JOIN
boxes. The most apparent such rules are OR (AND)
indicating that control is to proceed beyond the JOIN
box wherever any (all) of the inputs to the JOIN box
are active. Our discussion will apply mainly to the OR
rule, but is easily extended to the AND case.

APPLYING ASSERTIONS TO SYNCHRONIZA-

TION PROGRAMS AND ABSTRACTING THE

- PROOF OF CORRECTNESS AND DEADLOCK
FOR THE ASSERTIONS

The simple program of Figure 1 reveals, although
only in a trivial manner, the possibilities for parallel
activity that we wish to exhibit. For example, in Figure
1 it is possible for control to reside simultaneously in the
critical section (point 3®)) and at point (D). The assertion
we applied at point @ reflects the possibilities for
multiple points of control in that the variable relation-
ships correspond to control being only at point @,
simultaneous at points @ and (@), or simultaneous at
points @O, @, @. (It is assumed that processors are
available to execute any code associated with the critical
section as well as with the P(S) and V(S) blocks.) In
proving the program we did not require any new
formalisms beyond those associated with the uni-
processing situation since hardware locks are so con-
stituted that the P and V operations are not simul-
taneously executed.

A more general situation is displayed in Figure 4.
Here we illustrate portions of two processes, A and B,
with interprocess communication achieved via the
semaphore S. The particular model of computatlon that
we will assume is as follows:

Assume that at periodic intervals calls are made
on sections A or B. The availability of a processor

SECTION A SECTION B
ENTER A ENTER B
P(M)@b P(S) =t
|
—® ®
vy « flyy) 1
v2 < gly,)
vis)
e e 1
| (7 Sy
Ses-1 ®
D
TEST: § < 1—Zp
v, < hiy,)
" ®
CHOOSE 1
vz < glyy)
| .
i ' R '
| TEST: PENS 1> 0 TEST: PENS 2> 0 |
4 PENS 1« PENS 1-1 PENS2 < PENS2- 1
1 (N —_— —_ P —
1 3 ‘ l
[——vm

TA-710582-36

Figure 4—Program to illustrate assertion interpretation

Application of Program-Proving Techniques 39

to commence processng of the calls is always
assumed to exist. If two or more processors
attempt simultaneous reference to a variable or
operator, the selection of the processor that
achieves access is made arbitrarily. If execution
is deferred, say, at point (®) , subsequent to the
P(M) operation, the affected processor is
presumably freed to handle other tasks. When
the corresponding V(M) operation is carried out,
schedul ng a deferred process, a processor is
assumed to exist to effect the processing,

With reference to this program and the assumed
model of parallel computation, we will illustrate ap-
proaches to the placement of assertions and to proving
the consistency of the assertions relative to intervening
program statements.

Assertion placement

Since we are assuming a parallel/multiprocessing
environment, there are potentially many points in the
flow chart at which a processor can be in control. For
example, in Figure 4 control can be simultaneous at
points @), (@, and ®). However, we will assume that the
role of the P(M) and V(M) operations is to exclude
simultaneous accesses to the intervening critical section,
provided there are no branches into the critical section.
Hence, control cannot be simultaneous at points @) and
. An agssertion, for example at point (@), must reflect
the state of the variables of the various processes
assuming that:

(1) Control is at point @) and, simultaneously,
(2). Control 1s at any possible set of allowable points.

By “allowable” we mean sets of points not excluded
from control by virtue of mutual exclusion. We recall
that for the uniprocessor environment assertions are
placed so that each path in the program is provable. As
an extension of that observation we can show that the
proving of paths in a parallel program can be accom-
plished provided the following rules are satisfied:

(1) Each loop in the program must be broken by
at least one assertion.

(2) Within a critical section (i.e., one where control
is at only one point at a time and where any
variables in the critical section common to other
portions of the program are themselves in
critical sections under control of the same
semaphore), only a sufficient number of asser-
tions need be applied to satisfy the loop-cutting

rule, (1). We assume that all entries to critical
section are controlled by P, V primitives. If not
then rule (3) below applies.

(3) All points not covered by rule (2) must generally
be supplied with assertions.

(4) Each HALT point and all WAIT points asso-
ciated with a P operation must contain asser-
tions.

Thus, in Figure 5 a possible placement of assertions is
at points @ , @, @, @), @), and . Note that since the
purpose of synchronization programs is generally to
exclude, by software techniques, more than one process
from critical sections, such programs will not require
the plethora of assertions associated with a general
parallel program. Also note that it is a simple syntactic
check to determine if a given assertion placement
satisfies the above rules.

Once the points where the assertions are to be placed
have been selected and the assertions have been de-
veloped, it remains to prove the consistency of asser-
tions. As in the uniprocessor case, the first step in this
proof process is to develop the verification conditions
for each path. For the parallel environment of concern
to us here, we are confronted with the following types
of paths: simple paths, paths with SPLIT nodes, paths
with CHOOSE nodes, and impossible paths. These four
path types are handled below, wherein the rules are
given for developing the verification conditions, and
some indication is given that the parallel program is
correct if these rules are followed. A complete proof of
the validity of the rules is not given because an induc-
tion argument similar to that of Floyd’s applies here.

Verification condition for a simple path

By a simple path we mean a path bounded by an
antecedent and a consequent assertion, with the inter-
vening program steps being combinations of simple
branch and assignment statements. For such a path the
verification condition is derived exactly as in the
uniprocessor case. That this is the correct rule is seen
by noting that the assertion g, placed at point a in the
program reflects the status of the variables, assuming
that control is at point @ and also at any allowable
combination of other points containing assertions. Also
note that because of our assertion placement rules, the
variables involved in the code between ¢ and b are not
modified simultaneously by any other process. Thus,
if a simple path a—b is bounded by assertions ¢, and
¢ and if it is proven that g, A (intervening code) Dgs,
then the path is proven independently of the existence
of control at other allowable points.

40 Fall Joint Computer Conference, 1972

Verification conditions for paths with SPLIT nodes

Assume that a SPLIT node occurs in a path, say,
bounded on one end by the antecedent assertion g¢.
Recall that at the SPLIT node, separate processors
commence simultaneously on each of the emerging
paths. Also assume that along the two separate paths
emerging from the split nodes the next assertions
encountered are ¢, and ¢, respectively.* In this case the
“path” (which is actually two paths) is proved by
showing that

¢ A (code between point ¢ and SPLIT node) A
(code between SPLIT node and point b)
A (code between SPLIT node and point ¢) D

(Qb/\Qc)-

Note that it is not sufficient merely to consider the path
between, say, a and b, since the transformations between
the SPLIT node and ¢ may influence the assertion gs.
However, note that the variable references along the
two paths emerging from the SPLIT node are disjoint,
by virtue of the rules for selecting assertion points.
Hence the use of back substitution to generate the
verification condition can function as follows. Assertion
@» is back-transformed by the statements between point
b and the SPLIT node, followed by the statements
between point ¢ and the SPLIT node, finally followed
by the statements between the SPLIT node and point a
to generate ¢5. A similar rule holds for traversing back-
ward from ¢, to generate ¢.. Note that the order in
which the two paths following the SPLIT node are
considered is not crucial since these paths are assumed
not to reference the same variables. '

Verification condition for a path with ¢ CHOOSE node

Recall that when control reaches a CHOOSE node
having two exits, the exit that is chosen to follow is
chosen arbitrarily. Hence the effect of a CHOOSE node
is simply to introduce two separate simple paths to be
proven. For antecedent assertions gs, ¢., what must be
proved is

ga A (code between a and b) Dgs
go A (code between a and ¢) Dg..

Note that one or possibly both of the paths might not be
control paths, but this introduces no difficulties, as we
show below.

* Various special cases are noted, none of which introduce any
particular difficulties. It is possible that ¢., ¢» and g. might not
be all distinct or that another SPLIT node occurs along a path
before encountering a consequent assertion.

Impossible paths

As mentioned above, not all topological paths in a
program are necessarily paths of control. In effect, what
this means is that no input data combinations exist so
that a particular exit of a Test is taken. Recall that for
antecedent and consequent assertions ¢,, ¢5 and an
intervening Test, T, the verification condition is
@ AT’ Dq’, where the prime indicates that back sub-
stitution has been carried out. Clearly, if the test always
evaluates to FALSE, then ¢, AT’ must evaluate to
FALSE, in which case the implication evaluates to
TRUE independent of ¢’. (We recall that TRUED
TRUE, FALSEDTRUE, and FALSEDFALSE are
all TRUE.)

Proving that program has no deadlock

For the parallel programs that we are dealing with
deadlock will be avoided if for every semaphore S such
that one or more processes are pending on S, there
exists a process that will eventually perform a V(S)
operation and thus schedule one of the deferred pro-
cesses. (We are not implying that every deferred process
will be scheduled, since no assumptions are made on the
scheduling mechanism.) In particular, if a process is
pending on semaphore a, then it is necessary to show
that another process is processing a. If that latter
process is also pending on a semaphore b, it is necessary
to show that b>£a, and that a third process is processing
b. If that third process is pending on ¢, it is necessary
to show that c¢=b, c#a, and that a fourth process is
processing ¢, ete.

In the next sections we apply the concepts above to
the verification of particular control programs.

PROOF OF COURTOIS? PROBLEM 1

This section presents a proof of a control program
that was proposed by Courtois et al. The program is as
follows:

Integer

RC; initial value=0
Semaphore
M, Q; initial values=1
READER
P(M)
RC+—RC+1
if RC=1 then P(Q)
V(M) P(Q)

READ PERFORMED WRITE PERFORMED
P(M) V(@)
RC—RC-1
if RC=0 then V(Q)
V(M)

WRITER

Application of Program-Proving Techniques 41

READER WRITER

RC « iac +1
TEST: RC = 1—225,
No P(Q)——e
-—
]
RD <« RD + 1 1 ®
S P(Q)—>
= V(M) Pl ®
v
(ioevice) (5)

v

P(M)—=(6) (DEVICE)

-
|
|
|
|
|
|
|
: WD < WD + 1
|
|
|
|
|
|
|
|
I
|
|

— @
'0 v
AD < RD - 1 WD < WD - 1
RC < RC - 1
v(a)
v Yes
TEST: RC = 0—— D)
-
No via) L
]
——v(m)

TA-710582-37

Figure 5—Flow chart representation of Courtois problem 1

The purpose of the program is to control the access of
“readers” and “writers” to a device, where the device
serves in effect as a critical section being competed for
by readers and writers. If no writers are in control of
the critical section, then all readers who so desire are to
be granted access to the device. (We show below that
the program almost satisfies this goal, although under

certain rare circumstances a reader’s access might be
deferred for a writer even though at the time at which
the reader activates the READER section no writer is
actually on the device.) A writer is to be granted access
only if no other writer or reader is using the device;
otherwise, the requesting writer’s access is deferred. In
particular, any number of simultaneous readers are
allowed access provided no writers are already on.
The role of the semaphore M is to enforce a scheduling
discipline among the readers’ access to RC and Q. For
our model of parallel computation, it can be shown that
the semaphore M is not needed, although its inclusion
simplifies the assertion specification.

Figure 5 is a flow chart representation of the program.
A few words of explanation about the figure are in
order. The V(Q) operator for the reader and the
V(M) operator for the upper critical section are as-
sumed to be the generalized V’s containing the CHOOSE
and SPLIT nodes as discussed in the two previous
sections. The other V operators are assumed to contain
CHOOSE but no SPLIT nodes. The dashed line
emerging from V(Q) indicates a control path that will
later be shown to be an impossible path.

Associating appropriate variables with each of the
P and V operators, the following integer variables and
initial values are seen to apply to the flow-chart.

M Q RC RD WD RPENQ

110 0 0 0
WPENQ RPENM1 RPENM2
0 0 0o

where the R and W prefixes to a variable correspond,
respectively, to readers and writers and the 1 and 2
suffixes correspond, respectively, to the “upper” and
“lower”’ critical sections associated with semaphore M.

Once again we will divide the proof for this program
into a correctness part and a deadlock part. For the
correctness part we will establish that

(1) WD=0 or 1, indicating that at most one writer
at a time is granted access to the device.

(2) If WD=1, then RD=0, indicating that if one
writer is on the device, then no readers are

“On.”

(3) If WD=0, then RPENQ=0, indicating that if
no writer is on the device, then a reader is not
held up by semaphore Q. An entering reader
under these circumstances could be held up by
semaphore M, ie., RPENM1>0. (We will
temporarily defer discussion of this situation.)

According to the assertion placement rules, each

42 Fall Joint Computer Conference, 1972

input, output and wait point must possess an assertion,
each loop must be cut by an assertion, and in addition,
an assertion must be placed at each point along a path
wherein along another parallel path there exists an
instruction referencing variables common to the point in
question. For this program the assertion placement
problem is simplified since all variables, e.g., RC and Q,
common to two or more parallel paths are a part of
critical sections wherein access is granted only to one
such critical section at a time. Hence, only the input-
output and loop-cutting constraints must be satisfied,
leading to a possible placement of assertions at the
numbered points in Figure 5. Note that point) does
not require an assertion, but since it represents a control
point where readers are on the device, it is an interesting
reference point.

The assertions associated with all 11 control points
are indicated in Table I. The assertion labelled GLOBAL
is intended to conjoin with the other 11 assertions. The
appearance of (i) at the beginning of a disjunctive
term in ¢s, g3, gs, go indicates that the first (i) terms are
the same as in ¢;. Thus, for example, in the first dis-
junctive term of assertion ge, the first six conjunctive
terms are the same as in the first disjunctive term of ¢,
- but the seventh and eighth terms are different, as
shown. ’

It is worthwhile discussing our technique for speci-
fying the assertions—we will provide sample proofs
later on to attest to the validity of the assertions. In
specifying the assertion at a point a, we assumed, of
course, that control is at ¢ and then attempted to guess
at which other points control could reside. Variable

relationships based on this case analysis were then
derived, and then the expressions were logically simpli-
fied to diminish the proliferation of terms that resulted.
For example, in assertion ¢, the first disjunctive term
corresponds to the case: no writers on the device, i.e.,
control is not at @. The second disjunctive term corre-
sponds to the case of control at G@. With regard to the
second term if control is hypothesized at @0, it is also
guessed that control could possibly be at (®), @), and
®or@®.

It remains to verify all the paths bounded by the
11 assertions. The paths so defined are:

1—52; 1-3; 3—4; 3—(5, 3); 3—(5, 7) ; 5—6; 57,
7—8 [RCs£0]; 7—7 [RC=#0]; 73 [RC=0];
7—(5,3) [RC=0]; 7—(5, 7) [RC=0]; 7—(5, 8)
[RC=0]; 7—(10, 3) [RC=0]; 7—(10, 7)
[RC=0]; 7—(10,8) [RC=0]; 1-9; 1-10;
10—11; 10—10; 10—5; 10—(5, 3); 10—(5, 7).

A brief discussion of the symbolism is in order. For
example, the path 3— (5, 3) commences at (3), and then
splits at the SPLIT node of V(M) into two paths
leading to (& and ®. The path 7—(10, 3) [RC=0]
indicates that the branch defined by RC=0 is taken,
followed by a splitting at V(Q), one path leading to 3,
and the other path taking the CHOOSE exit toward
@. Clearly, many of the above paths are impossible
paths—as revealed by the proof.

We will not burden the reader of this paper with
proofs of all the paths, but we will provide an indication
of the proofs for several of the more interesting paths.

TABLE I—Assertions for Courtois Problem 1

Global: (All variables ¢ DA(M<1)A(Q<I)A(RC20)A(RD >0)A (WD >0)A (RPENQ >0)A(WPENQ >0)A (RPENM1>0)A

(RPENM22>0)

g [(WD=0)A(RD=RC)A(RPENQ=0)A(WPENQ=u(Q)—Q)Au(Q) =u(1—RC))A (RPENM2<RD)A (RPENM1+
RPENM2 =u(M)—M)]V [WD =1)A (RD =0)A (RPENQ =RC)A (WPENQ = —Q—RC)A (RC =u(RC))A (RPENM2 =0)A

(RPENM1=u(M)—M)A (M <u(1-RC))]
@ [(6) RPENM1>0)A (M <0)V [(7)M <0]
G (M L0)V [(7)Y(M <0)]

q: [(WD=1)A(RD=0)A (RPENQ=1)A(WPENQ= —Q—1)A (RC=1)A (RPENM2 =0)A (RPENM1= — M)A (M <0)A

(Q=<0)]

g5 [(WD=0)A(RD=RC)A(RPENQ=0)A(WPENQ = —Q)A(Q <A (RPENM2 <RD—-1)A(RPENM1+RPENM2=u(M)—-M)

A(RC=1)]

a4 (WD=0)A(RD=RC)A(RPENQ=0)A(WPENQ = —Q)A(Q <0)A(RPENM2 <RD)A (RPENM2 <1)A (RPENM1

+RPENM2=-MA(M<OARC>1)]

@ (WD =0)A(RD=RC)A(RPENQ=0)A(WPENQ=—Q)A(Q <0)A(RPENM2 <RD—1)A (RPENM1+RPENM2 = —M)

AM<LOARC>1)]

gs: [(BYRPENM2=0)A(RPENM1=0)A(M=1)]V [WD=1A(RD =0)A (RPENQ =0)A (WPENQ = —Q)A (RC=0)A (RPENM2

} =0)A(RPENM1=0)A(M=1)] ‘
9: [(7NQ<0NVI(8)Q<0]

quo: [Second disjunctive term of 1]

qu: [WD=0)A(RD=0)A(RC=0)A((RPENQ=0)A(WPEN =0)A(Q=1A (RPENM2 =0)A(RPENM1=u(M)—M)]

Application of Program-Proving Techniques 43

TABLE IT—Proof of Path 10—(5,3) in Courtois Problem 1

Program steps:

Q1o

WD—~WD-1
Q—Q-+1

Test: Q<1

Test: REPENQ>0
RPENQ«—RPENQ-1
RD<—RD+1

MM+4-1
Test: M <5

Test: RPENM1>0

qs

RPENM1+—RPENMI1—1

qs
Backsubstitute q; and g5 to yield g3/, g5

g5’ (WD=)A(RD+1=RC)A(RPENQ=1)A(WPENQ=—-Q—-1)A(Q+1<0)A(RPENM2<RD)A(RPENM1+RPENM2

=u(M+1)—M)A(RC2>1) :
qs’:

(WD=DARD+1=RC)A(RPENQ=DA(WPENQ=u(Q+1)—Q—-1)}(u(Q+1)=u(1 —RC)HA(RPENM2<RD+1)

A(RPENM1+RPENM2=u(M+1)-M)VI(WD=2)A(RD=—-1}..]

Tests backsubstituted
T: (RPENMI1 >0)A (M <0)A(RPENQ >0)A (Q<0)
Verification Conditions
auA T Dqs’ q\T'Dqs’
Sample Proof: Proof of qs’' term RPENQ=1
From qi: (RPENQ=RC)A (RC=u(RC))
Thus RPENQ=0 or 1
From TV RPENQ>0
Thus RPENQ =1

Table II outlines the steps in proving the path:
10— (5, 3). At the top of Table IT we delineate the steps
encountered along the path. As is readily noted, the
path contains a SPLIT node. To develop the verification
condition, back substitution is required from both ¢;
and ¢s to form g5’ and ¢5'; note that in developing ¢s’
the statements between the SPLIT node and point 3)
must be considered, in addition to the statements
directly between points G0 and &). To verify the path,
the following two logical formulas must be proved true:
gAT Dg’; AT Dgs’. At the bottom of Table II we
outline the few simple steps required to prove the term
(RPENQ=1) in ¢s'. The patient reader of this paper
can carry out the comparably simple steps to handle
the remaining terms. Note that ¢;" is the disjunction of
two terms, one beginning with the term (WD=1) and
the other with the term (WD=2). For g0 AT’ Dg;’ to
be true, it is necessary for only one of the disjunctive
terms to be true. The reader can verify that it is indeed
the first disjunctive term that is pertinent.

As a final note on the verification of paths, consider
the path 10—(5, 7). A little thought should indicate
that this should be an impossible path since the effect
of control passing to point (@) is to schedule a process
that was deferred at point (&), but at point (6) a reader

is considered to be on the device, and hence point (&
could not be reached from point @ where a writer is on
the device. This is borne out by considering the formula
(quAT’) for the path in question. In gy there is the
conjunctive term (RPENM2=0) while in T’, the
back-substituted test expression, there is the con-
junctive term (RPENM2<0). Thus, giAT’ evaluates
to FALSE, indicating that the path is impossible.

It remains now to prove the correctness and deadlock
conditions by observation of the assertions and the
program itself. The key assertion here is ¢; since it
expresses the relationship among variables for all
possible variations of eontrol, e.g., for all allowable
assignments of processors to control points in the
program. On the basis of ¢; we can conclude the follow-
ing with regard to correctness:

(1) WD =0 or 1, indicating that no more than one
writer is ever granted access to the device.

(2) If WD=1, then RD=0, indicating that if a
writer is on the device, then no reader is.

(3) The issue of a requesting reader not encountering
any (appreciable) delay in getting access to a
device not occupied by a writer is more com-
plicated. From the first disjunctive term of ¢

44 Fall Joint Computer Conference, 1972

(that deals with the case of no writers on
the device), we note that if WD=0, then
RPENQ=0. Hence, under the assumed circum-
stances a requesting reader is not deferred by
semaphore Q. However, a requesting reader
could be deferred by semaphore M. In fact, a
requesting reader could be deferred at point

while the RD readers on the device emerge from:
point (3, and then be scheduled onto the lower
critical section wherein the last emerging reader”

performs V(Q) and schedules a writer. The
deferred reader will then be scheduled onto the
upper critical section only to be deferred by Q
at point (®. Although it is an unusual timing of
requests and reader completions that leads to
this situation, it still violates the hypothesis
that a reader is granted access provided no

writer is on the device.* Note that, under the

assumption that (WD=0) and RPENM2 re-
mains zero while a requesting reader is deferred
by M at point @), the requesting reader will be
granted access to the device prior to any re-
questing writers.

‘We now dispose of the question of deadlock. We need
to demonstrate that, if a process is pending on a
semaphore, then there exists another process that will
eventually perform a V operation on that semaphore.
With regard to semaphore Q, we note from observation
of ¢ that if RPENQ>0 or WPENQ>0, then either
WD=1 or RD>1. Thus, if any process is pending on
Q, there exist processes that might eventually do a
V(Q) operation. It remains to dispose of the issue of
these processes themselves pending on semaphores. It
is obvious that a writer on the device must emerge
eventually, at which time it will do a V(Q) operation.
For one reader (or more) on the device, in which case
RPENQ=0, we have shown that the last reader will
perform a V(Q) operation. A reader could be deferred
by semaphore M, but in this-case there is a reader pro-
cessing M that is not deferred by Q and hence must do
a V(M) operation.

* We conjecture that there is no solution to this problem without

permitting the conditional testing of semaphores, so that the
granting of access to a writer or reader to the device is decided on -

the basis of the arrival time of a reader or writer at the entry point
to the control program. In effect, what the program here accom-
plishes is to grant a reader access to the device provided it passes
the test: RC = 0 while WD = 0. Note that there are other
problems that do not admit to solutions using only P and V
operations unless conditional testing of semaphores is permitted,
e.g., see Patil.1s

DISCUSSION

In this paper we have developed an approach based
on program-proving techniques for verifying parallel
control programs involving P and V type operations.
The proof method requires user-supplied assertions
similar to Floyd’s method. We have given a method for
developing the verification conditions, and for abstract-
ing the proof of correctness and nondeadlock from the
assertions.

We applied the technique to two control programs
devised by Courtois et al. At first glance it might appear
that the method is only useful for toy programs since
our proofs for the above two programs seem quite
complex. However, in reality the proofs presented here
are not complex, but just lengthy when written out in
detail. The deductions needed to prove the verification
conditions are quite trivial, and well within the capa-
bility of proposed program proving systems.* By way of
extrapolation it seems reasonable for an interactive
program verifier to handle hundreds of verification
conditions of comparable complexity. Thus one might
expect that operating systems containing up to 1000
lines of high-level code should be handied by the
proposed program verifier.

We might add that some additional theoretical work
is called for relative to parallel programs and operating
systems. Perhaps the main deficiency of the proofs
presented here is that a suspicious reader might not
believe:the proofs. In establishing the correctness of the
programs it was required to carry out a nontrivial
analysis of the assertions. For example, we refer the
reader to the previous section where the subject of a
reader not encountering any delay in access is discussed.
Contrast this with a program that prints prime num-
bers, wherein the output assertion says that the nth
item printed is the nth prime—if the proof process
establishes the validity of the output assertion there is
no doubt that the program is correct. It is thus clear
that the operating system environment could benefit
from a specification language that would provide a
mathematical description of the behavior of an operating
system. Also some additional work is needed in under-
standing the impact of structured programming on the
proof of operating systems. We would expect that
structured programming techniques would reduce the
number of assertion points and the number of paths
that must be verified.

* See London! for a review of current and proposed program
proving systems.

Application of Program-Proving Techniques 45

ACKNOWLEDGMENTS

The author wishes to thank Ralph London for many
stimulating discussions on program proving and oper-
ating systems and for providing a copy of his proof of
the two programs discussed in this paper. Peter
Neumann, Bernard Elspas and Jack Goldberg read a
preliminary version of the manuscript. Two referees
provide some extremely perceptive comments.

REFERENCES

1 E W DIJKSTRA
The structure of THE multiprogramming system
Comm ACM 11 5 pp 341-346 May 1968
2 P J COURTOIS F HEYMANS D L PARNASS
Concurrent control with “READERS” and WRITERS”
Comm ACM 14 10 pp 667-668 October 1971
3 R W FLOYD
Assigning meanings to programs
In Mathematical Aspects of Computer Science
J T Schwartz (ed) Vol 19 Am Math Soc pp 19-32
Providence Rhode Island 1967
4 P NAUR
Proof of algorithms by general snapshots
BIT 6 4 pp 310-316 1966
5 Z MANNA
The correctness of programs
J Computer and System Sciences 3 2 pp 119-127 May 1969
6 R L LONDON ’
Computer programs can be proved correct
In Proc 4th Systems Symposium—Formal Systems and
Nonnumerical Problem Solving by Computer R B Banerji
and M D Mesarovic (eds) pp 281-302 Springer Verlag
New York 1970
7 R L. LONDON
Proof of algorithms, a new kind of certification (Certification
of Algorithm 245, TREESORT 3)
Comm ACM 13 6 pp 371-373 June 1970
8 R L LONDON
Correctness of two compilers for a LISP subset
Stanford Artificial Intelligence Project AIM-151 Stanford
California October 1971
9 B ELSPAS K N LEVITT R J WALDINGER
A WAKSMAN
An assessment of techniques for proving program correctness
ACM Computing Surveys 4 2 pp 97-147 June 1972
10 E ASHCROFT ' Z MANNA
Formalization of properties of parallel programs
Stanford Artificial Intelligence Project ATM-110
Stanford California February 1970
11 A N HABERMANN
Synchronization of communicating processes
Comm ACM 15 3 pp 177-184 March 1970
12 J C KING
A program verifier
PhD Thesis Carnegie-Mellon University
Pittsburgh Pennsylvania 1969
13 D I GOOD
Toward a man-machine system for proving program correctness

PhD Thesis University of Wisconsin Madison Wisconsin
1970
14 B ELSPAS M W GREEN K N LEVITT
R J WALDINGER
Research in interactive program-proving technique
Stanford Research Institute Menlo Park California May
1972
15 S PATIL
Limitations and capabilities of Dijkstra’s semaphore
primitives for coordination among processes
MIT Project MAC Cambridge Massachusetts February
1971 ’
16 R L. LONDON
The current status of proving programs correct
Proc 1972 ACM Conference pp 39-46 August 1972
17 R C HOLT ’
Comments on the prevention of system deadlocks
Comm ACM 14 1 pp 36-38 January 1971

APPENDIX
Proof of Courtois problem 2

Figure 6 displays the flow chart of the second control
problem of Courtois et al.2 The intent of this program is
(1) similar to problem 1 in that the device can be shared
by one or more readers, but a writer is to be granted
exclusive access; (2) if no writers are on the device or
waiting for access, a requesting reader is to be granted
immediate access to the device; and (3) if one or more
writers are deferred, then a writer is to be granted
access before any reader that might subsequently
request access. As we show below, a formal statement
of the priorities can be expressed in terms of the vari-
ables of Figure 6. Also, as in problem 1, the intent of
the program is not quite achieved relative to the
receiving of requests at the entry points of the reader
and writer sections.

It is noted that the program contains semaphores
L, M, N, Q, S, all of which have initial value 1, and
“yisible” integer variables RS, RD, RC, WS, WD, WC,
all of which have initial value 0. In addition, as in
problem 1, there are the variables associated with the
various P and V operations. As in problem 1, the V
operators, with the exception of V(L) and those at
points @ and @), embody both the SPLIT and CHOOSE
nodes; V(L) hasonly the SPLIT node, and the final V’s
have only CHOOSE nodes. The dotted control lines
indicate paths that can be shown to be impossible.

The numbered points on the flow chart are suitable
for assertion placement in that each loop is cut by at
least one assertion and all commonly referenced vari-
ables are contained within critical sections. There are
several approaches toward deriving the assertions, but
once again the most sensible one involves case analysis.

46 Fall Joint Computer Conference, 1972

WRITER

P(‘L)—@v
P(Si—@b
7
RS + Ts +1 !
1
P(M)—> @l ®
r——— I@ P(N)——>
} RC « RC + 1 @ r
! Ves WC < WC + 1
1 test: Re = 14 il
} No PLa)—==—+- TEST: WC = 1 ®
| b i testey No PSI==
i [+~ 7] ‘o— ————— b |
1 RD<RD+1 | ws~\'ns+1
L T
[
V(M) |
{ | P(Q)
RS « :s -1 : I
— |
v == ———= ":' : WD < WD + 1 ||
vfu ! f (DE\‘ICE) @®
]
(DEVICE) @ : WD « WD - 1
¥ 1 ! |
P i T
—® % }
| P(N)—
RD < RD -1 : @)=
| WC « WC - 1
RC « RC - 1 i v
es
Yes ! TEST: WC = 0—
TEST: RC = 0 g WS - WS - 1
Juut ___
No V(Q) V(S}
4-————'
VIN)
V(M)
l ‘ TA-710582-38

Figure 6—Flow chart representation of Courtois problem 2

From the view of control at point (O), we have derived
the assertion ¢; of the form gi=ci A (a1 V [a2 A (1 V 52) 1),
wherein g, corresponds to a writer not processing S, i.e.,
WS=0, and [a:A (biVh)] corresponds to a writer
processing S, ie.,, WS=1. The assertion ¢ listed in
Table 111 reflects this case analysis: The global assertion

¢; describes the domain of the individual variables and
is common to all assertions for the program. It was con-
venient to decompose the second disjunctive term into
two disjunctive terms, by, by, corresponding to the
reader processing Q and the reader not processing Q. A
similar case analysis for the @, term is embedded in the
conjunctive terms. Note that, as in problem 1, the
prefixes W, R refer to writer and reader and the suffixes
1 and 2 refer to the upper and lower critical sections.
We will not burden the reader of the paper with a
listing of the assertions at all points or with a proof of
the various paths; the proof is quite similar to that
illustrated for problem 1. However, it is of interest to

‘abstract from ¢ sufficient information to prove the

program’s intent. For a discussion of deadlock the
reader is referred to Reference 14.

As with problem 1 the decision concerning whether a
requesting reader or a requesting writer gains access to
the device is based on which one arrives first at the
corresponding P(S) operation—not on arrival time of
the readers and writers at the corresponding section
entry points. This point is discussed in more detail
below:

(1) The assertions indicate that any number of
readers can share the device provided no writers
are on, since if WD =0, then from a; we see there
are no constraints on RD. The assertions indi-
cate that at most one writer is on the device
because from observation of both a, and a, we
note that WD =0 or 1.

(2) The assertions indicate, as follows, that a reader’s
access to the device is not delayed provided no
writers are processing S or are on the device, and
provided no writers are pending on Q or S.
The term a; indicates that if WS=WD=0, i.e.,
no writers are processing S or on the device, and
if WPENQ=WPENS=0, ie.; no writers are
pending on Q or S, then RPENS=RPENQ=0,

TABLE ITT—Main Assertion for Courtois Problem 2

Global:

(All variables ¢ DA(L <A (M <DANSDAQ DA SSDA(RCZ0)A (RD>0)A (WC>0)A (WD >0)A (RPENS >0)

A (WPENS >0)A (RPENQ >0)A (WPENQ >0)A (RPENL >0)A (RPENMI >0)A (RPENM2] >0)A (WPENN1 >0)A (WPENN2>0)

A (RS>0 (WS>0)
qi: (Writer not processing S)

(RS=u(—S+1)A(WS=0)A (WD =0)A(WC=u(WC))A (WPENQ =0)A (RPENQ =0)A (RPENS =0)A (((WPENS) =u(8)—8)
ARD=RC)A(u(Q)=u(1 —RCHA(WPENS=WC)A (WPENN1=u(N)—-NA(WPENN2=0)A (RPENL =u(L) - L)A (u(L)

=u(S)) A (RPENM1+RPENM2 =u(M)— M)A (RPENMI <RD)

(Writer processing S)

{(WS=1)A(RS=0)A(WPENS=0)A (RPENS = —8)A (8= —u(—S))A (RPENQ =0)A (WPENQ =u(Q) —~Q)A (WPENN]1
+WPENN2=u(N)—-N)A(RC=RD)A (RPENL=u(L)-L)A (RPENM1 =0)A (RPENM2 =u(M) — M)A(L <u(S+1)}A {(Q<0)
ARC>DA(WD =0)A(WC=—QA(WPENN2=0)}V [(RC=0)A(M=1)A(WC=WD+WPENN1+WPENQ)A (WD =u(WD))

A(WD2u(WPENQ))l}

Application of Program-Proving Techniques 47

indicating that no reader is deferred by S or Q
from access to the device.

The issue of writer priority will be handled by apply-
ing case analysis to ¢i.

o RPENQ is always 0; thus a V(Q) operation can
only grant access to a deferred writer, never to a
reader.

e RS is 0 or 1; thus, at most, one reader is processing
S. If RS=1, then RPENS=0 and WPENS=0
or 1. This indicates that if a reader is processing S,
the subsequent V(S) operation can only signal a
deferred writer.

o If WS=1 then WPENS=0, and there are no
constraints on WPENQ. This indicates that all
deferred writers are pending on Q (or N as dis-
cussed below), and since RPENQ=0 a writer must
get access to the device either immediately if
RD=WD=0, or when the next V(Q) is performed
by either a writer or a reader.

As we mentioned above, the issue of granting access

to a writer or a reader is determined by the arrival time
at P(S). If this is indeed the intent of the program,
then the above discussion serves to prove the correct-
ness of the program. However, there are several impor-
tant exceptions that deserve discussion. For example,
while a writer is pending on 8, all subsequent requesting
writers will be deferred by N. Now these writers should
be granted access to the device before any requesting
readers receive it, which will be the situation under
“normal” timing conditions. The deferred writer, at
point (3), will be scheduled by a reader doing V(S), in
which case the writer will perform V(N) and in turn
will schedule a deferred writer. These previously
deferred writers will not get blocked by S but will pass
to P(Q). Of the readers requesting access, one will be
blocked by S and the remainder by L. The only way
this scheduling would not occur as stated would be if
the deferred writer at point 13 passed through the
writer section and performed a V(S) operation, thus
scheduling a deferred reader before a writer processing
the upper critical section could get through the first
two instructions. o

Exact calculation of computer network

reliability

by E. HENSLER

IBM Research Laboratory
Ruschlikon, Switzerland

G. K. McAULIFFE

IBM Corporation
Dublin, Ireland

and

R. S. WILKOV

IBM Corporation
Armonk, New York

INTRODUCTION

The exact calculation of the reliability of the communi-
cation paths between any pair of nodes in a distributed
computer network has not been feasible for large net-
works. Consequently, many reliability criteria have
been suggested based on approximate calculations of
network reliability. For a thorough treatment of these
criteria, the reader is referred to the book and survey
paper by Frank and Frisch!? and the recent survey
paper by Wilkov.?

Making use of the analogy between distributed
computer networks and linear graphs, it is noted that
a network is said to be connected if there is at least one
path between every pair of nodes. A (minimal) set of
links in a network whose failure disconnects it is called
a (prime) link cutset and a (minimal) set of nodes
with the same property is called a (prime) node cutset.
If a node has failed, it is assumed that all of the links
incident to that node have also failed. A cutset with
respect to a specific pair of nodes n, and n, in a con-
nected network, sometimes called an s-¢ cut, is such
that its removal destroys all paths between nodes n, and
.

The exact calculation of P,[s, t], the probability of
successful communication between any pair of opera-
tive computer centers n, and n., requires the examina-
tion of all paths in the network between nodes n, and
n,. More specifically, if each of the n nodes in any given

network fail with the same probability ¢ and each of
the b links fail with the same probability p, then P,[s, ¢]
is approximately given by
b
P.Ls, t]= 2 AL ,(5) 1—p) P>, p>>q¢. (1)
=0
In Eq. (1), AZ (7) is the number of combinations of
7 links such that if only they are operative, there is at
least one communication path between nodes n, and

n.. On the other hand, the calculation of the probability
P;[s,t] of a communication failure between nodes 7,

‘and 7, requires the examination of all s-¢ cuts. For

specified values of p or ¢, Ps[s,] is approximately
given by
b
Pyls, t]= 20 C; () p*(1=p)*, p>>q. 2)
"=0
For ¢>>p, a similar expression can be given replacing
C? (1) by C?,(:). The coefficients -C;,(¢) and
C?,(z) denote the total number of link and node s-f
cuts of size ¢. The enumeration of all paths or cutsets

. between any pair of nodes n, and n, is not computa-

49

tionally possible for very large networks.

RELIABILITY APPROXIMATION BASED ON
CUTSET ENUMERATION

If any network @ of b links and n nodes, it is easily
shown that the order of the number of cutsets is 272

50 Fall Joint Computer Conference, 1972

whereas the order of the number of paths between any
pair of nodes is 2-*2 For networks having nodes of
average-degree (number of incident links) greater than
four, b>2n and 2>—7+2> 22 Consequently, such net-
works have a larger number of paths than cutsets.
Computation time would clearly be reduced in such
cases by calculating network reliability from cutsets
instead of paths. In this case P,[s, t] can be obtained
from P,[s, t]=1—P;[s, t], where P;[s, t] can be calcu-
lated from Eq. (2). Alternatively,

N
B, n=rU ¢)
=1

where €%, is the event that all links fail in the 4th
prime s-t cut and N is the total number of prime cut-
sets with respect to nodes n, and n,. The calculation of
Py[s, t] from Eq. (2) clearly requires the examination
of all s-t cuts. The number of prime s-¢ cuts is usually
much smaller. However, P;[s, t] is not readily calcu-
lated from Eq. (3) because the C?, are not mutually
exclusive events.

Following Wilkov,* we shall use P;=Max,, P;[s, t]
as an indication of the overall probability of service
disruption for a given computer network. For specified
values of p or ¢, Py depends only on the topology of the
network. A maximally reliable network clearly has a
topology which minimizes P; and hence minimizes
Max,,C; ,(m) or Max, C:, (m) for small (large)
values of m when p or ¢ is small (large). Letting
X}, (m) and X;,m) denote the number of
prime node and edge st cuts of size m, X*(m)=
Max,, X7 ,(m) and X¢(m)=Max, X; ,(m) have been
proposed* as computer network reliability mea~
sures. These measures X"(m) and X°(m) denote the
maximum number of prime node and edge cutsets of
size m with respect to any pair of nodes. A maximally
reliable network is such that X»(m) and X¢(m) are as
small as possible for small (large) values of m when the
probability of node or link failure is small (large).

In the calculation of X»(m) and X¢(m) for any given
network, all node pairs need not be considered if all
nodes or links have the same probability of failure. It
has been shown® that in order to calculate X*(m) and
Xe¢(m), one need only consider those node pairs whose
distance (number of links on a shortest route between
them) is as large as possible. For a specified pair of
nodes 7., n,, X; ,(m) can be calculated for all values of
m using a procedure given by Jensen and Bellmore.
Their procedure enumerates all prime link cutsets be-
tween any specified pair of nodes in a non-oriented net-
work (one consisting only of full or half duplex links).
It requires the storage of a large binary tree with one
terminal node for each prime cutset. Although these
cutsets are not mutually exclusive events, it has been

suggested® that Eq. (3) be approximated by

N
P,fs, 1=~ X PIC,] @
=0
However, it is shown in the following section that no
additonal computation time is required to actually
compute Ps[s, t] exactly.

EXACT CALCULATION OF COMPUTER
NETWORK RELIABILITY

A simple procedure is described below to iteratively
calculate a minimal set of mutually exclusive events
containing all prime link s-f cuts. This procedure starts
with the prime cutset consisting of the link incident to
node n,. Subsequently, these links are re-connected in
all combinations and we then cut the minimal set of
links adjacent to these that lie on a path between node
1, and n,, assuming that the network contains no pen-
dant nodes (nodes with only one incident link). The link
replacements are iterated until the set of links con-
nected to node 7, are reached. The procedure is easily
extended to provide for node cutsets as well and re-
quires & very small amount of storage since each event
is generated from the previous one. Py[s,] is obtained
by accumulating the probabilities of each of the mutu-
ally exclusive events.

Procedure 1

1. Initialization

Let: N Dbe the set of all nodes except nodes 7.
C Dbe the set of all links not incident to node n,. -
M= {n.}

F; Dbe the set of links incident to both 7, and =,

S: be the set of links incident to n, but not n;

b: be a binary number consisting of only | Sy |
ones

T; be a subset of S; consisting of those elements

in 8; for which the corresponding digit in b; is
- unity.

M1 be a subset of N consisting of nodes incident
to the links in 7.

N = N —M i1

Fiy1 be asubset of C consisting of links incident to
n; and adjacent to any member of T',.

Si:11 be a subset of C consisting of links incident to
nodes in N other than n; and adjacent to any
member of T';.

C = C—(8iuUF).

Exact Caleulation of Computer Network Reliability 51

3. If 8170, then let:
b1 be a binary number with | S;1 | ones
1 =1+1
Go to step 2
Otherwise, let:
T-i+1 = ﬂ
i+l _
k=1
where C8 is a modified cutset and 7 indicates
that the links in set 7' are connected.
4. Let:
C= CU F,'_HUSH.L
N=NUM,,
b;=b;—1 (modulo 2)
If b;<0, go to step 5. Otherwise, go back to step 2.
5. Let ¢=1—1. If 7520, go back to step 4. Otherwise,
terminate the procedure. ‘

In the calculation of P,[s, t], Procedure I performs
a depth first search of the given network starting at
node 7, and traversing several links at the same time.
The index 7 indicates how far from =, the search has
progressed and b, indicates the links traversed at the
ith level of the search. During the search, set N keeps
track of the nodes which have not yet been reached and
C is the set of links not yet traversed. At the 7th level,
set Fpy is a subset of the links not yet traversed which
are incident to node n, and hence must be disconnected
in the formation of an s-f cut. Set S;;; consists of edges
in C which lie on a path to n, but which need not neces-~
sarily be disconnected in the formation of an s-f cut.
The edges in 743 C Sipa are those which are connected
as we traverse the network toward node n,. When set
S;41 18 empty, the edges incident to n, have been reached
and this portion of the search is terminated with the
formation of a modified s-t cut in step 3 of the pro-
cedure. The modified s-t cut is actually a group of states
in the network or an event in which all links in an s-¢
cut are disconnected and the links in all 7'; in this part
of the search are connected. It is the set of connected
links which makes this modified s-t cut mutually ex-
clusive of all of the modified s-t cuts previously gener-
ated during the execution of Procedure 1. In step 4, we
back track one level and then continue the search by
traversing a different subset of the links in S;. After all
combinations of the links in 8; have been traversed,
we back track one additional level and the search con-
tinues with traversal of a different combination of the
links in S;_;. The procedure terminates when we have
back tracked all the way up to node n,. It is shown in
the proof of the following theorem that the modified
s-t cuts generated are mutually exclusive and collec-
tively exhaustive.

Theorem I:

Procedure I generates a collectively exhaustive set of
mutually exclusive modified s-¢ cuts.

Proof:

Part I—Prime s-t cuts

In this part of the proof, it is shown that every modi-
fied cutset C'S generated in step 3 of Procedure I con-
tains a prime s-t cut. We begin by noting that the links
in Tx(1<k<i+1), traversed in the depth first search
through the given network, form subnetworks contain-
ing node n,. For any such subnetwork, set M; contains
the nodes at a distance of 7 from n;. Each modified
cutset CS generated by the procedure consists of all
links in such a subnetwork being connected and all
links in S;— 7% and Fy, that connect nodes inside the
subnetwork with those outside the subnetwork, being
disconnected. Node #, is never contained in the sub-
network since any link incident to n, must be contained
in some set F and is therefore always disconnected.

Part II—Mutually exclusive

In order to show that the modified cutsets obtained
from Procedure I are mutually exclusive, we shall
demonstrate that every pair of modified cutsets dis-
agree in the state of at least one link appended at some
level j. Specifically, for any pair of distinet modified
cutsets C'S, and CS,, there exists a value of j for which
if TwCCS,and T/ CCS8,, then Ty=T)/ for k<j—1 but
T; T . This implies that during the generation of C'S,
and CS8, from Procedure I, b,(k<j—1) was the same
in both cases but the value of b; was different. Other-
wise, if CS, and CS, were generated from the same
values of by, for all k, then CS, and CS, would be identi-
cal. It is now noted that if T;=T;, there exists a link
e such that e ¢ 7; and e¢¢ T, which implies that
ee (8;—T,). It follows that link e appears connected
in CS, and disconnected in CS,.

Part III—Collectively exhaustive

We shall prove that the modified s-f cuts obtained
from Procedure I are collectively exhaustive by show-
ing that every state of the network in which nodes
7, and 7, cannot communicate is contained in one of the
modified s-¢ cuts. We proceed by noting that in any
given state of the network that includes an s-f cut,
there is a maximal set of nodes N, connected to node
7, which does not include node n,. If set N were dis-
carded in Procedure I, then the resulting modified s-
cuts would contain every state of the links on set N, in
which there is a path between every pair of nodes in

52 Fall Joint Computer Conference; 1972

N,. This follows from the fact that in the generation of
all modifications of the same prime s-¢ cut, the deletion
of set N from Procedure I would result in set S; for
all k containing every link on set N,. As we sequence
through all by, these links would be connected and dis-
connected in Procedure I in every combination in the
traversal of all paths from n. to every other node in N.,.
It is now noted that any modified s-f cut generated
from Procedure I that includes a connected subnetwork
on N, specifies as cut all links connecting nodes N, to
nodes in N—N,, where N is the set of all nodes in the
network. All links in the network connecting pairs of
nodes in N — N, would be unspecified.

Taking advantage of the unspecified links, it is pos-
sible to extend one of the modified s-t cuts generated by
Procedure I with set N deleted to match any specified
state of the network in which nodes 7, and 7, are not
connected. The effect of using set N in Procedure I is
to omit several links from many of the S;. Significantly
fewer modified s-¢t cuts are thereby generated since the
states of the redundant links joining pairs of nodes in
N, would not be specified. However, these modified s-¢
cuts clearly include all of those generated when set N is
neglected. This is evident since each of the links on N,
not specified can be assigned a particular state in order
to match a given modified s-¢ cut obtained from Pro-
cedure I with set N omitted. Consequently, any speci-
fied state of the network containing an s-t cut is in-
cluded in one of the modified s-¢ cuts obtained from
Procedure I. Q.E.D. ‘

It should be noted that the collectively exhaustive
set of mutually exclusive modified s-¢ cuts obtained
from Procedure I is not minimum. This is due to the
fact that for any prime st cut, Procedure I as given
generates too many subnetworks on the set of nodes
N, connected to n,. However, Procedure I is easily
modified to eliminate the generation of any subnet-
works on N, that contain circuits. This is done by
eliminating all T’; in step 2 of the procedure in which
two or more links are incident to the same node. The
formation of any other circuits in subnetworks on N, is
avoided through the use of set N in Procedure I. The
result is that the connected links in any modified s-¢
cut would form trees on N,.

It is noted that in the procedure given above, nodes
have been assumed. to be perfectly reliable. However,
Procedure I can also be applied in the case that nodes
fail and links are perfectly reliable. In the event that
nodes and links may fail simultaneously, assuming that
their failures are statistically independent, following
Hansler” we can easily modify Procedure I to obtain a
collectively exhaustive set of mutually exclusive modi-
fied s-t cuts consisting of nodes and links. We would
proceed by introducing a binary number b consisting

of only M ones for each of the sets M, in Procedure I.
Analogous to T, in step 2 we form a set T%,; consist-
ing of the nodes in M;; for which the corresponding
digit in b%4 is unity. Fiy and Si in step 2 would
consist of links in C incident to nodes in T7%,;. Then
any modified s~ cut C.S formed in step 3 of Procedure I
would consist of

+1 _
C8=U [FUTU(8—Th)

k=1

UTU (M—T7%) U {R} ()

The only other s-t cut consists of node 7, being inopera-
tive. The above modifications to Procedure I double
the number of levels and therefore significantly in-
crease the necessary computation time for any given
network. However, the storage requirement of the
modified procedure is still very small. A network of b
links and »n nodes would only require approximately
3b+2n words of storage to compute Py[s,¢] in the
presence of node and link failures. All modified cutsets
are either printed out or their probabilities accumulated.
Consequently, the exact caleulation of P;[s, t] for any
given network is limited only by the computer time
required in view of the inherent computational com-
plexity of the problem.

EXAMPLES OF NETWORK RELIABILITY
CALCULATIONS

In this section, Procedure I will be used to obtain
Py[s, t] for several networks, assuming that all nodes
are perfectly reliable and all links fail with the same
probability p. We shall first consider the simple net-
work shown in Figure 1 in order to demonstrate the
modified 1-4 cuts obtained from Procedure I. Figure 1

pPrime 1-4 Cuts Modified 1-4 Cuts

de abde
bcd abdec
ace abdc
ab abdec
ab

Figure 1—Example illustrating the calculation of node pair
failure probability

Exact Calculation of Computer Network Reliability 53

2 5 s

Figure 2—Example for comparison of approximate and exact
reliability calculations

shows the four prime cutsets between nodes 1 and 4,
which are not mutually exclusive. Also listed there are
the six mutually exclusive modified 1-4 cuts obtained
from Procedure I in the order in which they are ob-
tained. Note that the second and fourth modified 1-4
cuts are not prime since link a or b has been discon-
nected in order for the corresponding events to be
mutually exclusive.

The network shown in Figure 2 has been given by
Jensen and Bellmore® as an example of their procedure
for enumerating all prime cutsets with respect to a
given pair of nodes. They listed 16 prime 1-8 cuts for
the network of Figure 2. From these cutsets, P,[1, 8]
was approximated by

Pi[1, 8]~4p*+-8p*+4p* (6)

However, from the mutually exclusive modified 1-8 cuts
obtained from Procedure I, P,[1, 8]is actually given by

P,[1, 8]=4p*+6p*— 16p*—32p>+115p°— 134p”
+79p%—24p°+-3p® (7)

It is clear from this example that the approximation to
P;[s,t] given by Jensen and Bellmore® is reasonable

TABLE I—Polynomial Coefficients for P; [9, 6]
for Networks of Figure 3

Coefficient Figure 3a Figure 3b

Ca "3 2
€3 6 4
Cq —6 9
. —25 —-22
Cs —25 —153
c 237 572
Cs —417 —~874
Gy 364 744
qant =177 =¥l
(4% 46 102
Ci2 -5 -12

(b)

Figure 3—ARPA subnetwork topologies having 9 nodes and 12
links: (a) actual, (b) example based on X*(m)

5 8 3 4

15 13 6 2

b))

Figure 4—ARPA subnetwork topologies having 15 nodes and .19
links: (a) actual, (b) example based on X*(m)

54 Fall Joint Computer Conference, 1972

TABLE II—Polynomial Coefficients for P,; [15, 2]
for Networks of Figure 4

Coefficient Figure 3a Figure 3b
Ce 12 3
c3 5 6
Cy —56 28
Cs 55 7
Cs —84 —620
¢ 701 —1267
Cs —~521 20379
(] —6212 —77855
C1o 24039 171797
Cit —46457 —257512
C12 58369 279128
C13 —51647 —224691
Cua 33123 135228
C15 —15433 —60303
Cs 5121 19402
Ci7 —1152 —4269
C13 1 58 576
Cig - 10 —36

for only very small values of p since only the first co-
efficient in that approximation is exact.

Two topologies for 9 node and 15 link subnetworks
of the ARPA network are shown in Figure 3. The net-
work shown in Figure 3a was given by Frank, et al.
Figure 3b is a maximally reliable network based on
X»(m) and X¢(m) for small m obtained by Wilkov.?
Assuming all nodes are perfectly reliable and all links
fail with the same probability p, P,[9, 6] can be ex-
pressed as

12
P9, 6]= Z} cip'. (8)

The coeflicients in Eq. 8 for Figures 3a and 3b are
listed in Table I. They have been obtained in 18 seconds
using an APL implementation of Procedure I on a 360
model 91 computer. Consistent with the results in
Reference 9, Figure 3b has smaller coefficients than
Figure 3a for small powers of p. Furthermore, we have
found that there are a total of 2,772 cutting states with
respect to nodes 9 and 6 in Figure 3b compared with
3,011 in Figure 3a. Similar results have been obtained
for the 15 node and 19 link ARPA subnetwork topolo-
gies shown in Figure 4. The topology shown in Figure
4a was given by Frank, et al.® and Figure 4b was ob-
tained by Wilkov® based on X»(m) and X°(m). The
polynomial coefficients for P;[15, 2] are given in Table
II. The total number of cutting states between nodes

15 and 2 is 49.7 thousand for Figure 4a and 44.9
thousand for Figure 4b.

CONCLUSION

A procedure has been given for calculating the node
pair failure probability in computer networks exactly,
using little more computation time than previously re-
quired to obtain an upper bound on P[s, ¢t]. Further-
more, the storage requirement of the given procedure
grows only linearly with the number of links in the given
network. Unfortunately, due to the inherent computa-
tional complexity of the problem, the necessary com-
putation time grows exponentially with the size of the
given network. Nonetheless, it has been found to be
computationally feasible to use the procedure given
herein for networks as large as the ARPA network.

REFERENCES

1 H FRANK I T FRISCH
Communication, transmission, and transportation networks
Addison-Wesley Publishing Company Reading
Massachusetts 1971

2 H FRANK I T FRISCH
Analysis and design of survivable networks
IEEE Transactions on Communication Technology
Vol COM-18 1970 pp 501-519

3 R S WILKOV
Analysts and design of reliable computer networks
IEEE Transaction on Communications Vol COM-20
June 1972 pp 660-628

4 R 8 WILKOV
Reliability considerations in computer network design
Proceedings of IFIP Congress ’71 Ljubljana Yugoslavia
August 1971

5 R S WILKOV
On the design of maximally reliable communication networks
Proceedings of the Sixth Annual Princeton Conference on
Information Sciences and Systems March 1972

6 P A JENSEN M BELLMORE
An algorithm to determine the reliability of a complex system
IEEE Transactions on Reliability Vol R-18 1969 pp 169-174

7 E HANSLER
A fast recursive algorithm to calculate the reliability of a
communication network
IEEE Transactions on Communications Vol COM-20
June 1972 pp 637-640.

8 H FRANK et al
Store and forward computer networks
Third Semiannual Technical Report for ARPA Contract
DAHC 15-70-C-0120 June 1971

9 R S WILKOV
Design of computer networks based on a new reliability measure
Proceedings of the International Symposium on
Computer-Communication Networks and Teletraffic
Polytechnic Institute of Brooklyn New York April 1972

A framework for hardware-software

tradeoffs in the design of
fault-tolerant computers

by K. M. CHANDY, C. V. RAMAMOORTHY and A. COWAN

The University of Texas at Austin
Austin, Texas

INTRODUCTION

The theory of fault-tolerant computer design has de-
veloped rapidly. Several techniques using hardware or
software have been suggested. A student is often faced
with the problem of developing a common perspective
for a variety of methods. In this paper we attempt to
develop a simple framework within which different
methods can be compared. We use a set of very ele-
mentary indices to construct the framework. The indices
are quite crude and our framework is somewhat ad hoc.
Though a unified theory would be extremely useful we
have not attempted to develop one here. Our discussion
is a first pass at identifying some goals of reliable design
and an attempt at quantifying some parameters. We
discuss only a very small set of the techniques that
have been proposed for fault-tolerant computers.
Methods for constructing relevant indices for these
techniques are presented. We feel that these indices are
relevant for most reliability techniques.

We shall classify all techniques for achieving reli-
ability into two categories: hardware techniques and
software techniques.

In the following discussion of reliability we consider
an aerospace system such as a missile interception sys-
tem or an air-traffic control system. The system has a
specific mission which should be accomplished in a
specified amount of time. A (large) penalty is incurred
if the system does not accomplish its mission. We shall
refer to this penalty as the cost of mission failure. A
lateness penalty is incurred if the time taken to ac-
complish the mission exceeds the specified time. The
longer the time taken to complete the mission, the
greater the lateness penalty. Different methods for im-
proving reliability are evaluated with such a system in
mind. T

55

Our approach to reliability rests on a framework of
four indices called the Hardware Reliability Efficiency
index (HRE), the Software Reliability Efficiency index
(SRE), the Real-Time Criticality index (RTC) of a
system, and the inclusion factor. For a given method
of achieving reliability HRE and SRE are measures of
the increase in reliability of the system per unit of
expenditure. For the same amount of expenditure, a
method with a high HRE (or SRE) gives better reli-
ability than a method with low HRE (or SRE). In
this paper we shall discuss ways of computing the ef-
ficiency indices for several different reliability methods.
The real-time criticality index is a measure of the
penalty incurred for a late completion of the system
mission. Thus an air-traffic control system would have a
high RTC compared to other systems. The inclusion
factor (defined later) is a dimensionless number; if the
inclusion factor for a given method is less than one, then
that method should not be used in the system. The in-
clusion factor is a function of the method being con-
sidered and of system objectives. Thus a given tech-
nique may be optimally included in the design of one
system and excluded from another.)

We shall now discuss each of the indices in turn.

Hardware reliability efficiency index

Several models'® have been constructed for designing
reliable machines from intrinsically less reliable com-
ponents by using redundant components: we shall refer
to these methods as hardware methods. The “cost’” of a
hardware method is the dollar amount required to buy
or.build the redundant hardware. We may define the
Hardware Reliability Efficiency index, (HRE), of a
hardware method as the incremental increase in reliabil-

56 Fall Joint Computer Conference, 1972

ity (defined in some appropriate manner) per incre-
mental increase in the amount spent on purchasing
redundant hardware.

Software reliability efficiency index

Methods have recently been devised to improve re-
liability primarily by means of software.>—® In one such
method, when an error is detected, the system is “rolled
back” to an error-free state, which was saved earlier,
and computation is restarted from that point. Fault-
tolerance is achieved in this case at the expense of the
time required to rollback and to reprocess to the point
of error. This is discussed later, in greater detail. Dead-
lock prevention methods® are also examples of improv-
ing the reliability of a system at the expense of a re-
duced rate of utilization of system resources. We shall
call these methods of achieving reliability software
methods. The “cost’” associated with software methods
is generally the additional time required for processing
(with these methods). The capital cost associated with
developing the software may sometimes be neglected.
An index of Software Reliability Efficiency (SRE) is
the incremental increase in reliability per unit of addi-
tional time spent in achieving this improved reliability.
In summary, reliability is achieved in hardware meth-
ods by spending more money, while in software methods
reliability is achieved at the expense of processing
time. When the capital cost of software methods ean-
not be ignored a combination of HRE and SRE is
used.

Real-time criticality index

In some systems, software methods have to be ruled
out, since the time available to complete the mission is
too short to permit methods which require additional
time. In other cases, the longer the system takes to
complete a mission, the more expensive the conse-
quences. This is typically the case in a missile intercep-
tion system. A useful index is the Real-Time Criticality
index (RTC) which is the cost incurred per unit delay

‘in completing the system’s mission. RTC will be high
in- many aerospace applications and comparatively low
in some commereial systems. RTC is the penalty rate
for late mission completion.

Inclusion factors

TTheéindices RE; BRE; and"RTC; togéther with'the
penalty incurred if the mission fails indicate the meth-

ods to be selected for the design from the set of methods
available. We shall define the snclusion factor for a
hardware method as:

HRE Xpenalty of mission failure
and the inclusion factor for a software method as:

SRE

RTC X penalty of mission failure.

The inclusion factors are dimensionless. The inclusion
factor is the ratio of the decrease in expected cost of
mission outcome and the cost incurred in achieving this
decrease. If the decrease in expected cost of mission
outcome is less than the cost incurred in using a method,
then that method should not be used in the system. In
other words, when designing a system, a designer may
exclude from consideration all methods with inclusion
factors less than one. In some aerospace applications
though the penalty of failure is high, the real-time
criticality index is so large that the inclusion factor for
software methods is less than one, and hence these
methods need not be considered.

It is possible that the indices HRE and SRE may be
interdependent: the index for a hardware method may
depend on whether a software method has been imple-
mented. Furthermore, the additional costs associated
with implementing a method may not be continuous,
but may increase in discrete amounts.

We shall now study a few methods for improving
reliability and discuss techniques for computing hard-
ware and software reliability indices for these methods.
The real-time criticality index and the cost of failure
depend on the system rather than on the design used
and hence will not be discussed further.

SOFTWARE METHODS
Rollback

Discussion

In many real-time systems it is necessary to recover
rapidly from a transient error. One way of achieving
quick recovery is to “rollback’” the program when a
_transient error:is detected®? and to restart the program
at a previously saved .error-free state. The state of a
-program refers-to the content of relevant areas in mem-
ory, to the content of registers, and to all other relevant
.information necessary . to restart. .the program. at that
rpoint? If &-trazristent-error-is'detected; and*if -an-error- -
free state of the program has not been saved earlier, the

Framework for Hardware-Software Tradeoffs 57

program will have to be restarted at the very begin-
ning, resulting in slow recovery. On the other hand, if
recovery is to be quick, error-free states of the program
will have to be saved very frequently resulting in large
overhead. Thus there is a tradeoff between recovery
time and overhead: the quicker the recovery time, the
larger the overhead.

Chandy and Ramamoorthy? have discussed the prob-
lem of determining the optimum points in a program at
which the state of the program ought to be saved. They
suggested a technique for minimizing the overhead
given the maximum allowable recovery time. The
overhead is the time spent in saving states of the pro-
gram,

We shall briefly review the rollback design suggested
in Reference 8 and then compute the software reliability
efficiency index for this design.

INITIAL

EXIT

Figure 1

Task i completed and

task j called next

Compute recovery time r

r = clocktime - E

Should rollback
point be inserted?

save state of
the system

update E

E=clocktime - Lij

Process
task j

Figure 2

The objective of the design is to determine the opti-
mum points at which states of the system should be
saved so as to minimize overhead (i.e., time spent in
saving states) subject to the constraint that the re-
covery time should not exceed some given value M.

The locus of control of a program may be represented

58 Fall Joint Computer Conference, 1972

by a directed graph where a vertex in the graph cor-
responds to a task in the program; an edge from vertex
1 to vertex j exists if and only if control may pass (with
non-zero probability) to task j after task ¢ is completed.
If there are edges from vertex ¢ to vertices j and £k,
then control may pass from task ¢ to either task j or
task k; see Figure 1. A task consists of an arbitrary set
of instructions. If a transient error is detected during
the processing of a task, the program is rolled back to a
previously saved state (or if none exists to the very
beginning). If no error is detected, a short ‘“‘detection
routine” may be run to check key variables and again
rollback is employed if an error is detected. On the other
hand, if no error is detected, the state of the program is
assumed to be error free. The state of a program may
be saved only after a task is finished and before another
task is begun.

Let L;; be an estimate of the time taken to load a
state of the system which was saved after task ¢ was
finished and if task j was called next. At any point P
in the program, let r be the recovery time (i.e.,the time
taken to load the most recently saved state and to re-
compute from this saved state to point P). It is shown
in Reference 8 that there exist numbers B;; such that
the optimal decision is to save the state of the system
after task 7 is completed and if task j is to be processed
next, if and only if > B;;. A flow-chart for determin-
ing whether a state ought to be saved after task 7 is
finished and if task j is called next is shown in Figure 2.

Computing the software reliability efficiency index

Let T be the time required to complete the program
if there is no error, and without implementing a roll-
back method. Let H be the overhead incurred by imple-
menting a rollback procedure. H can be easily computed
for an arbitrary program as shown in Reference 8.
Recollect that the rollback procedure is designed so
that the maximum recovery time will not exceed a given
value M. If the mission is completed in 748 units
rather than 7 units a “lateness penalty” is incurred
which gets larger as S increases. We shall find the reli-
ability of a system with roliback as a function of S, the
amount of “lateness” permitted. We shall assume
that failures occur according to the exponential failure
law, and the mean time between failures is 1/a.

If S=0 then the program must finish in 7" time units
without error. The probability of no error in T time
units is e~¢7. Letting R(8) be the reliability, defined as
the probability of completing a successful mission, we
have:

R(0)=eT

If S=H+M, then it is possible to implement roll-
back and to allow recovery from one error by means of
rollback. The reliability in this ecase is the probability
of no error in T4 H time units (in which case no roll-
back is necessary) plus the probability of exactly one
error in T+ H units followed by a period of M error free
units in which recovery is taking place.

[a (T+H) jle—a(T+H+M)

R(H_I_M) =e—a(T+H)+ T

By the same argument, if S=H+2M then two error
recoveries are possible and

[a(T+H+M)]2e—a(T+H+2M)
21

R(HA+2M) =R(H+M)+

In general
R(HA+nM)=R(H+(n—1)M)

{a[T+H+ (n—1) M]} re-e@+H+ni0)
n!

+

forn=2,3,...

If we are considering delaying the time required to
complete the mission by S units we get the Software
Reliability Efficiency index to be:

R(S)—R(0)

SRE= 3

Note that in this analysis undetected and permanent
errors were ignored. They can be included quite simply.
Let Q(8) be the probability of the event that there is
no undetected or permanent error in S units and let it
be independent of other events. Then we have

Q(S)-[R(S)—E(0)]

SRE= <

Instructional retrial

If an error is detected while the processor is executing
an instruction, the instruction could be retried, if its
operands have not already been modified. This tech-
nique is an elementary form of rollback: recovery time
never exceeds the execution time of an instruction, and
overhead is negligible. However, there is a probability
that an error will persist even after instruction retry.
Let this probability be . The SRE for this technique
can be computed in a manner identical to that for roll-
back and has the same form. The SRE for instruction
retrial will in general be higher than that for rollback.

Framework for Hardware-Software Tradeoffs 59

Deadlock prevention

Discussion

Prevention of deadlocks is an important aspect of
overall system reliability. Deadlocks may arise when
procedures refuse to give up the resources assigned to
them, and when some procedures demand more re-
sources from the system than the system has left un-
assigned. Consider a system with one unit each of two
resources A and B, and two procedures I and II. Now
suppose procedure I is currently assigned the unit of
resource A while IT is assigned B. Then if procedure I
demands B and IT demands 4, the system will be in a
deadlock: neither procedure can continue without the
resources already assigned to the other. The hardware
approach to this problem is to buy sufficient resources
so that requests can be satisfied on demand.

Habermann and others®7? have discussed methods for
preventing deadlocks without purchasing additional
resources. In these methods sufficient resources are
always kept in reserve to prevent the occurrence of
deadlock. This may entail users being (temporarily)
refused resources requested, even though there are un-
assigned resources available. Keeping resources in re-
serve also implies that resource utilization is (at least
temporarily) decreased. An alternative approach is to
allocate resources in such a manner, that even though it
is possible that deadlocks might arise, it is very improb-
able that such a situation could occur. The tradeoff
here is between the probability of deadlock on the one
hand and resource utilization (or throughput) on the
other. The tradeoff is expressed in terms of the software
reliability efficiency index.

Determining the software reliability efficiency index

The probability P of a deadlock while the mission is
in progress and the time 7' required to complete the
mission (assuming no deadlock) using a scheme where
resources are granted on request are determined through
simulation. The time (74 H) required to complete the
mission using a deadlock prevention scheme is-also de-
termined by means of simulation. If @(L) is the proba~-
bility that no malfunctions other than deadlock arise
in L time units, then assuming independence, we have:

_(T+H)—-Q(T)-(1—P)
H

SRE

At this time we know of no way of computing H and P
analytically.

INPUT b COMPUTER = OUTPUT

Simplex Configuration

Figure 3a

Summary of software methods

Different methods for improving the overall reli-
ability of a system using software have been dis-
cussed. The software reliability efficiency index was sug-
gested as an aid in evaluating software methods.
Techniques for computing SRE were discussed. Similar
techniques can be used for computing SRE for other
software methods.

HARDWARE METHODS

Triple modulo redundancy

Discussion

Triple Modulo Redundancy (TMR) was one of the
earliest methods! suggested for obtaining a reliable sys-
tem from less reliable components. The system output
(Figure 3) is the majority of three identical compo-
nents. If only one of the components is in error, the
system output will not be in error, since the majority of

— Ccomwuter

System
Input

Computer

Output

Voter

|
1
1
i
|
I
I
I
I
{ System
1
|
!
1
|
|
i
i
t
I
|

SYSTEM

Figure 3b

60 Fall Joint Computer Conference, 1972

components will not be in error. Thus, the system can
tolerate errors in any one component; note that these
errors may be transient or permanent. In this discussion
we discuss only permanent errors.

Computing the hardware reliability effictency index

Let P be the probability that a permanent malfunc-
tion occurs in a given component before the mission is
completed. If failures obey an exponential law, and
if the average time to a failure is 1/a, then P=1—¢7,
where T' is the time required to complete the mission.

If the system is a discrete transition system (such as a

computer system), then the time required to complete
the mission can be expressed as N cycles (iterations)
where computation proceeds in discrete steps called
cycles. If the probability of failure on any cycle is p
independent of other cycles then

P=1—-(1-p)¥

Let v be the probability of a malfunction in the vote-
taker before the mission is complete independent of
other events. The reliability B of a TMR system is the
probability that at least two components and the vote-
taker do not fail for the duration of the mission.

R=[(1-P)*+3(1—P)*-P]-(1—)

If C is the cost of each component, and D the cost of the
vote-taker, the hardware reliability efficiency index is:

(1—P)*4+3(1—P)*P]-(1—v) —(1—P)

L
HRE= 204D

Transient errors can also be included quite easily in
HRE.

Hybrid system

Discussion

Mathur and Avizienis? discuss an ingenious method of
obtaining reliability by using TMR and spares, see
Figure 4. The spares are not powered-on and will be
referred to as “inactive’” components. If at any point
in time, one of the three active components disagrees
with the majority, the component in the minority is
switched out and replaced by a spare. The spare must
be powered-up and loaded; one method of loading the
component is to use rollback and load the component
with the last saved error-free state, and begin computa-
tion from that point. If at most one component fails

,—" Computer

Majorit
Comp) Jortty ouTPUT

Voter

Computer

—

|

|

I

|

|
1NPUT !

|

I

|

|

|

|

|

|

(.

Active Core J

i

Computer |

Spare Units

Computer

Hybrid System (5,3)

Figure 4

during a cycle and if the vote-taker is error-free, this
system is fail-safe until all the spares are used up, i.e.,
the system output will not be in error. Consider a com-
parison of a system with three active units and two
spares with another system which has five active units.
If at most one unit can fail at a time then the majority
is always right and the system with three active units
is at least as good as a system with five active units
(since a majority of two active units is as right as a
majority of four). Thus if at most one unit fails at a
time, the number of active units need never exceed
three; additional units should be kept as spares. Of
course in digital computer systems where computa-
tion proceeds in discrete steps such as cycles, itera-
tions, instruction-executions, task-executions, ete., it is
possible, though improbable, that more than one unit
may fail in a single step. In this case, an analysis which
assumes that at most one active unit can fail at a time
is an approximation to the real problem.

Computation ‘of the hardware reliability efficiency index

Mathur and Avizienis (op cit) assume that malfunc-
tions oecur according to an exponential failure law. A
consequence of this assumption is that at most one unit

Framework for Hardware-Software Tradeoffs 61

Number of
Active Units

Number of
Passive Units

Markov diagram of a hybrid configuration

Figure 5

can fail at a given instant which in turn implies that the
majority is always right. Now consider what happens if
the improbable event does oceur and the majority is in
error and the minority is correct. The correct minority
unit will be switched out to be replaced by a spare which
is powered up and initialized. A comparison with the
other two active units will show that the powered-on
spare is in the minority, and it will in turn be switched
out to be replaced by yet another spare and so on. Even-
tually all the spares will be used up and the system will
crash. Thus even though the probability of failure of two
units in one iteration is indeed small, the consequence
of this improbable event is catastrophic. Hence we feel
that in calculating SRE it is important to back-up the
Mathur-Avizienis study of this ingenious method with
an analysis that does not assume that simultaneous
failures never occur.

In this analysis we will assume that computation pro-
ceeds in discrete steps called tasks; a task may consist
of several instructions or a single instruction. Key
variables of the active units are compared at the end of
a task completion, and the minority element, if any, is
switched out. Let the probability of failure of a unit
on any step of the computation be P, independent of
other units and earlier events. A discrete-state, dis-
crete-transistion Markov process may be used to model
this system. A Markov state diagram is shown in Figure
5. If the system is in state F, then a system failure has
already occurred. The reliability of the system is the
probability that the system is not in state F at the Nth
iteration, where N is the number of computation steps
required in the mission. The reliability can be com-
puted analytically from the Jordan normal form. A

. curve of reliability as a function of N is shown in Figure
8. Let Ry be the reliability of the hybrid system, C the
cost of each unit and D the cost of the vote-taker. The
hardware reliability efficiency index with two spares is
then:

Ry— (1-P)¥

HRE=
4C+D

Self-purging system

Discussion

Consider a self-purging system shown in Figure 6.
Initially there are five active units and no spares. If
at any instant the vote-taker detects a disagreement
among the active units, the units whose outputs are in
the minority are switched out, leaving three, active,
error-free units. If the failure rates for active and pas-
sive units are the same, the self-purging system will
tolerate two simultaneous failures, which may. be
catastrophic for the hybrid system.

Computation of the hardware reliability efficiency index

In this analysis we shall assume that computation
proceeds in discrete steps, as in the analysis for the

r—% Computer

[~* Computer

Variable OUTPUT

INPUT Threshold
Computer Voter

| | Computer

L_,{ Computer

Self-purging System with 5 Units

Figure 6

62 Fall Joint Computer Conference, 1972

Number of
fault free
processors

Markov diagram of a self-purging configuration

Figure 7

hybrid system. Let P be the probability of failure of a
unit on a computation step, independent of other units
and earlier steps. A Markov state diagram for this
process is shown in Figure 7. As in the hybrid case the

1.00

Reliability

HYBRID

0.60

o 120 240 _,
Time ——

Figure 8

reliability of the system is the probability that the sys-
tem is not in state F one the Nth computation step. A
curve showing the reliability of this system as a func-
tion of NV is shown in Figure 8. Let Rg be the reliability
of a self-purging system with five active units initially.
Then :

Rs—(1—-P)¥

HRE= 1D

If the cost of power supplies are included HRE for the
hybrid system is larger than that for self-purging.

Summary of hardware methods

TMR, hybrid, and a system called a self-purging
system were discussed. Some of the problems of ap-
proximating these systems as continuous transition
systems were analyzed. Techniques for obtaining the
hardware reliability efficiency indices were presented.
Similar techniques can be used for other hardware
methods.

CONCLUSION

We have attempted to develop a set of simple indices
which may be useful in comparing different techniques
for achieving reliability. We feel that an important re-
search and pedogogical problem is to develop a more
comprehensive, sophisticated framework. Models for
rollback and discrete transition models for hybrid and -
self-purging systems were discussed briefly.

ACKNOWLEDGMENT

This research was supported in part by NSF grants
GJ-35109 and GJ-492.

REFERENCES

1 J VON NEUMANN
Probabilistic logics and the synthesis of reliable organisms
from unreliable components
Automata Studies p 43-98 Princeton University Press
Princeton N J 1956

2 F P MATHUR A AVIZIENIS ,
Reliability analysis and architecture of a hybrid-redundant
digital system: Generalized triple module redundancy with
self-repair)
Proc Spring Joint Computer Conference 1970

Framework for Hardware-Software Tradeoffs 63

3 M BALL F H HARDIE
Redundancy for belter maintenance of computer systems
Computer Design pp 50-52 January 1969

4 M BALL F H HARDIE
Self-repair in a TM R computer
Computer Design pp 54-57 February 1969

5 A COWAN
Hardware-sofiware tradeoffs in the design of reliable computers
Master’s thesis in the Department of Computer Sciences
University of Texas December 1971

6 A N HABERMANN
Prevention of system deadlocks
Comm ACM Vol 12 No 7 July 1969

7 J HOWARD
The coordination of multiple processes in compuler operating
systems

Dissertation Computer Sciences Department University of
Texas at Austin 1970
8 K M CHANDY C V RAMAMOORTHY
Optimal rollback
IEEE-C Vol C-21 No 6 pp 546-556 June 1972
9 G OPPENHEIMER X P CLANCY
Considerations of software protection and recovery from
hardware failures
Proc FJCC 1968 AFIPS pp 29-37
10 A N HIGGINS
Error recovery through programming
Proc FJCC 1968 AFIPS pp 39-43
11 A N HABERMANN
On the harmonious cooperation of abstract machines
Thesis Mathematics Department Technological
U Eindhoven The Netherlands 1967

Automation of i'eliability evaluation procedures through
CARE—The computer-aided reliability estimation program®

by FRANCIS P. MATHUR

University of Missours
Columbia, Missouri

INTRODUCTION

The large number of different redundancy schemes
available to the designer of fault-tolerant systems, the
number of parameters pertaining to each scheme, and
the large range of possible variations in each parameter
seek automated procedures that would enable the
designer to rapidly model, simulate and analyze pre-
liminary designs and through man-machine symbiosis
arrive at optimal and balanced fault-tolerant systems
under the constraints of the prospective application.

Such an automated procedural tool which can model
self-repair and fault-tolerant organizations, compute
reliability theoretic functions, perform sensitivity
analysis, compare competitive systems with respect to
various measures and facilitate report preparation by
generating tables and graphs is implemented in the
form of an on-line interactive computer program called
CARE (for Computer-Aided Reliability Estimation).
Essentially CARE consists of a repository of mathe-
matical equations defining the various basic redundancy
schemes. These equations, under program control, are
then interrelated to generate the desired mathematical
model to fit the architecture of the system under
evaluation. The math model is then supplied with
ground instances of its variables and then evaluated to
generate values for the reliability theoretic functions
applied to the model. '

The math models may be evaluated as a function of
absolute mission time, normalized mission time, non-
redundant system reliability, or any other system
parameter that may be applicable.

* The work presented here was carried out while the author was
with the Jet Propulsion Laboratory, California Institute of
Technology, and under Contract No. NAS7-100, sponsored by the
National Aeronautics and Space Administration.

65

Unifying notation

A unifying notation, developed to describe the
various system configurations using selective, massive,
or hybrid redundancy is illustrated in Figure 1.

N refers to the number of replicas that are made
massively redundant (NMR) ; S is the number of spare
units; W refers to the number of cascaded units, i.e.,
the degree of partitioning; R() refers to the reliability
of the system as characterized in the parentheses;
TMR stands for triple modular redundant system
(N=3); the NMR stand for N-tuple modular re-
dundancy.

A hybrid redundant system H(N, S, W) is said to
have a reliability R(N, S, W). If the number of spares
is S=0, then the hybrid system reduces to a cascaded
NMR system whose reliability expression is denoted by
R(N, O, W); in the case where there are no cascades,
it reduces to R(N, O, 1), or more simply to R(NMR).
Thus the term W may be elided if W=1. The sparing
system R (1, S) consists of one basic unit with S spares.

Furthermore, the convention is used that R*indicates
that the unreliability (1—R,) due to the overhead
required for restoration, detection, or switching has
been takenintoaccount e.g., R*(NMR) =R,.R(NMR);
if the asterisk is elided then it is assumed that the over-
head has a negligible probability of failure. This pro-
posed notation is extendable and can incorporate a
number of functional parameters in addition to those
shown here by enlarging the vector or lists of parameters
within the parentheses, e.g., R(N, S, W, ..., X, Y, Z).

Existing reliability programs

Some reliability evaluation programs, known to the
author, are the RCP, the- RELAN, and the REL70.
The RCP!? is a reliability computation package
developed by Chelson (1967). This is a program which

66 Fall Joint Computer Conference, 1972

NMR SYSTEMS

- |
R(NMR)\ RATMR) |
N\ S=0 NS0}
[RAVARNIIS
RINOW 1\ RGOW_ N\ |

SPARING v Y
SYSTEMS TS'O \ T5=0 \
i | vt fm e t
P RLSW 1o 1 RNSW] RG,S, W [
| W=1 ;] ——> J 1
| N-lp o lwer N3 lwer S
e 2
L RS 1% RN,S)-~ RG,S) 7 1

e e e e e s s s s S . A (s S Gy S VoS i S Sgome

HYBRID SYSTEMS

Figure 1—Unifying notation

can model a network of arbitrary series-parallel com-
binations of building blocks and analyzes the system
reliability by means of probabilistic fault-trees. RELAN3
is an interactive program developed by TIME/WARE
and is offered on the Computer Sciences Corporation’s
INFONET network. RELAN like RCP models arbi-
trary series-parallel combinations but in addition allows
a wide choice (any of 17 types) of failure distributions.
RELAN has concise and easy to use input formats and
provides elegant outputs such as plots and histograms.
REL70*and its forerunner RELS developed by Bouricius,
et al., are interactive programs developed in APL/360.
Unlike RCP and RELAN, REL?70 is more adapted for
evaluating systems other than series-parallel such as
standby-replacement and triple modular redundancy.
It offers a large number of system parameters, in
particular C the coverage factor defined as the proba-
bility of recovering from a failure given that the failure
exists and Q, the quota, which is the number of modules
of the same type required to be operating concurrently.
REL70 is primarily oriented toward the exponential
distribution though it does provide limited capabilities
for evaluating reliability with respect to the Weibull
distribution; its outputs are primarily tabular. Since
APL is an interpretive language, REL is slow in opera-
tion; however, its designers have overcome the speed
limitation by not programming the explicit reliability
equations but approximate versions® which are appli-
cable to short missions by utilizing the approximation
(1—exp(—AT)) =T for small values of AT.

The CARE program is a general program for eval-
uating fault-tolerant systems, general in that its relia-
bility theoretic functions do not pertain to any one
system or equation but to all equations contained in its
repository and also to complex equations which may be
formed by interrelating the basic equations. This

repository of equations is extendable. Dummy routines
are provided wherein new or more general equations
may be placed as they are developed and become
available to the fault-tolerant computing community.
For example, the equation developed by Bouricius,
et al, for standby-replacement systems embodying
the parameters C and Q has been bodily incorporated
into the equation repository of CARE.

CARE’S ENVIRONMENT, USERS AND
AVAILABILITY

CARE consists of some 4150 FORTRAN V state-
ments and was developed on the UNIVAC 1108 under
EXEC 8 (version 11C). The particular FORTRAN V
compiler used was the Level 7E having the modified
2/3/4 argument ENCODE-DECODE commands. The
amount of core required by the unsegmented CARE is
64K words. The software for graphical outputs is
designed to operate in conjunction with the Stromberg
Carlson 4020 plotter. The software enabling three-
dimensional projections, namely the Projectograph
routines,” are a proprietary item of Technology Service
Corporation.

In addition to the Jet Propulsion Laboratory, the
originator, currently there are three other users of
CARE, namely NASA Langley Research Center (a
FORTRAN II version operational on a CDC 3600),
Ultrasystems Corp. (operational on a UNIVAC 1108
under EXEC II), and MIT Draper Laboratory. The
CARE program, minus the Projectograph routines, has
been submitted to COSMIC** and is available to
interested parties from them along with users manuals.
Its reference number at COSMIC is NPO-13086.

CARE’s repository of equations

The equations residing in QCARE, based on the
exponential failure law, model the following basic
fault-tolerant organizations:

(1) Hybrid-redundant (N, S) systems.®*
(a) NMR (N, 0) systems.®
(b) TMR (3, 0) systems.!?
(¢) Cascaded or partitioned versions of the
above systems.
(d) Series string of the above systems.

The equation representing the above family of

** Computer Software Management and 1nformati0n Center,
University of Georgia, Athens, Georgia 30601.

The Computer-Aided Reliability Estimation Program 67

systems is the following:

R*(N, 8)

NK+S 1 1
= | pN/wWRQ SW —
RN/WRS, [H— 2 (] 1)(RaW 1)

z()<>>:<~<)—w->—
S

(.
o

sz_é Ki+8 1
- F=0]+1 (Ral/w

for 1<K<®w and S>1

. [N\ i [i
= {RN”WR,”W 14+ (NK+1) Z‘,(>)
=0 ’L =0 l

()™ 1>]RV

1
X K1) <R31’WR”W -
for 1<K<w and S=1

WZ

Wz

(2) Standby-sparing redundant (1, S) systems.5:10

(a) K-out-of-N systems.®

(b) Simplex systems.

(c¢) Series string and cascaded versions of the
above.

The general equation for the above is:

R(1,8)= [RQ’W

1+ Z[i (F=R&T)

i—1

x I (QK+i))
=0

I

for 1<K<w
= [RQ/W i (CQ’\T/W)‘]WZ

it

=0
for K=o

(3) TMR systems with probabilistic compensating
failures.’®
(a) Series string and cascaded versions of the
above.
The equation characterizing this system is:

R*(3, 0) = {RV[3R¥¥ —2R¥W
+6P (1—P)RV/W (1—RVW)*]} Wz

(4) Hybrid/simplex redundant, (3, S) sim systems.!
(a) TMR/simplex systems.5
(b) Series string and cascaded versions of the
above.
The general equation for this eclass of systems is
the following:

R(3: S)Sim[T}
> 3K+i)
=TSR S .
e {11 (s =) 1 (e

s—1 /S
H (3Ii+.7) Z(>(__1)i

% (Rsls—l ‘1> (2K+?)I§;K+¢)}

for S>0 and x>0

and
s —
(3NT)st1—
= +5)S+IR —_R3 N
(1-5)"R—R E Y
X[(1-6)i—=1]—R3[(1-5)8*1—1]
for 8>0 and u=0
and

R*(3, S)sim=Ru'R(3, S)sim

For the description of the above systems and their
mathematical derivations, refer to the cited references.
These equations are the most general representation of
their systems parameterizing mission time, failure
rates, dormancy factors, coverage, number of spares,
number of multiplexed units, number of cascaded
units, and number of identieal systems in series. The
definitions of these parameters reside in CARE and
may be optionally requested by the user. More complex
systems may be modeled by taking any of the above
listed systems in series reliability with one another.

68 Fall Joint Computer Conference, 1972

TABLE I—Table of Abbreviations and Terms

N =Powered failure rate
p =Unpowered failure rate
K =X/p = Dormancy factor
T =Mission time
AT =Normalized mission time
R =Simplex reliability
R =Dormant reliability, exp(—uT).
S =Number of spares
n =(N-1)/2 where N is the total number of multiplexed
units i
Q =Quota or number of identical units in simplex
systems
C =Coverage factor, Pr(recovery /failure)
RV =Reliability of restoring organ or switching overhead
Z =Number of identical systems in series
W =Number of cascaded or partitioned units
P =Probability of unit failing to ‘“‘zero”

TMR =Triple modular redundancy
TMR, =TMR system with probabilistic compensating
failures
(1,8) =Standby spare system
(N,S) =Hybrid redundant system
(3,8)sim =Hybrid /simplex redundant system
MTF =DMean life
R(MTF) =Reliability at the mean life

Reliability theoretic functions

The reliability equations in the repository may be
evaluated as a function of absolute mission time (T),
normalized mission time (AT), nonredundant system
reliability (R), or any other system parameter that
may be applicable. The set of reliability theoretic
functions defined in CARE are applicable to any of the
equations in the repository. This independence of the
equations from the functions to be applied to the
equations impart generality to the program. Thus the
equation repository may be upgraded without effecting
the repertoire of functions. The wvarious reliability

theoretic functions useful in the evaluation of fault-

tolerant computing systems have been presented in
Ref. 11, the measures of reliability have been defined,
categorized into the domains of probabilistic measures
and time measures and their effectiveness compared.
Among the various measures of reliability that the user
may request for computation are: the system mean-life,
the reliability at the mean-life, gain in reliability over a
simplex system or some other competitive system, the
reliability improvement factor, and the mission time

availability for some minimum tolerable mission

reliability.
Operational features

Although CARE is primarily an interactive program,
it may be run in batch mode if the user prespecifies the

protocol explicitly. In the interactive mode CARE
assumes minimum knowledge on the user’s part. Default
values are provided to many of the items that a user
should normally supply. This safeguards the user and
also makes usage simpler by providing logical default
values to conventionally used parameters. Instructions
provided by CARE are optional thus the experienced
user can circumvent these and operate in fast mode.
Definitions of reliability terms and abbreviations used
in the program may be optionally requested. An optional
“echo” feature that echoes user’s responses back to the
terminal is also provided. A number of diagnostics and
recovery features that save users from some common
fatal errors are in the program.

Model formulation—an example

A typical problem submitted for CARE analysis may
be the following: Given a simplex system with 8 equal
modules which is made fault-tolerant by providing two
standby spares for each module, where each module
has a constant failure rate of 0.5 failures per year and
where the spares have a dormancy factor of 10 and the
applicable coverage factor being 0.99, it is required to
evaluate the system survival probability in steps of
1/10 of a year for a maximum mission duration of 12
years. It is required that the system reliability be com-
pared against the simplex or nonredundant system and
that all these results be tabulated and also plotted. It is
further required that the mean-life of the system as well
as the reliability at the mean-life be computed. It is
of interest to know the maximum mission duration that
is possible while sustaining some fixed system reliability
objective and to display the sensitivity of this mission
duration with respect to variations in the tolerable
mission reliability.

It is also required that the above analysis be carried
out for the case where three standby spares are provided
and these configurations of three and two spares be
compared and the various comparative measures of
reliability be evaluated and displayed.

The above problem formulation is entered into CARE
by stating that Equation 2 (which models standby
spare systems) is required and the pertinent data
(8=2,3; Z=8; K=10; T=12.0; LAMBDA=0.5;
C=0.99; STEP=0.1) is inserted into CARE between
the VARiable namelist delimiters $VAR ... $END.

The above example illustrates the complexity of
problems that may be posed to CARE, and the sim-~
plicity with which the specifications are entered. The
reliability theoretic functions to be performed on the
above specified system are acknowledged interactively
by responding a YES or NO on the demand terminal to
CARE’s questions at the time it so requests.

The Computer-Aided Reliability Estimation Program 69

—)—

A PRIMITIVE SYSTEM: 1,5), (N,S), (3,S)g OR TMR_

AN m- PARTITIONED PRIMITIVE SYSTEM (W = m).

SERIES - STRING OF A PRIMITIVE SYSTEM (2 =£).
1

AN m- PARTITIONED SERIES - STRING OF A PRIMITIVE SYSTEM W=m, 2 ={),

}——C Z >+

AN ARBITRARY SERIES-STRING OF m-PARTITIONED SERIES - STRING OF
PRIMITIVE SYSTEMS,

— T

Figure 2—Formation of complex systems

COMPLEX SYSTEMS

The basic equations in CARE’s repository define the
primitive systems: (1, 8), (N, S), (3, S)sim and TMR,,.
Equations representing more complex systems may be
fabricated by combining the primitive systems in
series reliability with one another as shown in Figure 2.

The description of a complex system is entered by
first enumerating the equation numbers of the primitive
systems involved in namelist VARiablel. Thus
“$VARI1; PROD=1, 2; $END;” states that equation
1 and equation 2 are to be configured in series reliability.
Next, the parameter specifications for these equations
are then entered using the namelist VARiable.

The set of values for any parameter pertaining to a
complex system is stored as a matrix, thus in the general
case of PARAMETER (m, n) n refers to the equation
involved m is the internal index for the set of values that
will be attempted successively. For example, C(1, 2) =
1.0, 0.99 states that in equation 2 (the equation for
standby-spares system) the value of the coverage
factor should be taken to be 1.0 and having evaluated
the complex system for this value the system is to be
reconsidered with coverage factor being 0.99.

Complex model formulation—an example

It was required to evaluate a system consisting of 8
equally partitioned modules in a standby-spares (1, S)
configuration having 2 spares for each module. The 9th.
module was the hard-core of the system and was
configured in a Hybrid redundant (3, S) system having
2 spares (S=2). The coverage on the (1,8) system
modules was to be initially considered to be 1.0. The
lower bound on the failure rate A on all the modules
had been evaluated to be .01752 failures/year on the
basis of parts count. This complex system as specified

here was to be evaluated for the worst case dormancy
factors K of 1 and infinity.

On completing the evaluation of the above system,
the effect of reducing coverage to 0.99 was to be re-
evaluated. Also the effect of increasing the number of
spares to 3, as also the effect of increasing the module
failure rates to their upper bound value of .0876
failures/year. All combinations of these modifications
on the original system are to be considered. The mission
time is 12 years and evaluations are to be made in
steps of 1/10th of a year.

The above desired computations are specified using
the VAR namelist thus:

$VAR; T=12.0; STEP=0.1; Z(1,1)=1,
7%(1,2)=8; C(1,2) =10, 0.99; N(1,1)=3;
S(1,1)=2,3,8(1,2) =2,3; LAMBDA(L, 1) =
.01752, .0876, LAMBDA(1, 2)=.01752,
.0876; K(1, 1) =1.0, INF, K(1, 2) =1.0, INF;
$END;

(Note the semicolons (;) denote carriage returns.) The
ease and compactness with which complex systems ¢an
be specified in CARE is demonstrated by the above
example. The reader will note the complex system
configured in this example corresponds to a STAR-like
system having eight functional units in standby-spare

~mode and a hard-core test-and-repair unit in Hybrid

redundant mode (Figure 3).

SOME SIGNIFICANT RESULTS USING CARE

Some significant results pertaining to the behavior
of W partitioned NMR system (Figure 4) will now be
presented. These results pertain to the behavior or
reliability theoretic functions of an NMR system such
as its mean life or mean time to first failure (MTF)
and the reliability of the system at the mean life,
R(MTF). The reliability theoretic system measure—

—D_\ [(HHHHH
o gabahs

Figure 3—Configuration for an example of a STAR-like
complex model

SUARLS

70 Fall Joint Computer Conference, 1972

1.00 T T T
1 1 1
2 2 Y 2
0.80 : : : 1
N N N
= 0 60[SIMPLEX \
g ¢ D
© wW=1
bl \
= 3| | N
= 0.40 5*-——‘ | I/I/\
B SIS wool | TMR,
9 [=k N ~=2> N=3
0.25 — - -4 — W\ — _V\J_—3_.. ~
0.20 ' \W=2 T W = &
' l b & $//
0.125~——+—'L-—--- — MW =3
W=
0.0625— {— +———— = >
0.0010.03125+ —— — ~— —}
"70.0 0.5 ; 1.0 :1.5 2.0, 2.5 1 3.0 3.5
0.694 1.39 2.08 2.78 3.4

AT

RIN,.O, W) vs AT AS A FUNCTION OF N AND W

Figure 4—R(N,0, W) vs AT as a function of N and W

reliability at the mean life, R(MTF) —is the reliability
of the system computed for missions or time durations
of length equal to the mean time to first failure of the
system. The behavior of these functions were evaluated
under the limiting conditions of the system parameters
in order to establish system performance bounds. The
results presented here have been both proven mathe-
matically and been verified by CARE analysis.

Since it is well-known that mean-life (MTF) is not a
credible measure of rehablhty performance (e.g.,, MTF
of a simplex system is greater than the MTF of a TMR
system!), another measure the reliability at the mean-
life R(MTF) has been used to supplant MTF. This
measure essentially uses a typical reliability estimate of

the system. The typical reliability value being taken at
a specific and hopefully a representative time of the
system. This representative time is taken to be the
time to first failure of the system, namely the MTF of
the system. The foregoing is the rationale for choosing
R(MTF) as a viable measure of system reliability.
However, contrary to general belief this measure
R(MTF) is not a good measure for partitioned NMR
systems due to its asymptotic behavior as a function of
the number of partitions W. It is proved in [107] that
the reliability at MTF of a (3,0, W) system in the
limit as W becomes very large approaches the value
exp (—x/4) asymptotically from below and that this
bounding value is reached very rapidly, see Figure 5.

RIMTFG, 0, Wi

The Computer-Aided Reliability Estimation Program 71

TABLE II--MTF and R(MTF) as a Function of W

(3,0, W) System

w MTF R(MTF)
0 (Simplex) 1.0 0.368
1 (TMR) 0.83 0.402
(3,0, ») © exp(—w/4) = 0.454

Some other results observed graphically in Figure 4
and the detailed mathematical proof of which are in
[10] are summarized below. These results follow from
the general reliability equation for a W partitioned
NMR system, which is:

-2 [N W
RN,O,W)=| > . (1—RYW)i. RN-/W
=\ 4

and that the normalized mean-life,

MTF(N, 0, W) = / R(N, 0, W) dit
0
The bounds on the mean-life as a function of the
degree of redundancy N is:

lim MTF(N, O, W) =W In 2 where In is the
N-o Naperian logarithm.

and in the particular case of W=1

lim MTF(NMR) = In 2~0.694

N-»o00

1.0

0.8

0.6

0.4

0.2

0.9 4 6 8 10 12 14 16 18 20
MTF3, 0, W)

RIMTF(3, 0, W)I vs MTF(3, 0, W)

Figure 5—~R{MTF(3,0,W)] vs MTF (3,0, W)

1007 THITHET T T T

0.80

o
o
(=]

R [MTF(NMRY]
ET
1
1

o
S
o

0.20 : -
,'

i
+t

1
[¢] 11 21 31 41 51 61 71 8l 91 101

N
RELIABILITY AT MTF vs N FOR NMR SYSTEMS

Figure 6—Reliability at MTF vs N for NMR systems

Also, for the reliability at the MTF: .
lim R(MTF) of (3, 0, W) =exp(—=/4) =0.454

W0

and lim R(MTF) of NMR =0.5

N->w

The family of reliability curves representing the
NMR system as shown in Figure 4 exhibits the classical
cross-over point which for (3,0,1) system occurs at
the coordinates Reys=0.5 and AT =0.694. The general
specification of the coordinates of the cross-over point
for arbitrary values of N and W may be expressed
as follows:

Cross-over point [R; AT] of a
(N, O, W) system=[(0.5)W; lim MTF(N, O, W)]

N->oo

=[(0.5)"; Wln 2]
These results are tabulated in Tables IT and III.

TABLE III—Coordinates of Cross-Over Point [R; AT]
as a Function of W and N

(N,0,W) System

W [R; AT]

1 0.5;1n 2

2 0.5)%;21n 2
X 0.5)x;xIn 2

72 Fall Joint Computer Conference, 1972
KCPLOT PLOTT |e 1
2 2 OUTPUTS
STRT3 AXIS2 PLOT3D PLOTRV PLOTR RITE |
? 4 4 4 4 t -
M A | N
v S
READIN
y
INSTR
| LINPUT AND
SEARCH INITIALIZATION
A
> SCAN |e
r y -
SIMPLE EQUAL SIMPR1 RIFDIF
FUNCTIONS ﬁ ITEGER BISECT PARAR]
ROMBD 4
.
R
RELEQS |
v
RELIABILITY
fo# EQUATIONS
MATH SUBROUTINES

7

Figure 7—CARE’s structure -

CARE’S STRUCTURE

The foregoing described the performance capabilities
of CARE; in this section the implementation structure
is described.

CARE consists of a number of primary subroutines.
The relationship amongst these primary subroutines is
shown in the simplified flow diagram of Figure 7.

The overall program has four broadly defined seg-
ments:

(i) dealing with reading in of data and initializing
of the logical flow of the program,

(ii) dealing with the functions that are to be per-
formed using the input data,

(iii) dealing with the repository of the general
equations that model fault-tolerant systems and
the relevant mathematical routines required to
evaluate these equations, and

(iv) dealing with initializing output formats, passing
the data, and outputting it as 2D plots, 3D
projections, or as tables.

All these four segments are under the control of MAIN
which sets the DO loops and determines what and how
many times each function is to be performed and
controls the mode in which the results are to be out-
putted.

Parameter Handling

The system parameters, LAMBDA, Muy, 8, N, K, Q,
C, RV, Z, W, and P are two dimensional parameter
arrays, dimensioned as being 16 XNPT and reside in
the labeled COMMON/PARA/. Sixteen is the maxi-
mum number of values that any one parameter may be
assigned in $VAR. The NPT (short for ‘“number of
products’) pertains to the total number of equations

The Computer-Aided Reliability Estimation Program 73

ECHO?
OUTPUT3

¥y v

USING $VAR] INPUT
ARRAY OF EQUATIONS
IN PROD

DEFINITION?
DEF
A

F DEFINITIONS 1

v

, COUNT * OF EQUATIONS
YES SPECIFIED AND SET
INST ' NPROD EQUAL TO IT

y YES

INSTRUCTIONS

J ERROR

PRODUCT OF
wt RELIABILITY? YES

L___.___y NO

A INSTRUCTIONS FOR
INPUT $VAR Jq— INPUTING PARAMETERS
IN $VAR

NO A YES
NPUT CHANGES J TIME INPUTED?

NO LT Y YES [

w/ cawrs JYES

LEGEND:

A
L WARNING , DEFAULT. —I I ELATIN—TIME J

() INDICATES QUESTIONS THAT THE USER IS

REQUIRED TO ANSWER
ITALICIZED WORDS DENOTE THE CORRESPONDING
PROGRAM VARIABLES

Figure 8—Flowchart of CARE’s protocol

that may be used in forming the product. If a complex
equation is not being formed, then NPT=1. The
maximum value that NPT can currently take is 10.
Thus the rows of the parameter matrices contain the
values of the parameter while the columns contain the
index of the equation numbers (with reference to the
order in which they were entered in $VAR1) that these
parameters pertain to.

The time pertinent parameters, such as Time,
LAMT (AT) and ELAMT (exp(—AT)) are single
valued. Their values are the maximum values that the
parameter is to take, the incremental steps at which
computations are to be performed is specified by
assigning a value to the variable STEP in $VAR (the
default value for STEP is one).

The number of values specified for each parameter is
determined by the subroutine SEARCH, these values

then form the values of the DO limits in the MAIN
program. The actual volue is obtained by accessing the
particular element of the 16 X NPT parameter matrix.

Logical relationship between the routines

As shown in Fig. 7, MAIN is the driver for the
CARE program. MAIN calls READIN, the subroutine
READIN writes out questions for the user to answer
and records his answers. These questions are asked in a
logical manner with a large number of options per-
mitting the user flexibility in the specification of his
problem. A large number of diagnostics and automatic
recovery from user’s input errors are provided.

Typically, READIN writes out a question, reads in
the user’s answer to the question, and if the echo
feature had been requested, READIN echoes back the

74 Fall Joint Computer Conference, 1972

YES

NO

ELAMT

NO

NO

A

WRITE MIN, MAX
AND STEP OF
PARAMETER

IPLT1+-0

Y

READ PLOTS
DESIRED

PRODT

ad

4

REA

D ABSICCA'S
DESIRED

Yy ¢ |

NO

READ RANGE
X-AXIS

WARNINGS AND
DEFAULTS

y

1

XRANGE
-— TIME

READ Y-RANGE

LEGEND:
INDICATES QUESTIONS

Figure 8 (continued)

)

THAT THE USER IS
REQUIRED TO ANSWER
ITALICIZED WORDS
DENOTE THE CORRES-
PONDING PROGRAM
VARIABLES

The Computer-Aided Reliability Estimation Program 75

NO /TMAX OR TMAX\ YES
COMPARISON

READ R2,
PLOTS? \YES R1 MIN,

PLOTR1
R1 MAX, STEP

PRODT

 TMAX
COMPARISONS ?
OPTR2

YES

TABLE FOR
RELIABILITY
OUTPT?

YES

PLOTR2

SPECIFY
COMPARISON
OPTIONS
1,2,0R3

TABLES
FOR TMAX
OUTPTS

TABLE FOR
DIF, RIF, GAIN
ouTPT2

_YES

PLOTS?
FOR THIS
PLOTR2

YES

TABLE FOR
MTF, R (MTF)
OUTPT4

YES

LEGEND: T

D INDICATES QUESTION THAT THE USER IS ¢ +
REQUIRED TO ANSWER
ITALICIZED WORDS DENOTE THE CORRESPONDING : RETURN
PROGRAM VARIABLES

Figure 8 (continued)

76 Fall J oint Computer Conference, 1972

answer just read. READIN then calls SCAN passing to
it the array containing the information read-in for
recognition. SCAN determines whether the answer was
a YES or a NO or whether it was a parameter input;
if it was a parameter input, then it determines its
identity. If an input error is detected, the user is asked
to try again. This is implemented by using the
$RETURN call parameter feature which returns from
SCAN jumping back to preceding read of answer
statement in the calling program (READIN). READIN
thus gathers input data from the user thus determining
which subroutines and features need to be called and in
what order. The logic of READIN and the decision
tree that the user has to traverse is shown in Figure 8.

Returning from READIN, MAIN calls SEARCH.
SEARCH proceeds to count the number of values that
were inputted for each of the system parameters, these
determine how many times a particular subroutine or
function has to be iterated.

Returning from SEARCH, MAIN asks the user to
specify which parameter shall be the family variable,
the user’s response is read, optionally echoed back and
recognized by SCAN. MAIN then determines which
one of three possible time parameters—T, AT, or

exp(—AT)—had been inputted. MAIN then prepares:

the DO loop limits and rearranges their order in ac-
cordance with the inputted family parameter. The
inherent nested order of the DO loops with respect to
the system parameters is LAMBDA, Mu, S, N, K, Q,
C, RV, Z, W, and P. This initial ordering of the param-
eter requires to be changed since (i) any of these param-
eters may be specified to be the family parameter and
(ii) since the innermost DO loop must necessarily
correspond to this family parameter. Thus effectively
the original position of the parameter selected is inter-
changed with the innermost parameter, namely P.

MAIN also requires to call the subroutine RELATE
in order to determine the unspecified parameters of the
class A, u, AT, uT, exp(—AT) and K. Since these
parameters are interrelated, hence not all may have been
directly inputted. RELATE determines values for those
parameters unspecified by knowing the ones that were
explicitly inputted.

MAIN, using the subroutine RITE, writes the table
header for the table of reliability calculations. The
header identifies the equation number and the param-
eters involved. MAIN then calls RELEQS which in
turn supplies the desired reliability equation with the
necessary parameter values in order to perform the
basic reliability calculation. The respective equation
subroutines make use of the standard FORTRAN
math routines and the math routines provided by
CARE. '

Depending on the options read-in by READIN,
MAIN then calls upon the subroutines that evaluate
the functions to be performed such as MTF and relia-
bility at MTF by subroutine INTEGER, differences
and gain in reliabilities by subroutine RIFDIF, ete.
Finally, MAIN asks if the user wishes to specify another
parameter as the family parameter in which case the
date read-in by READIN is retained and using the new
family parameter MAIN starts its new cycle.

CONCLUSION

A significant portion of concepts and techniques of
fault-tolerant computing is embodied in the imple-
mentation of this Computer-Aided Reliability Estima-
tion program. Both the performance capabilities and
implementation structure have been described here.

The advantages offered by such a special purpose
procedural program are that (i) it is conversational,
fast and easy to use, (il) no other program exists that
implements CARE functions, (iii) CARE is general in
that all its functions pertain to all equations, (iv) has
the ability to form complex equations from primitives,
(v) the equation repository is extendible, and (vi) -
has efficient input-output and data handling,

The need and usefulness of such a program to the
fault-tolerant computing community is evidenced by
the growing number of users of CARE. It is hoped that
this description of CARE will motivate and aid practi-
tioners to write more powerful reliability evaluation
programs. :

ACKNOWLEDGMENTS

The programming support given by G. L. Winje of the
Data Systems Division of JPL is gratefully acknowl-
edged. The author also wishes to thank A. Avizienis,
D. Rennels, J. Rohr, D. Rubin, and J. Wedel of the
Astrionies Division of JPL for the benefit of useful dis-
cussions on the subject of fault-tolerant computing,.

REFERENCES

1 P O CHELSON
Reliability math modeling using the digital computer
Jet Propulsion Laboratory TR-32-1089 April 1967
2 P O CHELSON
Reliability computation using fault tree analysis
Jet Propulsion Laboratory TR-32-1542 December 1971

The Computer-Aided Reliability Estimation Program 77

3 COMPUTER SCIENCES CORPORATION
RELAN: Reliability analysis package
CSC Sales Brochure No 333 1970

4 W C CARTER et al
Design technigues for modular architecture for reliable
computer systems
IBM T J Watson Research Center Report No 70-208-0002

- March 1970

5 W G BOURICIUS W C CARTER J P ROTH
P R SCHNEIDER
Investigations in the design of an automatically repaired
computer
Digest of the First Annual IEEE Computer Conference
Sept 1967 pp 64-67

6 J P ROTH W G BOURICIUS W C CARTER
P R SCHNEIDER
Phase 11 of an architectural study for a self-repairing computer
IBM Report SAMSO TR-67-106 Nov 1967

7 TECHNOLOGY SERVICE CORPORATION
Projectograph user’s manual
Santa Monica Calif Sept 1969

8 ¥ P MATHUR
Reliability modeling and analysts of a dynamic TMR system
utilizing standby spares
Proceedings of the Seventh Annual Allerton Conference on
Circuit and System Theory University of Illinois Urbana
October 8-10 1969 pp 243-252

9 F P MATHUR A AVIZIENIS
Reliability analysis and architecture of a hybrid redundant
digital system: generalized triple modular redundancy with
self-repair
AFIPS Conference Proceedings (Spring Joint Computer
Conference) Vol 36 Atlantic City May 5-7 1970

10 F P MATHUR
Reliability modeling and architecture of ultra-reliable
Sfault-tolerant digital computers
PhD Thesis University of California at Los Angeles
Computer Sciences Dept June 1970 University Microfilms
Inc Ann Arbor Mich Reorder No 71-662

11 F P MATHUR
On reliability modeling and analysis of ultrareliable
fault-tolerant digital computers
Special Issue on Fault-Tolerant Computing IEEE
Transaction on Computers Vol C-20 No 11 Nov 1971
pp 1376-1382

12 A AVIZIENIS G C GILLEY F P MATHUR
D A RENNELS J A ROHR D K RUBIN ,
The STAR (self-testing and repairing) computer: An
investigation of the theory and practice of fault-tolerant
computer design
Special Issue on Fault-Tolerant Computing IEEE
Transaction on computers Vol C-20 No 11 Nov 1971
pp 1312-1321

78 Fall Joint Computer Conference, 1972

APPENDIX

CARE’s protocol and sample run

XQT ATMAN.CARE

HELLO TERMINAL—I AM YOUR RELIABILITY ANALYST WITH THE CARE (COMPUTER-AIDED RELIABILITY
ESTIMATION) PACKAGE DO YOU WISH TO HAVE YOUR ANSWERS TO THE QUESTIONS PRINTED BACK.
ANSWER YES OR NO

YES

DO YOU WISH TO KNOW THE DEFINITIONS OF RELIABILITY PARAMETERS AND TERMS.

ANSWER YES OR NO

YES

THE DEFINITIONS OF THE VARIOUS RELIABILITY PARAMETERS AND TERMS ARE AS FOLLOWS.

MISSION TIME.

SYSTEM RELIABILITY.

THE TOTAL NUMBER OF SPARES.

THE NUMBER OF MULTIPLEXED UNITS.

DORMANCY FACTOR = (LAMBDA/MU).

COVERAGE FACTOR.

CONDITIONAL PROBABILITY OF SYSTEM RECOVERING GIVEN A FAILURE OCCURRENCE.
QUOTA, NUMBER OF IDENTICAL UNITS IN A SIMPLEX SYSTEM.
NUMBER OF CASCADED UNITS.

NUMBER OF IDENTICAL SYSTEMS IN SERIES.

PROBABILITY OF A UNIT FAILING TO A LOGIC ZERO.

RV = RELIABILITY OF THE RESTORING ORGAN.

MU = UNPOWERED FAILURE RATE OF A SIMPLEX SYSTEM = K/LAMBDA.
LAMBDA = POWERED FAILURE RATE OF A SIMPLEX SYSTEM = K:MU.

PTNIEO aRZemS

- LAMT = NORMALIZED TIME = LAMBDAx«MISSION TIME.
ELAMT = EXP(-LAMT).
REL = SYSTEM RELIABILITY.
UNREL = SYSTEM UNRELIABILITY = (1 — REL).
SIMREL = SIMPLEX RELIABILITY = ELAMT.
SIMGAIN = GAIN IN RELIABILITY WITH REFERENCE TO A SIMPLEX SYSTEM.
= REL/SIMREL.
RELIABILITY IMPROVEMENT FACTOR WITH REFERENCE TO A SIMPLEX SYSTEM.
(1 — SIMREL)/(1 — REL).

SIMRIF

DO YOU NEED INSTRUCTIONS FOR RUNNING THE CARE PROGRAM

ANSWER YES OR NO

YES

SHORTCOMMENT — THE CARE PROGRAM COMPUTES, WITH RESPECT TO THE SELECTED EQUATIONS AND
PARAMETERS THE FOLLOWING RELIABILITY FUNCTIONS — THE RELIABILITY (REL), UNRELIABILITY
(UNREL), SIMPLEX RELIABILITY (SIMREL), SIMPLE GAIN (SIMGAIN), SIMPLE RELIABILITY IMPROVEMENT
FACTOR (SIMRIF), MEAN TIME TO FAILURE (MTF), RELIABILITY AT THE MTF, RELIABILITY DIFFERENCE
(DIFF), RELIABILITY GAIN (GAIN), RELIABILITY IMPROVEMENT FACTOR (RIF), SIMPLE MAXIMUM MISSION
TIME (SIMTMAX), MAXIMUM MISSION TIME (TMAX), SIMPLE TIME IMPROVEMENT FACTOR (SIMTIF), AND
THE RATIO OF TIME IMPROVEMENT FACTORS (RATIF).

2D AND SOME 3D PLOTS CAN BE OBTAINED FOR THE ABOVE COMPUTATIONS.

VARIOUS PLOTTING OPTIONS TO SPECIFY THE ABSCISSA, THE RANGE OF ABSCISSA AND ORDINATE VALUES
ARE AVAILABLE. ABILITY TO PLOT 3D INTERSECTIONS OF 3D PROJECTIONS WITH 2D PLANES IS ALSO AVAIL-
ABLE. THE CARE PROGRAM ALSO EVALUATES COMPLEX RELIABILITY FUNCTIONS FORMED BY TAKING
PRODUCTS OF THE BASIC RELIABILITY EQUATIONS.

CARE HAS A MAXIMUM OF 10 DIFFERENT RELIABILITY EQUATIONS. THESE ARE TABULATED BELOW.
1. R(N,8) = F(T, LAMBDA, MU, §, N, K, RV, Z, W)
THIS IS THE GENERAL RELIABILITY EQUATION OF AN HYBRID-REDUNDANT SYSTEM.
2. R(Q,S) = F(T,LAMBDA,MU,S X,Q,C,%,W)
THIS IS THE GENERAL RELIABILITY EQUATION OF A STANDBY-REPLACEMENT SYSTEM.
3. VOID
4. VOID

The Computer-Aided Reliability Estimation Program 79

5. R(3,0) = F(T,LAMBDA,RV,Z,W,P)
THIS IS THE EQUATION FOR A TMR SYSTEM WHERE THE PROBABILITY OF A UNIT FAILING TO LOGICAL
ONE OR ZERO IS PARAMETERIZED.
6. R(1,0) = (EXP(-LAMBDA=T))=x(Z/W)
THIS IS A GENERAL EQUATION FOR A SIMPLEX SYSTEM.
7. DUMMY
THIS IS A DUMMY EQUATION WHICH IS ALL SET UP TO RECEIVE A NEW EQUATION.
8. BLANK
9. BLANK
10. BLANK

INSTRUCTIONS WILL BE GIVEN FOR ENTERING INPUT DATA AT THE TIME THE INPUT DATA IS NEEDED BY
THE PROGRAM. ‘

DO YOU WISH TO FORM A PRODUCT OF RELIABILITIES

ANSWER YES OR NO

‘NO

TYPE IN COLUMN 1 THE NUMBER OF THE RELIABILITY EQUATION TO BE USED — 1 THRU 7

1

INPUT VARIABLES FOR EQUATION 1

T, LAMT, OR ELAMT MUST BE SPECIFIED AND ITS VALUE IS THE MAXIMUM VALUE FOR THAT VARIABLE.
MIN IS THE MINIMUM AND STEP IS THE INCREMENT FOR T, LAMT, OR ELAMT.

SOME VARIABLES THAT ARE NEEDED BY THE EQUATIONS ARE SET EQUAL TO A DEFAULT VALUE IF THEY
ARE NOT INPUTTED. THESE VARIABLES AND THEIR DEFAULT VALUES ARE: 8=1, N=1, Z=1, W=1, Q=1.0D0,
C=.999. . .DO, P=1.0D0, MIN =0.0D0, STEP =1.0D0, AND ELAMT =1.0D0. ‘

IF B IS INPUTTED, THEN THISVALUE IS USED AS THE FIRST GUESS FOR THE UPPER LIMIT OF IN TEGRATION
IN THE CALCULATION OF MTF.

IF OPTION =1, THEN DIFF, RIF, AND GAIN ARE CALCULATED FOR ALL POSSIBLE COMBINATIONS OF THE
PARAMETER. IF OPTION =2, THEN DIFF, RIF, AND GAIN ARE CALCULATED FOR THE LAST TWO PARAMETER
VALUES. IF OPTION =0 OR IS NOT INPUTTED, THEN THE PROGRAM WILL ASK THE USER AS TO WHICH PARAM-
ETER VALUES DIFF, RIF, AND GAIN ARE TO BE CALCULATED.

NOTE: DIFF, RIF, AN D GAIN ARE NOT COMPUTED IF THE USER IS CALCULATING THE PRODUCT OF RELIABILI-

TIES OR PLOTTING 3-D. THE VARIABLES FOR EQUATION 1 ARE INPUTTED USING VAR AS THE NAMELIST NAME.
A SAMPLE INPUT FOR EQUATION 5 FOLLOWS:
$VAR ‘
T =12.0D0,
LAMBDA =1.0D0,1.5D0,2.0D0,
RV =1.0D0,
Z=1,
W=1,,
OPTION =2
B =10.0D0
$END
NOTE: NAMELIST INPUT IGNORES COLUMN 1
THE INPUT VARIABLES ARE TYPED AS FOLLOWS
DOUBLE PRECISION: T, LAMT, ELAMT, MUT, LAMBDA, MU, K, RV, Q, C, P, MIN, STEP, AND B
INTEGER: 8, N, W, Z, AND OPTION
INPUT VARIABLES NOW
DO YOU WISH TO MAKE ALTERATIONS TO THE $VAR LIST
ANSWER YES OR NO
NO
DO YOU WISH TO HAVE 2-D RELIABILITY PLOTS—ANSWER YES OR NO
YES
INPUT A 1IN THE COLUMN SPECIFIED BELOW IF YOU WISH THE CORRESPONDING PLOT OPTION: OTHERWISE
INPUT O.
NOTE: WHEN PERFORMING PRODUCT OF RELIABILITIES, NO OTHER PLOT OPTION BESIDES PRODUCT OF RE-
LIABILITIES MAY BE SPECIFIED.
COLUMN 1—PLOTS PRODUCT OF RELIABILITIES
COLUMN 2—PLOTS RELIABILITY
COLUMN 3—PLOTS DIFF, RIF, AND GAIN
COLUMN 4—PLOTS MTF AND RELIABILITY AT MTF
COLUMN 5—PLOTS UNRELIABILITY
01100

80 Fall Joint Computer Conference, 1972

FOR ABSCISSA, INPUT 1 IN COLUMN 1 IF ABSCISSA IS T,

1 IN COLUMN 2 IF ABSCISSA IS LOG(T)—BASE 10,

1 IN COLUMN 3 IF ABSCISSA IS LAMT,

1 IN COLUMN 4 IF ABSCISSA IS LOG(L.AMT)—BASE 10,

1 IN COLUMN 5 IF ABSCISSA IS EXP(-LAMBDAT),

1 IN COLUMN 6 IF ABSCISSA IS LOG(EXP(-LAMT))—BASE 10.

EEIETTY

IF YOU WISH TO PLOT A CERTAIN RANGE OF X-AXIS VALUES FOR THE 2-D PLOTS, ENTER LEFT-END POINT IN
COLUMNS 1-8 WITH FORMAT F8.0 AND RIGHT-END POINT IN COLUMNS 9-16 WITH FORMAT F8.0; OTHERWISE
INPUT NO

NO

IF YOU WISH TO PLOT A CERTAIN RANGE OF Y-AXIS VALUES FOR THE 2-D PLOTS, ENTER LEFT-END POINT
IN COLUMNS 1-8 WITH FORMAT F8.0 AND RIGHT-END POINT IN COLUMNS 9-16 WITH FORMAT F8.0; OTHERWISE
INPUT NO

NO)

DO YOU WISH TO PLOT THE LOCUS OF RV SUCH THAT THE SYSTEM RELIABILITY EQUALS THE UNIT RELI-
ABILITY.

ANSWER YES OR NO

NO

DO YOU WISH TO HAVE 3-D RELIABILITY PLOTS—ANSWER YES OR NO

NO

DO YOU WISH TO CALCULATE MAXIMUM MISSION TIME AND SIMPLE TIME FOR GIVEN RELIABILITY—ANSWER
YES OR NO

YES

DO YOU WANT PLOTS FOR THESE CALCULATIONS—ANSWER YES OR NO
“YES

DO YOU WISH TO CALCULATE MAXIMUM MISSION TIME FOR GIVEN RELIABILITY AND COMPARE IT AGAINST
OTHER PARAMETERS

ANSWER YES OR NO

YES

INPUT IN COLUMN 1 ONE OF THE FOLLOWING THREE OPTIONS:

1. MAXIMUM MISSION TIME IS COMPARED AGAINST ALL POSSIBLE COMBINATIONS OF THE PARAMETER,
2. MAXIMUM MISSION TIME IS COMPARED AGAINST THE LAST TWO PARAMETER VALUES,

3. THE PROGRAM ASKS THE USER AS TO WHICH PARAMETER VALUES MAXIMUM MISSION TIME IS TO BE

COMPARED.

1

DO YOU WANT PLOTS FOR THESE CALCULATIONS—ANSWER YES OR NO

NOTE: WHEN EXERCISING OPTION 1, THE PROGRAM PLOTS ONLY THE FIRST 15 PARAMETER COMPARISONS
YES

INPUT THE FOLLOWING 4 VARIABLES EACH WITH FORMAT FS8.0

COLUMNS 1-8 —REFERENCE RELIABILITY R2

COLUMNS 9-16—MINIMUM RELIABILITY R1

COLUMNS 17-24—MAXIMUM RELIABILITY R1

COLUMNS 25-32—RELIABILITY R1 STEP SIZE

1.000 .000 1.000 .100

DO YOU WISH TO HAVE PRINTED TABLE OF RELIABILITY RESULTS

ANSWER YES OR NO

YES

DO YOU WISH TO HAVE PRINTED TABLE OF DIFF, RIF, AND GAIN RESULTS—ANSWER YES OR NO

YES

DO YOU WISH MTF AND RELIABILITY AT MTF RESULTS PRINTED

ANSWER YES OR NO

YES ,

DO YOU WANT PRINTED RESULTS OF THE MAXIMUM MISSION TIME CALCULATIONS—ANSWER YES OR NO
YES

TYPE IN THE VARIABLE THAT IS TO BE USED FOR THE FAMILY OR PARAMETERS—MUST BE SPECIFIED

K)

The Computer-Aided Reliability Estimation Program

81

CALCULATIONS FOR EQUATION 1A

(NI MEANS NOT INPUTTED)
PARAMETER IS K

LAMBDA MU S N K Q
NI . 0000000 1 1 . 100000001 NI
C RV Z w P MUT
NI . 1000000401 1 1 .1000000+-01 NI
LAMT REL UNREL SIMREL SIMGAIN SIMRIF
.000 1.0000000 . 0000000 1.0000000 . 100000001 . 100000036
.100 . 9967989 .0032011 .9048374 .1101633-+01 . 297279802
.200 .9794141 . 0205959 . 8187307 . 1196259401 . 8805495 +-01
.300 . 9438952 .0561048 . 7408182 .12741254-01 .4619598+4-01
.400 . 8921096 . 1078904 .6703200 . 1330871401 . 3055694 +01
. 500 . 8282412 . 1717588 .6065307 . 1365539401 . 2290825401
.600 . 7569280 .2430720 . 5488116 .1379213+-01 . 1856192 +01
. 700 .6823605 . 3176395 . 4965853 .1374105+01 . 1584862401
. 800 .6079221 .3920779 . 4493290 .1352955-4-01 . 1404494 401
.900 . 5361204 . 4638796 .4065697 . 1318643401 . 1279277401
1.000 . 4686621 .5313379 .3678794 127395601 1189677401
1.100 . 4065856 . 5934144 . 3328711 . 1221451401 .11242214-01
1.200 . 3504072 . 6495928 .3011942 1163393401 .1075760+-01
1.300 . 3002559 .6997441 .2725318 .11017284-01 103962001
1.400 . 2559894 . 7440107 .2465970 .1038088--01 .1012624+-01
1.500 . 2172867 . 7827133 .2231302 .9738114—-00 9925343 —00
1.600 . 1837199 . 8162801 .2018965 .9099707 —00 .9777324—-00
1.700 . 1548070 . 8451930 . 1826835 . 8474052 —-00 .9670175 —00
1.800 . 1300494 . 8699506 - . 1652989 . 7867533 —-00 . 9594811 —-00
1.900 . 1089583 . 8910417 . 1495686 . 7284834 —-00 . 9544237 —00
2.000 .0910702 . 9089298 . 1353353 6729228 -00 .9512998 —00
2.100 . 0759576 . 9240424 . 1224564 .6202829—-00 . 9496789 —00
2.200 .0632333 . 9367667 . 1108032 . 5706813 —00 .9492191 —00
2.300 .0525518 9474482 . 1002588 . 5421617 —-00 .9496468 —00
2.400 . 0436090 .9563910 .0907180 . 4807095 —00 .9507430 —00
2.500 .0361392 . 9638608 . 0820850 .4402657 —00 .9523315—00
2.600 . 0299128 . 9700872 .0742736 .4027382—-00 9542714 —00
2.700 0247324 . 9752676 .0672055 .3680110—-00 . 9564498 —00
2.800 . 0204293 . 9795707 .0608101 . 3359521 -00 .9587770—00
2.900 . 0168601 . 9831399 .0550232 . 3064186 —00 .9611824 —00
3.000 .0139037 .9860963 .0497871 .2792626— 00 .9636107— 00

MEAN TIME TO FAILURE — MTF = .108333334-01.
UPPER LIMIT FOR INTEGRATION — B = .15000000+-02
RELIABILITY AT MTF = .41653059 —00

MAXIMUM MISSION

TIME REFERENCE R2 = 1.0000

R1 SIMLAMTMAX LAMTMAX SIMTIF
. 00000 INFINITY INFINITY . 1000000401
.10000 . 2302585401 . 1948467401 . 8462084 —00
. 20000 .1609438+-01 . 1549781401 . 9629332 —00
. 30000 .12039734-01 . 1300594 01 . 1080252401
.40000 .9162907 —00 .11112024-01 .12127184-01
. 50000 .6931472—00 . 9526588 —00 . 1374396401
. 60000 . 5108256 —00 . 8108549 —00 .15873424-01
. 70000 . 3566749 —00 .6764670—00 1896592401
. 80000 . 2231436 —00 .5404841 —-00 . 2422136401
. 90000 . 1053605 4-00 . 3862209 —00 . 3665708401
1..00000 0000000 . 0000000 . 1000000 +-01

TMAX AND SIMTIF PLOT COMPLETED

The Computer-Aided Reliability Estimation Program

82a

TMAX AND SIMIF PLOT COMPLETED

MAXIMUM MISSION TIME FOR K

= .10000004-001

AND K = .1000000+-006 FOLLOWS FOR EQUATION 1B
REFERENCE R2 = 1.00000

R1 TMAX1 TMAX2 RATIF
. 00000 INFINITY INFINITY . 1000000401
. 10000 . 1948467401 .20835714-01 . 1069339401
.20000 .1549781 401 .1666156 401 .1075091+-01
.30000 .1300594 401 . 1403234401 . 1078918401
.40000 .11112024-01 . 1202074 4-01 . 1081777401
.50000 .9526588 —00 .10330064-01 .10843404-01
. 60000 . 8108549 —00 . 8812095 —00 . 1086766 +-01
. 70000 .6764670 —00 .7366257 00 . 1088931 +01
. 80000 .5404841 00 .5897715—-00 .1091191 401
. 90000 . 3862209 —00 . 422435700 .1093767+4-01

1.00000 . 0000000 . 0000000 . 100000001

1 MAXIMUM MISSION TIME PLOTS FOR VARYING
PARAMETER VALUES COMPLETED

DIFF, RIF, AND GAIN FOR K

= .1000000+-001

AND K = .1000000+006 FOLLOWS FOR EQUATION 1B
LAMT DIFF RIF GAIN
. 00000 . 000000 INFINITY 10000001
. 10000 741191 —03 .1301314-01 10007401
.20000 .439928 —-02 .127178+-01 . 10044901
. 30000 . 110269 —-01 . 12446201 .101168+-01
. 40000 .194312—-01 .121966 401 .1021784-01
. 50000 . 282420 -01 .1196794-01 .103410-+01
.60000 . 363528 ~01 .117486--01 . 104803 4-01
. 70000 .430437 01 . 115674401 . 106308101
.80000 .479568 —01 . 113936401 .107889--01
. 90000 .510157 —01 .1123574-01 . 109516 401
1.00000 . 523365 —01 .110926 401 .1111674-01
1.10000 . 521486 —01 . 109635401 . 112826 401
1.20000 . 507338 —01 . 108472401 . 114470401
1.30000 .483841 01 .1074284-01 .116114+-01
1.40000 .453738 —01 . 106495 +-01 .1177254-01
1.50000 .419440—-01 . 195662401 .119304 401
1.60000 . 382964 —01 . 104923 4-01 .1208454-01
1.70000 . 345917 —-01 .1042674-01 . 122345401
1.80000 . 309523 —01 . 103689 4-01 . 123800401
1.90000 .274670—-01 .1031814-01 .125209+-01
2.00000 . 241955 —01 .1027354-01 . 126568401
2.10000 .211747-01 .102345+01 . 127877401
2.20000 . 184230 —01 . 102006 4-01 .129135+4-01
2.30000 . 159450 —01 ©1017124-01 .1303414-01
2.40000 .137352 -01 . 101457401 .1314964-01
2. 50000 .117814 —01 .101237+4-01 . 13260001
2.60000 .100665 —01 . 101049401 .133653 401
2.70000 . 857121 —-02 .1008874-01 . 134656 —01
2.80000 . 727480 —01 .1007484-01 .135610-4-01
2.90000 .615657 —02 .100630-4-01 .136516 401
3.00000 .519645 —02 .100530+-01 .1373754-01

1 PLOTS COMPLETED
3 PLOTS COMPLETED
DO YOU WISH TO SPECIFY ANOTHER PARAMETER
ANSWER YES OR NO

NO
—FIN

82 Fall Joint Computer Conference, 1972

CALCULATIONS FOR EQUATION 1B

PARAMETER IS K

(NI MEANS NOT INPUTTED)

LAMBDA MU S N K Q
NI NI 1 1 INF NI
Cc RV Z w P MUT
NI .1000000+-01 1 1 . 1000000 -01 NI
LAMT REL UNREL SIMREL SIMGAIN SIMRIF
.000 1..0000000 . 0000000 1.0000000 . 1000000401 . 100000036
.100 9975401 . 0024599 .9048374 . 1102452401 .38685104-02
.200 .9838134 .0161866 . 8187370 .1201632+-01 .11198704-02
.300 . 9549221 . 0450779 . 7408182 .1289010-+-01 . 5749636 +4-01
.400 .9115409 . 0884591 . 6703200 . 1359859 401 .3726918+4-01
.500 . 8564832 . 1435168 .6065307 .14121024-01 . 2741626 4-01
.600 .'7932808 .2067192 . 5488116 . 1445452401 .2182615-4-01
.700 . 7254042 . 2745958 49656853 . 1460785401 . 1833294 4-01
.800 .6558789 .3441211 .4493290 . 145968501 . 1600224 -+01
.900 .5871361 .4128639 . 4065697 . 1444122401 . 1437351 4-01
1.000 . 5209986 .4790014 .3678794 .14162214-01 .1319663 4-01
1.100 4587342 . 5412658 . 3328711 .13781144-01 . 1232535401
1.200 .4011410 . 5988590 .3011942 1331835401 . 1166895401
1.300 . 3486400 . 6513600 .2725318 . 1279264 4-01 1116845101
1.400 .3013631 . 6986369 . 2465970 .1222088+-01 .1078390+01
1.500 . 2592307 . 7407693 .2231302 .11617914-01 . 1048734 401
1.600 .2220163 7779837 . 2018965 . 1099654 +-01 .1025861 101
1.700 . 1893986 . 8106014 . 1826835 .1036758+-01 .1008284 +4-01
1.800 .1610018 . 8389982 .1652989 . 9740040 —00 . 9948783 —00
1.900 . 1364252 . 8635748 . 1495686 .9121246 —00 . 9847802 —00
2.000 . 1152657 . 8847343 . 1353353 . 8517048 —00 9773157 —00
2.100 .0971323 . 9028677 . 1224564 .7931990 -00 .9719515—00
2.200 .0816563 .9183438 . 1108032 . 7369488 —00 .9682614 —00
2.300 . 0684968 .9315032 . 1002588 .6831996 —00 . 9659024 —00
2.400 - .0573442 . 9426558 .0907180 .6321152 00 . 9645960 —00
2.500 . 0479206 .9520794 . 0820850 . 5837922 —00 .9641160 —00
2.600 .0399793 . 9600207 . 0742736 . 5382713 —00 . 9642776 —00
2.700 .0333036 . 9666964 .0672055 .4955484 —00 . 9649301 —00
2.800 .0277041 . 9722959 .0608101 .4555835 —00 . 9659507 —00
2.900 .0230167 . 9769833 . 0550232 .4183091 —00 .9672395 —00
3.000 .0191001 . 9808999 . 0497871 .3836361 —00 .9687155 —00

MEAN TIME TO FAILURE — MTF = .11666667401
UPPER LIMIT FOR INTEGRATION — B = .15000000-4-02
RELIABILITY AT MTF = .41978696 —00

MAXIMUM MISSION

TIME REFERENCE R2 = 1.00000
R1 SIMLAMTMAX LAMTMAX SIMTIF
. 00000 INFINITY INFINITY .1000000+01
. 10000 . 2302585-4-01 . 2083571461 . 9048836 —00
. 20000 .16094384-01 .1666156-+-01 .1035241--01
. 30000 .1203973 401 . 1403234401 .1165503 -01
. 40000 . 9162907 —00 .1202074 401 .1311891 401
. 50000 .6931472 -00 .10330064-01 .1490313 101
. 60000 . 5108256 —00 . 8812095 —00 . 172506901
. 70000 . 3566749 —00 . 7366257 —00 . 2065258401
. 80000 . 2231436 —00 .5897715—-00 . 2643014401
. 90000 . 105360500 . 4224357 —00 .4009430+-01
1. 00000 . 0000000 0000000 . 1000000--01

An adaptive error correction scheme
for computer memory system

by A. M. PATEL and M. Y. HSIAO

IBM Corporation
Poughkeepsie, New York

INTRODUCTION

Many of the modern computer memories contain single-
error correction capability in order to enhance relia-
bility.! In a large scale memory, an even more powerful
error correction code may be desirable. In particular, a
double-error correction capability can reduce the main-
tenance cost significantly, while keeping the unscheduled
system interruptions within tolerable limits. Since most
faults are effectively masked and logged out, the per-
manent failures can be replaced at the time of scheduled
maintenance, thus leaving the user unaffected. The cost
and complexity of the known double error correcting
code, however, seems to outweigh the advantages. The
long decoding time and large amount of redundancy in
double error correction cannot be justified in every
fetch instruction for the sake of correcting an occasional
double error.

This paper describes a memory error correction
scheme which can be used in an adaptive manner. The
code used in this scheme is derived from a full length
BCH double error correcting code? by deleting certain
columns of the parity check matrix. This code corrects
single errors as well as double errors on different memory
word boundaries while the number of check bits required
is much less and the normal memory cycle remains
unaffected except in the presence of a double error.

GENERAL SYSTEM FEATURES

In this section, the adaptive error correction scheme
is illustrated through an example. Let us assume that
the word length of a basic memory unit is 64 data bits
plus 8 check bits for single error correction and double
error detection. If the double error correction (DEC)
feature using BCH code is desired, then additional
7 check bits are required. Since a memory system may
have several, say m, basic memory units rather than

83

one, it requires 7 Xm extra check bits for DEC in the
total system. This results into high cost of implementa-
tion and also increases the memory cycle time even if
only a single error has occurred. The adaptive ECC
scheme guarantees the SEC-DED capability on each
basic memory unit and only uses 7 extra check bits or
8 bits if an overall triple error detection (TED) capa-
bility is required for DEC on the entire system. Single
errors are corrected without referring to the additional
check bits, hence nominal memory cycle time is not
affected. Only in the case of double errors, the memory
cycle time is increased. The parity check matrix has
the following form:

(He Is] . ¢ ¢ ¢
H= . (1)
¢ ¢ --—-----_fEH64 L] ¢
(4 o] . [4 o] Is]

The construction of the submatrices Hes and A is done
by an APL program?® given in the appendix with theory
stated in Section III. The submatrix ¢ is a null matrix
of all zeros and I is a 8 X8 identity matrix.

In the memory system, each word of 64 information
bits independently carries 8 check bits which provide
the SEC-DED capability on every word separately.
Thus, any single error in any word can be corrected
separately without any reference to other words. How-
ever, in the presence of two errors in one word (DED
indicator), one will compute the error pattern from the
correlation of the SEC 7-bit syndrome of the erroneous
word with the DEC 7-bit syndrome computed over all
m contributing words. Any single error in other words
is either eliminated separately before computing the
DEC syndrome or is detected by the TED check bit.
If two or more words in a group indicate double errors,

84 Fall Joint Computer Conference, 1972

DEC syndrome will be a composite of two syndromes
and, hence, the errors in such case cannot be corrected.
However, the probability of a double-error being very
low, two errors in each of the two words in a group, is
highly improbable. Hence, in most cases the double
error in a word will be correctible.

CONSTRAINTS FOR THE MODIFIED DEC BCH
CODES

The double error correcting code for such adaptive
correction scheme must have the following two features:

(1) The 14 check bits are divided into two groups of
7 check bits each. Each group must be in-
dependent of the other.

(2) The parity rules for the first group must satisfy
the constraints of the SEC-DED code and the
parity rules of the two groups together must
provide the DEC-TED capability.

We examine the double-error correcting BCH code for
these two SEC-separability properties:

There are at least three methods of generating the
parity check matrix of a double error correcting
code. The parity eheck matrix denoted by H; has
2z mod my (x)ms(x) as its 7th column (0 origin) where
mi(z) and mz(x) are minimum functions of the field
elements o and o® of GF (27). The parity check matrix
H, generated by the second method has the concatenated
vector z' mod m,(x), x‘mod mz(x) as its 7th column.
The parity check matrix H; generated by the third
method has the concatenated vector z?mod m;(zx),
2**mod my(z) as its 7th column. The codes generated
by these three matriees are not only equivalent but also
isomorphic. These three matrices possess different
desirable properties. In particular, the matrix H,
possess the property (1) for the adaptive correction
scheme—presently under consideration. The first 14
columns of H; represent an identity matrix which
corresponds to 14 independently-acting check digits.
However, any 7 check bits as a group do not provide
SEC capability which is the required property (2).
The matrix Hp on the other hand can be divided into
two parts where the first group of seven check bits,
corresponding in the part column z?mod m,(z), does
provide SEC capability, however, the two groups of
check bits do not aet independently and hence are not
separable. The matrix H; behaves in the same manner
as H, except that the syndrome in H; is easily
decodable.*

As it seems from the above discussions, the full
length DEC code does not possess the SEC—separa-
bility properties (1) and (2). However, it is easy to see
that one could drop a number of columns from matrix
H, in order to obtain the SEC capability with the first
seven check bits. We examine the first seven digits of
each column 7(7>13) and drop the column if this seven
digit vector has already appeared in a previously taken
column. This guarantees that these columns along with
the first 7 columns for check bits form a single error
correcting code. This exercise was carried out using an
APL computer program which generated a (104, 90)
and (172, 154) DEC codes which has separable SEC
and can be shortened to handle data bit lengths 64 and
128. The codes are given in the Appendix. The DED
capability is obtained by adding a check bit on the
SEC code which makes a SEC-DED odd-weight-
column-code.’ The number in front of each column of
H-matrix in the Appendix represents the eyclic position
number in the full length code. These position numbers
are used in the algebraic decoding algorithm? in error
correction process.

SYSTEM IMPLEMENTATION

Let us use a simple example for illustration. Figure 1
shows a memory system which contains two basic
memory units. Each unit has a (72, 64) SEC-DED
code.

The following is the parity check matrix for this
simple system,

[Hu Il ¢ ¢ ¢
H=| ¢ ¢ [Ha Is] ¢ (2)

(A ¢1 [A4 ¢] I

Where Hg, is the first group of 7 columns of the matrix
in the Appendix and an additional column is added to
make it odd weight. The A-matrix is the second group
of 7 columns of the matrix in the Appendix. Another
column is added to these 15 columns to make the
overall parity matrix odd weight. This means that the
overall code has double error correction and triple
error detection capability. The encoding follows directly
from the H-matrix of Equation (2). The decoding is
classified as follows:

1. Any single error in each memory unit can be

. corrected separately and simultaneously.

2. If a double error is detected in one of the memory
units and no error indication in the other memory

Adaptive Error Correction Scheme for Computer Memory System 85

f— 72 —» lt— 72 —>] le- 8 >
MEM MEM Check
DECODER

v

To CPU or Channel

Figure 1

unit for the corresponding word, then this
double error can be corrected by the additional
8 check bits.

The decoding of the double errors as stated in class 2
needs the data bits portion of both memory units. The
data bit portion for the error free memory is required
to cancel its effects in the last 8 syndrome bits. There-
fore, the double error correction can be done as that
given in Reference 4.

SUMMARY

An adaptive ECC scheme with SEC-DED feature can
be expanded to DEC feature in a memory system con-
taining several memory units environment. The normal
memory cycle time remains unaffected, except in the
presence of a double error when extra decoding time is
required for the double error correction procedure.
Other major advantage is cost savings in terms of
number of check bits required. If the memory system
contains 7 basic memory units then 8(m—1) check bits
can be saved by using this scheme. The number m is
chosen such that the probability of double-errors in two

words out of a group of m words is very small. Such
adaptive error correction scheme more closely matches
the requirements of modern computer memory systems
and can be used very effectively for masking faults and
reducing cost of maintenance.

REFERENCES

1 J F KEELEY .
System /370—Reliability from a system viewpoint
1971 IEEE International Computer Society Conference
September 22-24 1971 Boston Massachusetts

2 W W PETERSON
E'rror correcting codes
MIT Press 1961

3 A D FALKOFF K E IVERSON
APL/360 user’s manual
IBM Watson Research Center Yorktown Heights New
York 1968 :

4 A M PATEL S J HONG
Syndrome trapping technique for fast double-error correction
Presented at the 1972 IEEE International Symposium on
Information Theory IEEE Catalog No 72 CHO 578-S IT
1972

5 M Y HSIAO
A class of optimal minimum odd-weight-column SEC-DED
codes
IBM J of Res & Dev Vol 14 No 4 pp 395-402 July 1970

APPENDIX A—CODE GENERATION PROGRAM
APL 360
VSECDECI OV

vV SECDEC ¢

11 MeT14p0

[21 N«2%(M22)

[31 V<X4p0

(4] Z«Np0

[5] A+(Mp0),1

[6] I<0 :

[71 V«MpO+("149)=2(GxO[M-11)

[81 »9+(I>M)x((X«(2L((M:2)4V)))eZ)
[91] '0123456789%'{ (10 10 10 vI),10,V]
(101 Z[Il<«x

(111 TI<«I+1

[12] +7+(7x(I=N))

(131 'DONE:!

fi14] =15

86

Fall Joint Computer Conference, 1972

APPENDIX B—PARITY CHECK MATRIX FOR (104, 90) SEC-SEPARABLE DEC CODE

SECDEC 12 0 0 0 01101110111

000%x10000000000000
001*x01000000000000
002*x00100000000000
003%00010000000000
004*00001000000000
005*x00000100000000
006*00000010000000
007*00000001000000
008+¥00000000100000
0039*00000000010000
010+x00000000001000
011%00000000000100
012*000000000000190
013+«00000000000001
014%10000110111011

- 015%11000101100110

016+#01100010110011
017%10110111100010
018%01011011110001
019%10101011000011
020%11010011011010
021%01101001101101
022%«10110010001101
023%11011111111101
024%11101001000101
025%11110010011001
026%11111111110111
027%11111001000000
028%01111100100000
029%00111110010000
030%x00011111001000
031+x00001111100100
032%000001111210010
037%x00110001010110
038%«00011000101011
039+«10001010101110
0L0*x01000101010111
041%10100100010000
0u2+%01010010001000
043%00101001000100
o044%00010100100010
045%«00001010010001
046%10000011110011
047%11000111000010
050%11011101011110

051%01101110101111
052%10110001101100
053%01011000110110
054%00101100011011
055%10010000110110
056%01001000011011
057%10100010110110
058%01010001011011
059%10101110010110
060%01010111001011
061%10101101011110
065%00101011011011
066%10010011010110
074%10001100000010
075%¥01000110000001
077%*11010100000110
078%01101010000011
083%11101111000111
084%11110001011000
085%01111000101100
086%00111100010110
088%10001001111110
094%11001111110100
095%01100111111010
096%*00110011111101
097+%10011111000101
098%11001001011001
099%11100010010111
100%11110111110000
101%01111011111000
108%10010110110001
109+%11001101100011
110%11100000001010
111%01110000000101
112%10111110111001
113%11011001100111
114%11101010001000
115%01110101000100
116%x00111010100010
117+*00011101010001
119%11000010110010
120%01100001011001
124%00110111011100
125%¥00011011101110
126%00001101110111

Adaptive Error Correction Scheme for Computer Memory System 87

APPENDIX C—(172, 154) SEC-SEPARABLE DEC CODE

5 c

FC1 011011121011 00011

e

EC
ECD

ey

t

000%1090000000000000
001*01060000000000000
002%0010060000000000
003%2001000000007000
NO0U*0000120000000900
005%x0000919000000000
006%0000201000000000
N07%0000000100000000
008%0000000010000000
0093*2000000001000000
0138%x0000900000100000
N11%00000072000010000
012%x0000000000001000
N13%x0010002000000100
N14*000209000C000010
015%0000000000000001
£15%1011011110110001
017%1110117001101001
018%117000721100001"1
513+%1101011101110011
N295%1101110000001900
021%x0115111000090109
N22%9011011100000010
(23%0001191110000001
N24%1011101001112001
025%11101019100C¢1001
026%1120001011110101
127%1121211011001011
031%1010110000101011
032%11100001190100100
033%011130001101n00190
034%0011100001101001
035%10101951110000101
036%1110001001110011
037%1100011212001000
038%011900110195001909
033%0011000110100019
Q4n%*0001100011010001
041+%1011101111011001
N45%*0110101101111111
QU4Cx1000001000001110
0U7+%011990001C0000111
04g*1001n011120110010
0u3%0100101110011001
050%1001001001111101
N51+%1111111010001111
552+%1150100011110110
N53+#0110010001111011
G54%1000717110021100
155%0120001011900110
N55%0010000101100011
657%10100111000090000
053%0171761116002000
053%(3010100111006002
063%3001215011102000
061%30001016011102000
062+20009151950111000

NETwngnggn111117 01

068%1001101001301001
0649%1111101010010101
079%*1100101011111011
071%1101201011001100
072%0110100101100110
073%0011010010110011
074+%1010110111101000
075%0101011011110100
076%0010101101111010
077%75001010110111101
N78%1011119101101111
073%1110100100000110
087%01110100101709011
781%100011011111900C0
082%x0175011011111090
N83%20100701121111190
084%5001000110111110
08¢*x1011001111011110
N87*7101190111101111
088%10011021101500110
389%01001151101902011
290%1001200121100000
291%5100100010112000
992%0015015001011000
093%0001001000101100
084*x0000100100010110
096%101101011111¢100
097%x010110101111190190
098%x00101101011111°¢

092%x1010000190001111
109%11100111001101190
101%01110011190011011
102%1000111001111100
103%x0100011100111110
105%10105011001111110
107%1001111200101110
108%01950111120510111
109%100195000021110190
111%1001001110111111
113%x0111111100110111
114%100717005901019219
115%91000190000101¢C1
115%1001210110111011
117%11111101011011900
118%7111111010110119
119%0011111191011011
120%1010120000011100
121%x210101950000011190
122%20195101000000111
123%1010001719119010
124%01019001951211001
125%1001111190011101
126%1111106000111111
127%1190191110101119
128%0113010111010111
131%1001011011100111
132#1111119011000010

135%1111001111110001
136%1100111001501001
137%110100001901Cc101
138%1101111111111¢11
133%1101100001001100
140%0110112000100110
141x0011011000010011
147%0101111010111101
148%1001100011101111
1492%1111121111200110
150%011111721111900011
151%1002100101000000
153%0010001001010009
153%1011011010150011
160%x0111711001119000
161%00111011001110090
162%000111901100111990
163%0000111011901110
164%9000011101190111
165%101172199000000019
171%1121111511011000
172%01101111201151100
1756%9101110190101110
177%0010111010010111
178%10150000111110190
1739%0101000001111101
182%0111110000111911
189%1012001101100001
190%1110011000000001
191%1100010010112001
122%1101010111101001
193%1101112101000191
194%1101190100010011
195%1101101100111600
196%0110110110011100
201%1001100100110001
209%0000110111101110
210%0000011011110111
216%0011111010111190
217%00011111219011110
213%0000111110101111
219+1011000001190110

220%0101100000110011

223%0010011011101010
224%0001001101110101
225%1011111000001011
226%1110100010110100
228%0011101000191101
229%1010101010100111
231#0111020101110001
232%1000111190201001
233%1111000000110101
234%1160111110101011
235%0110160000110010
246%1190011100000110
242%1000011001110000
243%0100001100111000

Dynamic confirmation of system integrity*

by BARRY R. BORGERSON

University of California
Berkeley, California

INTRODUCTION

It is always desirable to know the current state of any
system. However, with most computing systems, a
large class of failures can remain undetected by the
system long enough to cause an integrity violation.
What is needed is a technique, or set of techniques, for
detecting when a system is not functioning correctly.
That is, we need some way of observing the integrity
of a system.

A slight diversion is necessary here. Most nouns
which are used to describe the attributes of computer
systems, such as reliability, availability, security, and
privacy, have a corresponding adjective which can be
used to identify a system that has the associated
attribute. Unfortunately, the word “integrity’’ has no
associated adjective. Therefore, in order to enhance the
following discourse, the word “integral” will be used
as the adjective which describes the integrity of a
system. Thus, a computer system will be integral if it
is working exactly as specified.

Now, if we could verify all of the system software,
then we could monitor the integrity of a system in real
time by providing a 100 percent concurrent fault
detection capability. Thus, the integrity of the entire
system would be confirmed concurrently, where “con-
current confirmation” of the integrity of any unit of
logic means that the integrity of this unit is being
monitored concurrently with each use.

A practical alternative to providing concurrent
confirmation of system integrity is to provide what will
be called ‘“dynamic confirmation of system integrity.”
With this concept, the parts of a system that must be

* This research was supported by the Advanced Research Projects
Agency under contract No. DAHC15 70 C 0274. The views and
conclusions contained in this document are those of the author
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U.S. Government.

89

continuously integral are identified, and the integrity
of the rest of the system can then be confirmed by
means less stringent than concurrent fault detection.
For example, it might be expedient to allow certain
failures to exist for some time before being detected.
This might be desirable, for instance, when certain
failure modes are hard to detect concurrently, but where
their effects are controllable. ‘

QUALITATIVE JUSTIFICATION

In most contemporary systems, a multiplicity of
processes are active at any given time. Two distinct
types of integrity violations can occur with respect to
the independent processes. One type of integrity
violation is for one process to interfere with another
process. That is, one process gains unauthorized access
to another’s information or makes an illegitimate
change of another process’ state. This type of trans-
gression will be called an “interprocess integrity
violation.” The other basic type of malfunction which
can be caused by an integrity violation occurs when the
state of a single process is erroneously changed without
any interference from another process. Failures which
lead to only intraprocess contaminations will be called
“intraprocess integrity violations.” ,

For many real-time applications, no malfunctions
of any type can be tolerated. Hence, it is not particu-
larly useful to make the distinction between inter-
process and intraprocess integrity violations since
concurrent integrity-confirmation techniques must be
utilized throughout the system. For most user-oriented
systems, however, there is a substantial difference in the
two types of violations. Intraprocess integrity violations
always manifest themselves as contaminations of a
process’ environment. Interprocess integrity violations,
on the other hand, may manifest themselves as security
infractions or contaminations of other processes’
environments.

90 Fall Joint Computer Conference, 1972

‘We now see that there can be some freedom in defining
what is to constitute a continuously-integral, user-
oriented system. For example, the time-sharing system
described below is defined to be continuously integral if
it is providing interprocess-interference protection on a
continuous basis. Thus other properties of the system,
such as intraprocess contamination protection, need
not be confirmed on a continuous basis.

Although the concept of dynamic confirmation of
system integrity has a potential for being useful in a
wide variety of situations, the area of its most obvious
applicability seems to be for fault-tolerant systems.
More specifically, it is most useful in those systems
which are designed using a solitary-fault assumption.
Where “solitary fault’”” means that at most one fault is
present in the active system at any time. The notion of
“dynamic” becomes more clear in this context. Here,
“dynamic” means in such a manner, and at such times,
so that the probability of encountering simultaneous
faults is below a predetermined limit. This limit is
dictated not only by the allowable probability of a
catastrophic failure, but also by the fact that other
factors eventually become more prominent in deter-
mining the probability of system failure. Thus, there
often becomes a point beyond which there is very little
to be gained by increasing the ability to confirm
integrity. The rest of this paper will concern itself with
dynamic confirmation in the context of making this
concept viable with respect to the solitary-fault
assumption.

DYNAMIC CONFIRMATION TECHNIQUES

In this section, and the following seetion, a particular
class of systems will be assumed. The class of systems
considered will be those which tolerate faults by
restructuring to run without the faulty units. Both the
stand-by sparing and the fail-softly types of systems are
in this category. These systems have certain char-
acteristics in common; namely, they both must detect,
locate, and isolate a fault, and reconfigure to run
without the faulty unit, before a second fault can be
reliably handled.

Obviously, if simultaneous faults are to be avoided,
the integrity of all parts of the system must be verified.
This is reasonably straightforward in many areas. For
instance, the integrity of data in memory can be rather
easily confirmed by the method of storing and checking
parity. Of course, checks must also be provided to make
sure that the correct word of memory is referenced, but
this can be done fairly easily too.! It is generally true
that parity, check sums, and other straightforward

concurrent fault-detection techniques can be used to
confirm the integrity of most of the logic external to
processors. However, there still remains the problems
of verifying the integrity of the checkers themselves, of
the processors, and of logic that is infrequently used
such as that associated with isolation and reconfigura-
tion.

All too often, there is no provision made in a system
to check the fault detection logic. Actually, there are
two rather straightforward methods of accomplishing
this. One method uses checkers that have their own
failure space. That is, they have more than two output
states; and when they fail, a state is entered which
indicates that the checker is malfunctioning. This
requires building checkers with specifically defined
failure modes. It also requires the ability to recognize
and handle this limbo state. An example of this type of
checker appears in Reference 2.

Another method for verifying the integrity of the
fault-detection logic is to inject faults; that is, cause a
fault to be created so that the checker must recognize it.
In many cases this method turns out to be both cheaper
and simpler than the previously mentioned scheme.
With this method, it is not necessary to provide a
failure space for the checkers themselves. However, it is
necessary to make provisions for injecting faults when
that is not already possible in the normal design. With
this provision, confirming the integrity of the checking
circuits becomes a periodic software task. Failures are
injected, and fault detection inputs are expected. The
system software simply ignores the fault report or
initiates corrective action if no report is generated.

Associated with systems of the type under discussion,
there is logic that normally is called into use only when a
fault has been detected. This includes the logic dedicated
to such tasks as diagnosis, isolation, and reconfiguration.
This normally idle class of hardware units will collec-
tively be called “reaction logic.” In order to avoid
simultaneous faults in a system, this reaction logic must
not be allowed to fail without the failure being rapidly
detected. Several possibilities exist here. This logic can
be made very reliable by using some massive redundancy
technique such as triple-modular-redundancy.? Another
possibility is to design these units such that they
normally fail into a failure space which is detected and
reported. However, this will not be as simple here as it
might be for self-checking fault detectors because the
failure modes will, in general, be harder to control. A
third method would be to simulate the appropriate
action and observe the reaction. This also is not as
simple here as it was above. For example, it may not be
desirable to reconfigure a system on a frequent periodic
basis. However, one way out of this is to simulate the

Dynamic Confirmation of System Integrity 91

action, initiate the reaction, and confirm the integrity
of this logic without actually causing the reconfigura-
tion. This will probably require that the output logic
either be made “reliable” or be encoded so as to fail
into a harmless and detectable failure space.

The final area that requires integrity confirmation is
the processors. The technique to be employed here is
very dependent on the application of the system. For
many real-time applications, nothing short of con-
current fault detection will apparently suffice. However,
there are many areas where less drastic methods may
be adequate. Fabry* has presented a method for veri-
fying critical operating-system decisions, in a time-
sharing environment, through a series of independent
double checks using a combination of a second processor
and dedicated hardware. This method can be extended
to verifying certain decisions made by a real-time
control processor. If most of the tasks that a real-time
processor performs concern data reduction, it is possible
that software-implemented consistency checks will
suffice for monitoring the integrity of the results. When
critical control decisions are to be made, a second
processor can be brought into the picture for consistency
checks or dedicated hardware can be used for validity
checking. Alternatively, a separate algorithm, using
separate registers, could be run on the same processor
to check the validity of a control action, with external
time-out hardware being used to guarantee a response.
These procedures could certainly provide a substantial
cost savings over concurrent fault-detection methods.

For a system to be used in a general-purpose, time-
sharing environment, the method of checking pro-
cessors non-concurrently is very powerful because
simple, relatively inexpensive schemes will suffice to
guarantee the security of a user’s environment. The
price that is paid is to not detect some faults that could
cause contamination of a user